
A comparison of algorithms for maximum entropy parameter estimation

Robert Malouf
Alfa-Informatica

Rijksuniversiteit Groningen
Postbus 716

9700AS Groningen
The Netherlands

malouf@let.rug.nl

Abstract
Conditional maximum entropy (ME) models pro-
vide a general purpose machine learning technique
which has been successfully applied to fields as
diverse as computer vision and econometrics, and
which is used for a wide variety of classification
problems in natural language processing. However,
the flexibility of ME models is not without cost.
While parameter estimation for ME models is con-
ceptually straightforward, in practice ME models
for typical natural language tasks are very large, and
may well contain many thousands of free parame-
ters. In this paper, we consider a number of algo-
rithms for estimating the parameters of ME mod-
els, including iterative scaling, gradient ascent, con-
jugate gradient, and variable metric methods. Sur-
prisingly, the standardly used iterative scaling algo-
rithms perform quite poorly in comparison to the
others, and for all of the test problems, a limited-
memory variable metric algorithm outperformed the
other choices.

1 Introduction
Maximum entropy (ME) models, variously known
as log-linear, Gibbs, exponential, and multinomial
logit models, provide a general purpose machine
learning technique for classification and prediction
which has been successfully applied to fields as di-
verse as computer vision and econometrics. In natu-
ral language processing, recent years have seen ME
techniques used for sentence boundary detection,
part of speech tagging, parse selection and ambigu-
ity resolution, and stochastic attribute-value gram-
mars, to name just a few applications (Abney, 1997;
Berger et al., 1996; Ratnaparkhi, 1998; Johnson et
al., 1999).

A leading advantage of ME models is their flex-
ibility: they allow stochastic rule systems to be
augmented with additional syntactic, semantic, and
pragmatic features. However, the richness of the

representations is not without cost. Even mod-
est ME models can require considerable computa-
tional resources and very large quantities of anno-
tated training data in order to accurately estimate
the model’s parameters. While parameter estima-
tion for ME models is conceptually straightforward,
in practice ME models for typical natural language
tasks are usually quite large, and frequently contain
hundreds of thousands of free parameters. Estima-
tion of such large models is not only expensive, but
also, due to sparsely distributed features, sensitive
to round-off errors. Thus, highly efficient, accurate,
scalable methods are required for estimating the pa-
rameters of practical models.

In this paper, we consider a number of algorithms
for estimating the parameters of ME models, in-
cludingGeneralized Iterative ScalingandImproved
Iterative Scaling, as well as general purpose opti-
mization techniques such asgradient ascent, conju-
gate gradient,and variable metricmethods. Sur-
prisingly, the widely used iterative scaling algo-
rithms perform quite poorly, and for all of the test
problems, a limited memory variable metric algo-
rithm outperformed the other choices.

2 Maximum likelihood estimation

Suppose we are given a probability distributionp
over a set of eventsX which are characterized by a
d dimensional feature vector functionf : X→ R

d.
In addition, we have also a set of contextsW and a
functionY which partitions the members ofX. In
the case of a stochastic context-free grammar, for
example,X might be the set of possible trees, the
feature vectors might represent the number of times
each rule applied in the derivation of each tree,W
might be the set of possible strings of words, and
Y(w) the set of trees whose yield isw∈W. A con-
ditional maximum entropy modelqθ(x|w) for p has
the parametric form (Berger et al., 1996; Chi, 1998;

Johnson et al., 1999):

qθ(x|w) =
exp
(
θT f (x)

)
∑y∈Y(w) exp(θT f (y))

(1)

whereθ is a d-dimensional parameter vector and
θT f (x) is the inner product of the parameter vector
and a feature vector.

Given the parametric form of an ME model in
(1), fitting an ME model to a collection of training
data entails finding values for the parameter vector
θ which minimize the Kullback-Leibler divergence
between the modelqθ and the empirical distribu-
tion p:

D(p||qθ) = ∑
w,x

p(x,w) log
p(x|w)
qθ(x|w)

or, equivalently, which maximize the log likelihood:

L(θ) = ∑
w,x

p(w,x) logqθ(x|w) (2)

The gradient of the log likelihood function, or the
vector of its first derivatives with respect to the pa-
rameterθ is:

G(θ) = Ep[f]−Eqθ [f] (3)

Since the likelihood function (2) is concave over
the parameter space, it has a global maximum where
the gradient is zero. Unfortunately, simply setting
G(θ) = 0 and solving forθ does not yield a closed
form solution, so we proceed iteratively. At each
step, we adjust an estimate of the parametersθ(k)

to a new estimateθ(k+1) based on the divergence
between the estimated probability distributionq(k)

and the empirical distributionp. We continue until
successive improvements fail to yield a sufficiently
large decrease in the divergence.

