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Abstract
Banko and Brill (2001) suggested that the develop-
ment of very large training corpora may be more ef-
fective for progress in empirical Natural Language
Processing than improving methods that use exist-
ing smaller training corpora.

This work tests their claim by exploring whether
a very large corpus can eliminate the sparseness
problems associated with estimating unigram prob-
abilities. We do this by empirically investigating
the convergence behaviour of unigram probability
estimates on a one billion word corpus. When us-
ing one billion words, as expected, we do find that
many of our estimates do converge to their eventual
value. However, we also find that for some words,
no such convergence occurs. This leads us to con-
clude that simply relying upon large corpora is not
in itself sufficient: we must pay attention to the sta-
tistical modelling as well.

1 Introduction
The quantity and reliability of linguistic informa-
tion is primarily determined by the size of the train-
ing corpus: with limited data available, extracting
statistics for any given language phenomenon and
its surrounding context is unreliable. Overcoming
the sparse distribution of linguistic events is a key
design problem in any statistical NLP system.

For some tasks, corpus size is no longer a limit-
ing factor, since it has become feasible to acquire
homogeneous document collections two or three or-
ders of magnitude larger than existing resources.

Banko and Brill (2001) report on confusion set
disambiguation experiments where they apply rela-
tively simple learning methods to a one billion word
training corpus. Their experiments show a logarith-
mic trend in performance as corpus size increases
without performance reaching an upper bound. This
leads them to believe that the development of large
scale training material will yield superior results

than further experimentation with machine learning
methods on existing smaller scale training corpora.

Recent work has replicated the Banko and Brill
(2001) results on the much more complex task of
automatic thesaurus extraction, showing that con-
textual statistics, collected over a very large corpus,
significantly improve system performance (Curran
and Moens, 2002). Other research has shown that
query statistics from a web search engine can be
used as a substitute for counts collected from large
corpora (Volk, 2001; Keller et al., 2002).

To further investigate the benefits of using very
large corpora we empirically analyse the conver-
gence behaviour of unigram probability estimates
for a range of words with different relative frequen-
cies. By dramatically increasing the size of the
training corpus, we expect our confidence in the
probability estimates for each word to increase. As
theory predicts, unigram probability estimates for
many words do converge as corpus size grows.

However, contrary to intuition, we found that for
many commonplace words, for example tight-
ness, there was no sign of convergence as corpus
size approaches one billion words. This suggests
that for at least some words, simply using a much
larger corpus to reduce sparseness will not yield re-
liable estimates. This leads us to conclude that ef-
fective use of large corpora demands, rather than
discourages, further research into sophisticated sta-
tistical language modelling methods. In our case,
this means adding extra conditioning to the model.
Only then could we reasonably predict how much
training material would be required to ameliorate
sparse statistics problems in NLP.

The next section briefly introduces the relevant
limit theorems from statistics. Section 3 describes
our experimental procedure and the collection of
the billion word corpus. Section 4 gives examples
of words with convergent and non-convergent be-
haviour covering a range of relative frequencies. We



conclude with a discussion of the implications for
language modelling and the use of very large cor-
pora that our results present.

2 Theoretical Convergence Behaviour
Standard results in the theory of statistical infer-
ence govern the convergence behaviour and de-
viance from that behaviour of expectation statistics
in the limit of sample size. The intuitive “Law of
Averages” convergence of probabilities estimated
from increasingly large samples is formalised by the
Law(s) of Large Numbers. The definition1 given in
Theorem 1 is taken from Casella and Berger (1990):

Theorem 1 (Strong Law of Large Numbers)
Let X1, X2, X3, . . . be i.i.d. random variables with
EXi = µ and Var Xi = σ

2
< ∞, and define the

average Xn =
1
n
∑n

i=1 Xi. Then, for every ε > 0:

P
(

lim
n→∞
|Xn − µ| < ε

)

= 1 (1)

The Law of the Iterated Logarithm relates the
degree of deviance from convergent behaviour to
the variance of the converging expectation estimates
and the size of the sample. The definition in Theo-
rem 2 is taken from Petrov (1995):

Theorem 2 (Law of the Iterated Logarithm)
Let X1, X2, X3, . . . be i.i.d. random variables with
EXi = µ, µ2

< ∞, and Var Xi = σ
2
< ∞, and define

the average Xn =
1
n
∑n

i=1 Xi. Then:
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= σ















= 1 (2)

Limit theorems codify behaviour as sample size
n approaches infinity. Thus, they can only provide
an approximate guide to the finite convergence be-
haviour of the expectation statistics, particularly for
smaller samples. Also, the assumptions these limit
theorems impose on the random variables may not
be reasonable or even approximately so. It is there-
fore an open question whether a billion word corpus
is sufficiently large to yield reliable estimates.

