
Exceptionality and Natural Language Learning

Mihai Rotaru Diane J. Litman
Computer Science Department

University of Pittsburgh
Pittsburgh, PA 15260

mrotaru, litman @cs.pitt.edu

Abstract

Previous work has argued that memory-based
learning is better than abstraction-based learn-
ing for a set of language learning tasks. In this
paper, we first attempt to generalize these re-
sults to a new set of language learning tasks
from the area of spoken dialog systems and to
a different abstraction-based learner. We then
examine the utility of various exceptionality
measures for predicting where one learner is
better than the other. Our results show that
generalization of previous results to our tasks
is not so obvious and some of the exceptional-
ity measures may be used to characterize the
performance of our learners.

1 Introduction

2

Our paper is a follow-up of the study done by Daele-
mans et al. (1999) in which the authors show that keep-
ing exceptional training instances is useful for
increasing generalization accuracy when natural lan-
guage learning tasks are involved. The tasks used in
their experiments are: grapheme-phoneme conversion,
part of speech tagging, prepositional phrase attachment
and base noun phrase chunking. Their study provides
empirical evidence that editing exceptional instances
leads to a decrease in memory-based learner perform-
ance. Next, the memory-based learner is compared on
the same tasks with a decision-tree learner and their
results favor the memory-based learner. Moreover, the
authors provide evidence that the performance of their
memory-based learner is linked to its property of hold-
ing all instances (including exceptional ones) and gen-
eral properties of language learning tasks (difficultness
in discriminating between noise and valid exceptions
and sub-regularities for those tasks).

We continue on the same track by investigating if
their results hold on a different set of tasks. Our tasks

come from the area of spoken dialog systems and have
smaller datasets and more features (with many of the
features being numeric, in contrast with the previous
study that had none). We observe in our experiments
with these tasks a much smaller exceptionality measure
range compared with the previous study. Our results
indicate that the previous results do not generalize to all
our tasks.

An additional goal of our research is to investigate a
new topic by looking into whether exceptionality meas-
ures can be used to characterize the performance of our
learners: a memory-based learner (IB1-IG) and a rule-
based learner (Ripper). Our results indicate that for
some of the exceptionality measures we will examine,
IB1-IG is better for predicting typical instances while
Ripper is better for predicting exceptional instances.

We will use the following conventions throughout
the paper. The term “exceptional” will be used to label
instances that do not follow the rules that characterize
the class they are part of (in language learning terms,
they are “bad” examples of their class rules). We will
use “typical” as the antonym of this term; it will label
instances that are good examples of their class rules.
The fact that an instance is typical should not be con-
fused with an exceptionality measure we will use that
has the same name (typicality measure).

Learning methods

We will use in our study the same memory-based
learner that was used in the previous study: IB1-IG. The
abstraction-based learner used in the previous study was
C5.0 (a commercial implementation of the C4.5 deci-
sion tree learner). In our study we will use a rule-based
learner, Ripper. Although the two abstraction-based
learners are different, they share many features (many
techniques used in rule-based learning have been
adapted from decision tree learning (Cohen, 1995))1.

1 We used Ripper because its implementation was available
and previous studies on our language learning tasks were per-
formed using Ripper

2.1 IB1-IG
Our memory-based learner is called IB1-IG and is part
of TiMBL, a software package developed by the ILK
Research Group, Tilburg University and the CNTS Re-
search Group, University of Antwerp. TiMBL is a col-
lection of memory-based learners that sit on top of the
classic k-NN classification kernel with added metrics,
algorithms, and extra functions.

Memory-based reasoning is based on the hypothesis
that humans, in order to react to a new situation, first
compare the new situation with previously encountered
situations (which reside in their memory), pick one or
more similar situations, and react to the new one based
on how they reacted to those similar situations. This
type of learning is also called lazy learning because the
learner does not build a model from the training data.
Instead, typically, the whole training set is stored. To
predict the class for a new instance, the lazy learner
compares it with stored instances using a similarity met-
ric and the new instance class is determined based on
the classes of the most similar training instances. At the
algorithm level, lazy learning algorithms are versions of
k-nearest neighbor (k-NN) classifiers.