While all parameter estimation algorithms we
will consider take the same general form, the
method for computing the updatesδ(k) at each
search step differs substantially. As we shall see,
this difference can have a dramatic impact on the
number of updates required to reach convergence.

2.1 Iterative Scaling
One popular method for iteratively refining the
model parameters isGeneralized Iterative Scaling
(GIS), due to Darroch and Ratcliff (1972). An
extension of Iterative Proportional Fitting (Dem-
ing and Stephan, 1940), GIS scales the probabil-
ity distribution q(k) by a factor proportional to the

ratio of Ep[f] to Eq(k) [f], with the restriction that
∑ j f j(x) = C for each eventx in the training data
(a condition which can be easily satisfied by the ad-
dition of a correction feature). We can adapt GIS
to estimate the model parametersθ rather than the
model probabilitiesq, yielding the update rule:

δ(k) = log

(
Ep[f]

Eq(k) [f]

) 1
C

The step size, and thus the rate of convergence,
depends on the constantC: the larger the value of
C, the smaller the step size. In case not all rows of
the training data sum to a constant, the addition of a
correction feature effectively slows convergence to
match the most difficult case. To avoid this slowed
convergence and the need for a correction feature,
Della Pietra et al. (1997) propose anImproved Iter-
ative Scaling(IIS) algorithm, whose update rule is
the solution to the equation:

Ep[f] = ∑
w,x

p(w)q(k)(x|w) f (x)exp(M(x)δ(k))

whereM(x) is the sum of the feature values for an
eventx in the training data. This is a polynomial in
exp
(
δ(k)
)
, and the solution can be found straight-

forwardly using, for example, the Newton-Raphson
method.

2.2 First order methods

Iterative scaling algorithms have a long tradition in
statistics and are still widely used for analysis of
contingency tables. Their primary strength is that
on each iteration they only require computation of
the expected values Eq(k) . They do not depend on
evaluation of the gradient of the log-likelihood func-
tion, which, depending on the distribution, could be
prohibitively expensive. In the case of ME models,
however, the vector of expected values required by
iterative scaling essentiallyis the gradientG. Thus,
it makes sense to consider methods which use the
gradient directly.

The most obvious way of making explicit use of
the gradient is byCauchy’s method, or the method
of steepest ascent. The gradient of a function is a
vector which points in the direction in which the
function’s value increases most rapidly. Since our
goal is to maximize the log-likelihood function, a
natural strategy is to shift our current estimate of
the parameters in the direction of the gradient via

the update rule:

δ(k) = α(k)G(θ(k))

where the step sizeα(k) is chosen to maximize
L(θ(k) + δ(k)). Finding the optimal step size is itself
an optimization problem, though only in one dimen-
sion and, in practice, only an approximate solution
is required to guarantee global convergence.

Since the log-likelihood function is concave, the
method of steepest ascent is guaranteed to find the
global maximum. However, while the steps taken
on each iteration are in a very narrow sense locally
optimal, the global convergence rate of steepest as-
cent is very poor. Each new search direction is or-
thogonal (or, if an approximate line search is used,
nearly so) to the previous direction. This leads to
a characteristic “zig-zag” ascent, with convergence
slowing as the maximum is approached.

One way of looking at the problem with steep-
est ascent is that it considers the same search di-
rections many times. We would prefer an algo-
rithm which considered each possible search direc-
tion only once, in each iteration taking a step of ex-
actly the right length in a direction orthogonal to all
previous search directions. This intuition underlies
conjugate gradientmethods, which choose a search
direction which is a linear combination of the steep-
est ascent direction and the previous search direc-
tion. The step size is selected by an approximate
line search, as in the steepest ascent method. Sev-
eral non-linear conjugate gradient methods, such as
the Fletcher-Reeves(cg-fr) and thePolak-Ribìere-
Positive (cf-prp) algorithms, have been proposed.
While theoretically equivalent, they use slighly dif-
ferent update rules and thus show different numeric
properties.