1There are two different standard formulations: the weak
and strong Law of Large Numbers. In the weak law, the prob-
ability is converging in the limit to one (called convergence
in probability). In the strong law, the absolute difference is
converging in the limit to less than epsilon with probability 1
(called almost sure convergence).

Corpus # Words
NANC 434.4 million
NANC Supplement 517.4 million
RCV1 193.0 million

Table 1: Components of the billion word corpus

3 Experiments
We would like to answer the question: how much
training material is required to estimate the unigram
probability of a given word with arbitrary confi-
dence. This is clearly dependent on the relative fre-
quency of the word in question. Words which ap-
pear to have similar probability estimates on small
corpora can exhibit quite different convergence be-
haviour as the sample size increases.

To demonstrate this we compiled a homogeneous
corpus of 1.145 billion words of newspaper and
newswire text from three existing corpora: the
North American News Text Corpus, NANC (Graff,
1995), the NANC Supplement (MacIntyre, 1998)
and the Reuters Corpus Volume 1, RCV1 (Rose et
al., 2002). The number of words in each corpus is
shown in Table 1.

These corpora were concatenated together in the
order given in Table 1 without randomising the in-
dividual sentence order. This emulates the process
of collecting a large quantity of text and then calcu-
lating statistics based counts from the entire collec-
tion. Random shuffling removes the discourse fea-
tures and natural clustering of words which has such
a significant influence on the probability estimates.

We investigate the large-sample convergence be-
haviour of words that appear at least once in a
standard small training corpus, the Penn Treebank
(PTB). The next section describes the convergence
behaviour for words with frequency ranging from
the most common down to hapax legomena.

From the entire 1.145 billion word corpus we cal-
culated the gold-standard unigram probability esti-
mate, that is, the relative frequency for each word.
We also calculated the probability estimates for
each word using increasing subsets of the full cor-
pus. These subset corpora were sampled every 5
million words up to 1.145 billion.

To determine the rate of convergence to the gold-
standard probability estimate as the training set in-
creases, we plotted the ratio between the subset and
gold-standard estimates. Note that the horizontal
lines on all of the graphs are the same distance apart.
The exception is Figure 5, where there are no lines
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Figure 1: Estimate ratios for function words
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Figure 2: Ratios for accurate non-function words

because there would be too many to plot within the
range of the graph. The legends list the selected
words with the relative frequency (as a percentage)
of each word in the full corpus. Vertical lines show
the boundaries between the concatenated corpora.

4 Empirical Convergence Behaviour
Figure 1 shows the convergence behaviour of some
very frequent closed-class words selected from the
PTB. This graph shows that for most of these ex-
tremely common words, the probability estimates
are accurate to within approximately ±10% (a ra-
tio of 1 ± 0.1) of their final value for a very small
corpus of only 5 million words (the size of the first
subset sample).

Some function words, for example, the and in,
display much more stable probability estimates even
amongst the function words, suggesting their us-
age is very uniform throughout the corpus. By
chance, there are also some open-class words, such
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Figure 3: Ratios for commonplace words

as bringing,form and crucial, that also have
very stable probability estimates. Examples of these
are shown in Figure 2. The main difference between
the convergence behaviour of these words and the
function words is the fine-grained smoothness of the
convergence, because the open-class words are not
as uniformly distributed across each sample.