IB1-IG is a k-NN classifier that uses a weighted
overlap metric, where a feature weight is automatically
computed as the Information Gain (IG) of that feature.
The weighted overlap metric for two instances X and Y
is defined as:

∑
=

=∆
n

i
iii yxwYX

1
),(),(δ (1)

where:

ii

ii

ii

ii

ii

yx
yx

minmax
yx

abs

yx
≠
=

−
−

=
 if
 if

else numeric, if

1
0

)(

),(δ

Information gain is computed for every feature in
isolation by computing the difference in uncertainty
between situations with or without knowledge of the
feature value (for more information, see Daelemans et
al., 2001). These values describe the importance of that
feature in predicting the class of an instance and are
used as feature weights.

2.2

3

3.1

Ripper
Ripper is a fast and effective rule-based learner devel-
oped by William Cohen (Cohen, 1995). The algorithm
has an overfit-and-simplify learning strategy: first an
initial rule set is devised by overfitting a part of the
training set (called the growing set) and then this rule
set is repeatedly simplified by applying pruning opera-
tors and testing the error reduction on another part of the

training set (called the pruning set). Ripper produces a
model consisting of an ordered set of if-then rules.

There are several advantages to using rule-based
learners. The most important one is the fact that people
can understand relatively easy the model learned by a
rule-based learner compared with the one learned by a
decision-tree learner, neural network or memory-based
learner. Also, domain knowledge can be incorporated in
a rule-based learner by altering the type of rules it can
learn. Finally, rule-based learners are relatively good at
filtering the potential noise from the training set. But in
the context of natural language learning tasks where
distinguishing between noise and exceptions and sub-
regularities is very hard, this filtering may result in a
decrease in accuracy. In contrast, memory-based learn-
ers, by keeping all instances around (including excep-
tional ones), may have higher classification accuracy for
such tasks.

Exceptionality measures

One of the main disadvantages of memory-based learn-
ing is the fact that the entire training set is kept. This
leads to serious time and memory performance draw-
backs if the training set is big enough. Moreover, to
improve accuracy, one may want to have noisy in-
stances present in the training set pruned. To address
these problems there has been a lot of work on trying to
edit part of the training set without hampering the accu-
racy of the predictor. Two types of editing can be done.
One can edit redundant regular instances (because the
training set contains a lot of similar instances for that
class) and/or unproductive instances (the ones that pre-
sent irregularities with respect to the training set space).

There are many measures that capture both types of
instances. We will use the ones from the previous study
(typicality and class prediction strength) and a new one
called local typicality. Even though these measures were
devised with the purpose of editing part of the training
set, they are used in our study and the previous study to
point out instances that should not be removed, at least
for language learning tasks.

Typicality
We will use the typicality definition from Daelemans et
al. (1999) which is similar to the definition from Zhang
(1992). In both cases, a typicality function is defined
whose extremes correspond to exceptional and typical
instances. The function requires a similarity measure
which is defined in both cases as the inverse of the dis-
tance between two instances. The difference between
the two implementations of typicality is that Zhang
(1992) defines the distance as the Euclidian distance
while Daelemans et al. (1999) use the normalized

weighted Manhattan distance from (1). Thus, our simi-
larity measure will be defined as:

∑
=

−=
n

i
iii yxwYXsim

1
)),(1(),(δ

For every instance X, a subset of the dataset called
family of X, Fam(X), is defined as being all instances
from the dataset that have the same class as X. All re-
maining instances form the unrelated instances subset,
Unr(X). Then, intra-concept similarity is defined as the
average similarity between X and instances from
Fam(X) and inter-concept similarity as the average
similarity between X and instances from Unr(X).

∑
=

=
|)(|

1
))(,(

|)(|
1)(

XFam

i
iXFamXsim

XFam
XIntra

∑
=

=
|)(|

1
))(,(

|)(|
1)(

XUnr

i
iXUnrXsim

XUnr
XInter

Finally, typicality of an instance X is defined as the
ratio of its intra-concept and inter-concept similarity.