2.3 Second order methods

Another way of looking at the problem with steep-
est ascent is that while it takes into account the gra-
dient of the log-likelihood function, it fails to take
into account its curvature, or the gradient of the gra-
dient. The usefulness of the curvature is made clear
if we consider a second-order Taylor series approx-
imation ofL(θ + δ):

L(θ + δ)≈ L(θ)+ δTG(θ)+
1
2

δTH(θ)δ (4)

where H is Hessian matrixof the log-likelihood
function, the d × d matrix of its second partial

derivatives with respect toθ. If we set the deriva-
tive of (4) to zero and solve forδ, we get the update
rule forNewton’s method:

δ(k) = H−1(θ(k))G(θ(k)) (5)

Newton’s method converges very quickly (for
quadratic objective functions, in one step), but it re-
quires the computation of the inverse of the Hessian
matrix on each iteration.

While the log-likelihood function for ME models
in (2) is twice differentiable, for large scale prob-
lems the evaluation of the Hessian matrix is com-
putationally impractical, and Newton’s method is
not competitive with iterative scaling or first order
methods.Variable metricor quasi-Newtonmethods
avoid explicit evaluation of the Hessian by building
up an approximation of it using successive evalua-
tions of the gradient. That is, we replaceH−1(θ(k))
in (5) with a local approximation of the inverse Hes-
sianB(k):

δ(k) = B(k)G(θ(k))

with B(k) a symmatric, positive definite matrix
which satisfies the equation:

B(k)y(k) = δ(k−1)

wherey(k) = G(θ(k))−G(θ(k−1)).
Variable metric methods also show excellent con-

vergence properties and can be much more efficient
than using true Newton updates, but for large scale
problems with hundreds of thousands of parame-
ters, even storing the approximate Hessian is pro-
hibitively expensive. For such cases, we can apply
limited memory variable metricmethods, which im-
plicitly approximate the Hessian matrix in the vicin-
ity of the current estimate ofθ(k) using the previous
m values ofy(k) andδ(k). Since in practical applica-
tions values ofm between 3 and 10 suffice, this can
offer a substantial savings in storage requirements
over variable metric methods, while still giving fa-
vorable convergence properties.1

3 Comparing estimation techniques

The performance of optimization algorithms is
highly dependent on the specific properties of the
problem to be solved. Worst-case analysis typically

1Space constraints preclude a more detailed discussion of
these methods here. For algorithmic details and theoretical
analysis of first and second order methods, see, e.g., Nocedal
(1997) or Nocedal and Wright (1999).

does not reflect the actual behavior on actual prob-
lems. Therefore, in order to evaluate the perfor-
mance of the optimization techniques sketched in
previous section when applied to the problem of pa-
rameter estimation, we need to compare the perfor-
mance of actual implementations on realistic data
sets (Dolan and Moré, 2002).

Minka (2001) offers a comparison of iterative
scaling with other algorithms for parameter esti-
mation in logistic regression, a problem similar to
the one considered here, but it is difficult to trans-
fer Minka’s results to ME models. For one, he
evaluates the algorithms with randomly generated
training data. However, the performance and accu-
racy of optimization algorithms can be sensitive to
the specific numerical properties of the function be-
ing optimized; results based on random data may
or may not carry over to more realistic problems.
And, the test problems Minka considers are rela-
tively small (100–500 dimensions). As we have
seen, though, algorithms which perform well for
small and medium scale problems may not always
be applicable to problems with many thousands of
dimensions.

3.1 Implementation
As a basis for the implementation, we have used
PETSc (the “Portable, Extensible Toolkit for Sci-
entific Computation”), a software library designed
to ease development of programs which solve large
systems of partial differential equations (Balay et
al., 2001; Balay et al., 1997; Balay et al., 2002).
PETSc offers data structures and routines for paral-
lel and sequential storage, manipulation, and visu-
alization of very large sparse matrices.

For any of the estimation techniques, the most ex-
pensive operation is computing the probability dis-
tribution q and the expectations Eq[f] for each it-
eration. In order to make use of the facilities pro-
vided by PETSc, we can store the training data as
a (sparse) matrixF , with rows corresponding to
events and columns to features. Then given a pa-
rameter vectorθ, the unnormalized probabilities ˙qθ
are the matrix-vector product:

q̇θ = expFθ

and the feature expectations are the transposed
matrix-vector product:

Eqθ [f] = FTqθ

By expressing these computations as matrix-vector

operations, we can take advantage of the high per-
formance sparse matrix primitives of PETSc.

For the comparison, we implemented both Gener-
alized and Improved Iterative Scaling in C++ using
the primitives provided by PETSc. For the other op-
timization techniques, we used TAO (the “Toolkit
for Advanced Optimization”), a library layered on
top of the foundation of PETSc for solving non-
linear optimization problems (Benson et al., 2002).
TAO offers the building blocks for writing optimiza-
tion programs (such as line searches and conver-
gence tests) as well as high-quality implementations
of standard optimization algorithms (including con-
jugate gradient and variable metric methods).