Figure 3 shows the convergence behaviour of
commonplace words that appear in the PTB be-
tween 30 and 100 times each. Their convergence
behaviour is markedly different to the closed-class
words. We can see that many of these words have
very poor initial probability estimates, consistently
low by up to a factor of almost 50%, five times
worse than the closed-class words.
speculation is an example of convergence

from a low initial estimate. After approximately 800
million words, many (but not all) of the estimates
are correct to within about ±10%, which is the same
error as high frequency words sampled from a 5 mil-
lion words corpus. This is a result of the sparse
distribution of these words and their stronger con-
text dependence. Their relative frequency is two to
three orders of magnitude smaller than the relative
frequencies of the closed-class words in Figure 1.

What is most interesting is the convergence be-
haviour of rare but not necessarily unusual words,
which is where using a large corpus should be most
beneficial in terms of reducing sparseness. Figure
4 shows the very large corpus behaviour of selected
hapax legomena from the PTB. Many of the words
in this graph show similar behaviour to Figure 3,
in that some words appear to converge relatively
smoothly to an estimate within ±20% of the final
value. This shows the improvement in stability of



the estimates from using large corpora, although
±20% is a considerable deviation from the gold-
standard estimate.

However, other words, for instance tightness,
fail spectacularly to converge to their final estimate
before the influence of the forced convergence of
the ratio starts to take effect. tightness is an
extreme example of the case where a word is seen
very rarely, until it suddenly becomes very popu-
lar. A similar convergence behaviour can be seen
for words with a very high initial estimate in Figure
5. The maximum decay ratio curve is the curve we
would see if a word appeared at the very beginning
of the corpus, but did not appear in the remainder of
the corpus. A smooth decay with a similar gradient
to the maximum decay ratio indicates that the word
is extremely rare in the remainder of the corpus, af-
ter a high initial estimate. rebelled, kilome-
ters and coward are examples of exceedingly
high initial estimates, followed by very rare or no
other occurrences. extremists, shelling and
cricket are examples of words that were used
more consistently for a period of time in the cor-
pus, and then failed to appear later, with cricket
having two periods of frequent usage.

Unfortunately, if we continue to assume that a un-
igram model is correct, these results imply that we
cannot be at all confident about the probability esti-
mates of some rare words even with over one billion
words of material. We cannot dismiss this as an un-
reliable low frequency count because tightness
occurs 2652 times in the full corpus. Thus we must
look for an alternative explanation: and the most
reasonable explanation is burstiness, the fact that
word occurrence is not independent and identically
distributed. So given that one billion words does not
always yield reliable estimates for rare but not un-
usual words, it leaves us to ask if any finite number
of words could accurately estimate the probability
of pathologically bursty word occurrences.

5 Discussion
It is worth reflecting on why some words appear
to have more bursty behaviour than others. As we
would expect, function words are distributed most
evenly throughout the corpus. There are also some
content words that appear to be distributed evenly.
On the other hand, some words appear often in the
first 5 million word sample but are not seen again in
the remainder of the corpus.

Proper names and topic-specific nouns and verbs
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Figure 4: Example ratios for hapax legomena
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Figure 5: Example ratios for decaying initial words

exhibit the most bursty behaviour, since the newspa-
per articles are naturally clustered together accord-
ing to the chronologically grouped events. The most
obvious and expected conditioning of the random
variables is the topic of the text in question.

However, it is hard to envisage seemingly topic-
neutral words, such as tightness and newly,
being conditioned strongly on topic. Other factors
that apply to many different types of words include
the stylistic and idiomatic expressions favoured by
particular genres, authors, editors and even the in-
house style guides.

These large corpus experiments demonstrate the
failure of simple Poisson models to account for the
burstiness of words. The fact that words are not dis-
tributed by a simple Poisson process becomes even
more apparent as corpus size increases, particularly
as the effect of noise and sparseness on the language
model is reduced, giving a clearer picture of how
badly the current language models fail. With a very



large corpus it is obvious that the usual indepen-
dence assumptions are not always appropriate.

Using very large corpora for simple probability
estimation demonstrates the need for more sophis-
ticated statistical models of language. Without bet-
ter models, all that training upon large corpora can
achieve is better estimates of words which are ap-
proximately i.i.d.

To fully leverage the information in very large
corpora, we need to introduce more dependencies
into the models to capture the non-stationary nature
of language data. This means that to gain a signifi-
cant advantage from large corpora, we must develop
more sophisticated statistical language models.