)(
)()(

XInter
XIntraXTypicality =

The typicality values are interpreted as follows: if
the value is higher than 1, then that instance has an in-
tra-concept similarity higher than inter-concept similar-
ity, thus one can say that the instance is a good example
of its class (it is a typical instance). A value less than 1
implies the opposite: the instance is not a good example
of its class (it is an exceptional instance). Values around
1 are called by Zhang boundary instances since they
seem to reside at the border between concepts.

3.2

3.3

Class prediction strength
Another measure used in the previous study is the class
prediction strength (CPS). This measure tries to capture
the ability of an instance to predict correctly the class of
a new instance. We will employ the same CPS defini-
tion used in the previous study (the one proposed by
Salzberg (1990)). In the context of k-NN, predicting the
class means, typically, that the instance is the closest
neighbor for a new instance. Thus the CPS function is
defined as the ratio of the number of times our instance
is the closest neighbor for an instance of the same class
and the number of times our instance is the closest
neighbor for another instance regardless of its class. A
CPS value of 1 means that if our instance is to influence
another instance class (by being its closest neighbor) its
influence is good (in the sense that predicting the class
using our instance class will result in an accurate predic-
tion). Thus our instance is a good predictor for our class,
i.e. it is a typical instance. In contrast, a value of 0 indi-
cates a bad predictor for the class and thus labels an
exception instance. A value of 0.5 will correspond to
instances at the border between concepts.

Unlike typicality, when computing CPS, we can en-
counter situations when its value is undefined (zero di-
vided by zero). This means that the instance is not the
closest neighbor for any other instance. Since there is no
clear interpretation of instance properties in this case,
we will set its CPS value to a constant higher than 1 (no
particular meaning of the value, just to recognize it in
our graphs).

Local typicality
While CPS captures information very close to an in-
stance, typicality as defined by Zhang captures informa-
tion from the entire dataset. But this may not be the
most desirable measure in cases such as those when a
concept is made of at least two disjunctive clusters.
Consider the example from Figure 1. For an instance in
the center of cluster A1, its similarity with instances
from the same cluster is very high but very low with
instances from cluster A2. At the same time, its similar-
ity with instances from class B is somewhere between
above two values. When everything is averaged, in-
stance intra-concept and inter-concept similarity have
comparable values thus leading to a typicality value
around 1 even if the instance is highly typical for the
cluster A1.

A1

of F
stan
we
inst
sets
ity,
inst
valu
stan
thei
of m
vici
neig
to th
sets
nish
and

puti

B

A2

F
igure 1. Class distribution that causes flattening in typicality
distribution
To address this problem, we changed the definition
am(X) and Unr(X). Instead of considering all in-

ces from the dataset when building the two subsets,
will be using only instances from a vicinity of our
ance. The typicality computed using these new sub-
 will be called local typicality. To define the vicin-
we used again the similarity metric. When two

ances are identical, their similarity has the maximum
e which is the sum of all feature weights. An in-
ce is in the vicinity of another instance if and only if
r similarity has a value higher than a given percent

aximum similarity value (using this definition of
nity instead of a specified number of nearest
hbors, makes our exceptionality measure adaptive
e density of the local neighborhood). For our data-

, a percent value of 90% yields the best results fur-
ing a measure that is different from both typicality
 CPS.
Like CPS, division by zero can appear when com-
ng local typicality. This means that inter-concept

similarity is zero and this can only happen if there is no
instance with a different class in the vicinity of our in-
stance. In this case, if the intra-concept similarity is
higher than 0 (there is at least one instance from the
same class in the vicinity) we set the local typicality to a
maximum value, while if the intra-concept similarity is
0, then we set the typicality to a minimum value (no one
in the vicinity of this instance is a good indication of an
exceptional instance). When inter-concept similarity is
higher than 0, we will set the local typicality to a mini-
mum value if its intra-concept similarity is 0 (so that we
will not have a big gap between local typicality values).
Minimum and maximum values are computed as values
to the left and right of the local typicality interval for
non-exceptional cases.

We can rank our exceptionality measures by the
level of information they capture (from most general to
most local): typicality, local typicality and CPS.