Before turning to the results of the comparison,
two additional points need to be made. First, in
order to assure a consistent comparison, we need
to use the same stopping rule for each algorithm.
For these experiments, we judged that convergence
was reached when the relative change in the log-
likelihood between iterations fell below a predeter-
mined threshold. That is, each run was stopped
when:

|L(θ(k))−L(θ(k−1))|
L(θ(k))

< ε (6)

where the relative toleranceε = 10−7. For any par-
ticular application, this may or may not be an appro-
priate stopping rule, but is only used here for pur-
poses of comparison.

Finally, it should be noted that in the current im-
plementation, we have not applied any of the possi-
ble optimizations that appear in the literature (Laf-
ferty and Suhm, 1996; Wu and Khudanpur, 2000;
Lafferty et al., 2001) to speed up normalization of
the probability distributionq. These improvements
take advantage of a model’s structure to simplify the
evaluation of the denominator in (1). The particular
data sets examined here are unstructured, and such
optimizations are unlikely to give any improvement.
However, when these optimizations are appropriate,
they will give a proportional speed-up to all of the
algorithms. Thus, the use of such optimizations is
independent of the choice of parameter estimation
method.

3.2 Experiments

To compare the algorithms described in§2, we ap-
plied the implementation outlined in the previous
section to four training data sets (described in Table
1) drawn from the domain of natural language pro-
cessing. The ‘rules’ and ‘lex’ datasets are examples

dataset classes contexts features non-zeros

rules 29,602 2,525 246 732,384
lex 42,509 2,547 135,182 3,930,406
summary 24,044 12,022 198,467 396,626
shallow 8,625,782 375,034 264,142 55,192,723

Table 1: Datasets used in experiments

of stochastic attribute value grammars, one with a
small set of SCFG-like features, and with a very
large set of fine-grained lexical features (Bouma
et al., 2001). The ‘summary’ dataset is part of a
sentence extraction task (Osborne, to appear), and
the ‘shallow’ dataset is drawn from a text chunking
application (Osborne, 2002). These datasets vary
widely in their size and composition, and are repre-
sentative of the kinds of datasets typically encoun-
tered in applying ME models to NLP classification
tasks.

The results of applying each of the parameter es-
timation algorithms to each of the datasets is sum-
marized in Table 2. For each run, we report the KL
divergence between the fitted model and the train-
ing data at convergence, the prediction accuracy of
fitted model on a held-out test set (the fraction of
contexts for which the event with the highest prob-
ability under the model also had the highest proba-
bility under the reference distribution), the number
of iterations required, the number of log-likelihood
and gradient evaluations required (algorithms which
use a line search may require several function eval-
uations per iteration), and the total elapsed time (in
seconds).2

There are a few things to observe about these
results. First, while IIS converges in fewer steps
the GIS, it takes substantially more time. At least
for this implementation, the additional bookkeeping
overhead required by IIS more than cancels any im-
provements in speed offered by accelerated conver-
gence. This may be a misleading conclusion, how-
ever, since a more finely tuned implementation of
IIS may well take much less time per iteration than
the one used for these experiments. However, even
if each iteration of IIS could be made as fast as an

2The reported time does not include the time required to in-
put the training data, which is difficult to reproduce and which
is the same for all the algorithms being tested. All tests were
run using one CPU of a dual processor 1700MHz Pentium 4
with 2 gigabytes of main memory at the Center for High Per-
formance Computing and Visualisation, University of Gronin-
gen.

iteration of GIS (which seems unlikely), the bene-
fits of IIS over GIS would in these cases be quite
modest.

Second, note that for three of the four datasets,
the KL divergence at convergence is roughly the
same for all of the algorithms. For the ‘summary’
dataset, however, they differ by up to two orders of
magnitude. This is an indication that the conver-
gence test in (6) is sensitive to the rate of conver-
gence and thus to the choice of algorithm. Any de-
gree of precision desired could be reached by any
of the algorithms, with the appropriate value ofε.
However, GIS, say, would require many more itera-
tions than reported in Table 2 to reach the precision
achieved by the limited memory variable metric al-
gorithm.