We should also briefly mention the other main
benefit of increasing corpus size: the acquisition of
occurrences of otherwise unseen words. Previously
unseen linguistic events are frequently presented
to NLP systems. To handle these unseen events
the statistical models used by the system must be
smoothed. Smoothing typically adds considerable
computational complexity to the system since mul-
tiple models need to be estimated and applied to-
gether, and it is often considered a black art (Chen
and Goodman, 1996). Having access to very large
corpora ought to reduce the need for smoothing, and
so ought to allow us to design simpler systems.

6 Conclusion
The difficulty of obtaining reliable probability esti-
mates is central to many NLP tasks. Can we improve
the performance of these systems by simply using
a lot more data? As might be expected, for many
words, estimating probabilities on a very large cor-
pus can be valuable, improving system performance
significantly. This is due to the improved estimates
of sparse statistics, made possible by the relatively
uniform distribution of these words.

However, there is a large class of commonplace
words which fail to display convergent behaviour
even on very large corpora. What is striking about
these words is that proficient language users would
not recognise them as particularly unusual or spe-
cialised in their usage, which means that broad-
coverage NLP systems should also be expected to
handle them competently.

The non-convergence of these words is an indi-
cation of their non-stationary distributions, which a
simple Poisson model is unable to capture. Since
it is no longer a problem of sparseness, even excep-
tionally large corpora cannot be expected to produce

reliable probability estimates. Instead we must relax
the independence assumptions underlying the exist-
ing language models and incorporate conditional in-
formation into the language models.

To fully harness the extra information in a very
large corpus we must spend more, and not less, time
and effort developing sophisticated language mod-
els and machine learning systems.

7 Further Work
We are particularly interested in trying to charac-
terise the burstiness tendencies of individual words
and word classes, and the resulting convergence be-
haviour of their probability estimates. An exam-
ple of this is calculating the area between unity and
the ratio curves. Some example words with differ-
ent convergence behaviour selected using this area
measure are given in Table 2 in the Appendix. We
are also interested in applying the exponential mod-
els of lexical attraction and repulsion described by
Beeferman et al. (1997) to the very large corpus.

We would like to investigate the overall error in
the probability mass distribution by comparing the
whole distributions at each sample with the final dis-
tribution. To estimate the error properly will require
smoothing methods to be taken into consideration.
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Appendix
It is possible to get some sense of the convergence
behaviour of individual words by calculating the
area between the ratio curve and unity. Table 2 lists
words with largest and smallest areas, and words
that fell in between large and small areas. A large
area (MAX

∑n
i=1

Xi
µ

) indicates either non-convergent
behaviour or convergence from poor initial esti-
mates, and so many of the words are highly con-
ditioned (primarily on topics such as war). These
words behave like the words shown in Figure 4 and

Figure 5. A small area (MIN
∑n

i=1
Xi
µ

) indicates
strongly convergent behaviour with accurate initial
estimates, and so includes a number of function
words. These words behave like the words shown
in Figure 1 and Figure 2.

MAX
∑n

i=1
Xi
µ

MID
∑n

i=1
Xi
µ

MIN
∑n

i=1
Xi
µ

convoys unending bringing
rebelled buildings has
coward instrument string

hick poisoning the
routing awesome been
shelling livelihood give
secede sharpness form
truce likewise remains

convoy phantom received
kilometers acquitted before

artillery comfortable quit
kilometer complement wants

shelled entities crucial
atolls generous allowing
quake island seek

showers advancements considered
gunners demonstrates no

centimeters linden in
kilograms politicking chosen

shells spur involved
armored veer nearest
hideouts scoop hands
seahorse drill with
expedited skill car

meters arrows respect
airlift bats day

skirmished rewrite dominate
clays toughness avoid

civilians expands stay
stronghold negligence joins
centimeter swaying covered

neighboring mellowed removing
downed rendering established
besieged wording asked
hostilities disaffected being
cessation tempt preparation
detaining discourages houses

meson jumpy reeling
rebel landlords into

disarm geared food
thunderstorm planet face

Table 2: Convergence detection using curve area