Third, the prediction accuracy is, in most cases,
more or less the same for all of the algorithms.
Some variability is to be expected—all of the data
sets being considered here are badly ill-conditioned,
and many different models will yield the same like-
lihood. In a few cases, however, the prediction
accuracy differs more substantially. For the two
SAVG data sets (‘rules’ and ‘lex’), GIS has a small
advantage over the other methods. More dramati-
cally, both iterative scaling methods perform very
poorly on the ‘shallow’ dataset. In this case, the
training data is very sparse. Many features are
nearly ‘pseudo-minimal’ in the sense of Johnson et
al. (1999), and so receive weights approaching−∞.
Smoothing the reference probabilities would likely
improve the results for all of the methods and re-
duce the observed differences. However, this does
suggest that gradient-based methods are robust to
certain problems with the training data.

Finally, the most significant lesson to be drawn
from these results is that, with the exception of
steepest ascent, gradient-based methods outperform
iterative scaling by a wide margin for almost all the
datasets, as measured by both number of function
evaluations and by the total elapsed time. And, in
each case, the limited memory variable metric algo-

Dataset Method KL Div. Acc Iters Evals Time

rules gis 5.124×10−2 47.00 1186 1187 16.68
iis 5.079×10−2 43.82 917 918 31.36
steepest ascent 5.065×10−2 44.88 224 350 4.80
conjugate gradient (fr) 5.007×10−2 44.17 66 181 2.57
conjugate gradient (prp) 5.013×10−2 46.29 59 142 1.93
limited memory variable metric 5.007×10−2 44.52 72 81 1.13

lex gis 1.573×10−3 46.74 363 364 31.69
iis 1.487×10−3 42.15 235 236 95.09
steepest ascent 3.341×10−3 42.92 980 1545 114.21
conjugate gradient (fr) 1.377×10−3 43.30 148 408 30.36
conjugate gradient (prp) 1.893×10−3 44.06 114 281 21.72
limited memory variable metric 1.366×10−3 43.30 168 176 20.02

summary gis 1.857×10−3 96.10 1424 1425 107.05
iis 1.081×10−3 96.10 593 594 188.54
steepest ascent 2.489×10−3 96.33 1094 3321 190.22
conjugate gradient (fr) 9.053×10−5 95.87 157 849 49.48
conjugate gradient (prp) 3.297×10−4 96.10 112 537 31.66
limited memory variable metric 5.598×10−5 95.54 63 69 8.52

shallow gis 3.314×10−2 14.19 3494 3495 21223.86
iis 3.238×10−2 5.42 3264 3265 66855.92
steepest ascent 7.303×10−2 26.74 3677 14527 85062.53
conjugate gradient (fr) 2.585×10−2 24.72 1157 6823 39038.31
conjugate gradient (prp) 3.534×10−2 24.72 536 2813 16251.12
limited memory variable metric 3.024×10−2 23.82 403 421 2420.30

Table 2: Results of comparison.

rithm performs substantially better than any of the
competing methods.

4 Conclusions
In this paper, we have described experiments com-
paring the performance of a number of different al-
gorithms for estimating the parameters of a con-
ditional ME model. The results show that vari-
ants of iterative scaling, the algorithms which are
most widely used in the literature, perform quite
poorly when compared to general function opti-
mization algorithms such as conjugate gradient and
variable metric methods. And, more specifically,
for the NLP classification tasks considered, the lim-
ited memory variable metric algorithm of Benson
and Moŕe (2001) outperforms the other choices by
a substantial margin.

This conclusion has obvious consequences for the
field. ME modeling is a commonly used machine
learning technique, and the application of improved

parameter estimation algorithms will it practical to
construct larger, more complex models. And, since
the parameters of individual models can be esti-
mated quite quickly, this will further open up the
possibility for more sophisticated model and feature
selection techniques which compare large numbers
of alternative model specifications. This suggests
that more comprehensive experiments to compare
the convergence rate and accuracy of various algo-
rithms on a wider range of problems is called for.

In addition, there is a larger lesson to be drawn
from these results. We typically think of computa-
tional linguistics as being primarily a symbolic dis-
cipline. However, statistical natural language pro-
cessing involves non-trivial numeric computations.
As these results show, natural language processing
can take great advantage of the algorithms and soft-
ware libraries developed by and for more quantita-
tively oriented engineering and computational sci-
ences.

Acknowledgements
The research of Dr. Malouf has been made possible by
a fellowship of the Royal Netherlands Academy of Arts
and Sciences and by the NWO PIONIER projectAlgo-
rithms for Linguistic Processing.Thanks also to Stephen
Clark, Andreas Eisele, Detlef Prescher, Miles Osborne,
and Gertjan van Noord for helpful comments and test
data.

References
Steven P. Abney. 1997. Stochastic attribute-value

grammars.Computational Linguistics, 23:597–
618.

Satish Balay, William D. Gropp, Lois Curfman
McInnes, and Barry F. Smith. 1997. Efficienct
management of parallelism in object oriented nu-
merical software libraries. In E. Arge, A. M. Bru-
aset, and H. P. Langtangen, editors,Modern Soft-
ware Tools in Scientific Computing, pages 163–
202. Birkhauser Press.

Satish Balay, Kris Buschelman, William D. Gropp,
Dinesh Kaushik, Lois Curfman McInnes, and
Barry F. Smith. 2001. PETSc home page.
http://www.mcs.anl.gov/petsc .

Satish Balay, William D. Gropp, Lois Curfman
McInnes, and Barry F. Smith. 2002. PETSc users
manual. Technical Report ANL-95/11–Revision
2.1.2, Argonne National Laboratory.

Steven J. Benson and Jorge J. Moré. 2001. A lim-
ited memory variable metric method for bound
constrained minimization. Preprint ANL/ACS-
P909-0901, Argonne National Laboratory.

Steven J. Benson, Lois Curfman McInnes, Jorge J.
Moré, and Jason Sarich. 2002. TAO users
manual. Technical Report ANL/MCS-TM-242–
Revision 1.4, Argonne National Laboratory.

Adam Berger, Stephen Della Pietra, and Vincent
Della Pietra. 1996. A maximum entropy ap-
proach to natural language processing.Compu-
tational Linguistics, 22.

Gosse Bouma, Gertjan van Noord, and Robert Mal-
ouf. 2001. Alpino: wide coverage computational
analysis of Dutch. In W. Daelemans, K. Sima’an,
J. Veenstra, and J. Zavrel, editors,Computational
Linguistics in the Netherlands 2000, pages 45–
59. Rodolpi, Amsterdam.

Zhiyi Chi. 1998. Probability models for complex
systems. Ph.D. thesis, Brown University.

J. Darroch and D. Ratcliff. 1972. Generalized it-
erative scaling for log-linear models.Ann. Math.
Statistics, 43:1470–1480.

Stephen Della Pietra, Vincent Della Pietra, and
John Lafferty. 1997. Inducing features of ran-
dom fields.IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 19:380–393.

W.E. Deming and F.F. Stephan. 1940. On a least
squares adjustment of a sampled frequency table
when the expected marginals are known.Annals
of Mathematical Statistics, 11:427–444.

Elizabeth D. Dolan and Jorge J. Moré. 2002.
Benchmarking optimization software with per-
formance profiles.Mathematical Programming,
91:201–213.

Mark Johnson, Stuart Geman, Stephen Canon,
Zhiyi Chi, and Stefan Riezler. 1999. Estimators
for stochastic “unification-based” grammars. In
Proceedings of the 37th Annual Meeting of the
ACL, pages 535–541, College Park, Maryland.

John Lafferty and Bernhard Suhm. 1996. Cluster
expansions and iterative scaling for maximum en-
tropy language models. In K. Hanson and R. Sil-
ver, editors, Maximum Entropy and Bayesian
Methods. Kluwer.

John Lafferty, Fernando Pereira, and Andrew Mc-
Callum. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. InInternational Conference on Ma-
chine Learning (ICML).

Thomas P. Minka. 2001. Algorithms for
maximum-likelihood logistic regression. Statis-
tics Tech Report 758, CMU.

Jorge Nocedal and Stephen J. Wright. 1999.Nu-
merical Optimization. Springer, New York.

Jorge Nocedal. 1997. Large scale unconstrained
optimization. In A. Watson and I. Duff, editors,
The State of the Art in Numerical Analysis, pages
311–338. Oxford University Press.

Miles Osborne. 2002. Shallow parsing using noisy
and non-stationary training material.Journal of
Machine Learning Research, 2:695–719.

Miles Osborne. to appear. Using maximum entropy
for sentence extraction. InProceedings of the
ACL 2002 Workshop on Automatic Summariza-
tion, Philadelphia.

Adwait Ratnaparkhi. 1998. Maximum entropy
models for natural language ambiguity resolu-
tion. Ph.D. thesis, University of Pennsylvania.

Jun Wu and Sanjeev Khudanpur. 2000. Efficient
training methods for maximum entropy language
modelling. In Proceedings of ICSLP2000, vol-
ume 3, pages 114–117, Beijing.