4 Language learning tasks

The tasks we will be using in our study come from the
area of spoken dialog systems (SDS). They were all
designed as methods for potentially improving the dia-
log manager of a SDS system called TOOT (Litman and
Pan, 2002). This system provides access to train infor-
mation from the web via telephone and it was developed
for the purpose of comparing differences in dialog strat-
egy.

Our tasks are: (1) Identifying user corrections
(ISCORR), (2) Identifying correction-aware sites
(STATUS), (3) Identifying concept-level speech recog-
nition errors (CABIN) and (4) Identifying word-level
speech recognition errors (WERBIN). The first task is a
binary classification task that labels each user turn as to
whether or not it is an attempt from the user to correct a
prior system recognition failure. The second task is a 4-
way classification task that extends the previous one
with whether or not the user is aware the system made a
recognition error. The four classes are: normal user turn,
user only tries to correct the system, user is only aware
of a system recognition error, and user is both aware of
and tries to correct the system error. The third and the
fourth tasks are binary classification tasks that try to
predict the system speech recognition accuracy when
recognizing a user turn. CABIN measures a binary ver-
sion of the Concept Accuracy (percent of semantic con-
cepts recognized correctly) while WERBIN measures a
binary version of the Word Error Rate (percent of words
recognized incorrectly).

Data for our tasks was gathered from a corpus of
2,328 user turns from 152 dialogues between human
subjects and TOOT. The features used to represent each
user turn include prosodic information, information
from the automatic speech recognizer, system condi-
tions and dialog history. Then, each user turn was la-

beled with respect to every classification task. Even
though our classification tasks share the same data,
there are clear differences between them. ISCORR and
STATUS both deal with user corrections which is quite
different from predicting speech recognition errors
(handled in WERBIN and CABIN). Moreover, one will
expect very little noise or no noise at all when manually
annotating WERBIN and CABIN. For more information
on our tasks and features, see (Litman et al., 2000;
Hirschberg et al., 2001; Litman et al., 2001).

There are a number of dimensions where our tasks
differ from the tasks from the previous study. First of all
our datasets are smaller (2,328 instances compared with
at least 23,898). Second, the number of features used is
much bigger than the previous study (141 compared
with 4-11). Moreover, many features from our datasets
are numeric while the previous study had none. These
differences will also reflect on our exceptionality meas-
ures values. For example, the smallest range for typical-
ity in the previous study was between 0.43 and 10.57
while for our tasks it is between 0.9 and 1.1. To explore
these differences we varied the feature set used. Instead
of using all the available features (this feature set is
called All), we restricted the feature set by using only
non-numeric features (Nonnum – 22 features). The typi-
cality range increased when using this feature set (0.77-
1.45), but the number of features used was still larger
than the previous study. For this reason, we next de-
vised two set of features with only 9 (First9) and 15
features (First15). The features were selected based on
their information gain (see section 2.1).

Before proceeding with our results, there is one
more thing we want to mention. At least half of our in-
stances have one or more missing values and while the
Ripper implementation offered a way to handle them,
there was no default handling of missing values in the
IB1-IG implementation. Thus, we decided to replace
missing values ourselves before presenting the datasets
to our learners. In particular there are two types of miss-
ing values: genuine missing values (no value was pro-
vided; we will refer to them as missing values) and
undefined values. Undefined values come from features
that are not defined in that user turn (for example, in the
first user turn, most of the dialog history features were
undefined because there was no previous user turn).

For symbolic features, we replaced missing and un-
defined values with a given string for missing values
and another one for undefined values. For numeric fea-
tures, the problem was more complicated since the dis-
tance metric uses the difference between two numeric
values and thus, the values used to fix the problem can
influence the distance between instances. We experi-
mented with different replacement values: to the left and
right of the interval boundaries for that features, both
replacement values on one side of the interval or very
far from the interval boundaries. All experiments with

the values provided comparable results. For our experi-
ments, missing values were replaced with a value to the
right of the interval for that feature and undefined val-
ues were replaced with a value to the left of that inter-
val.

5 Results

5.1

In 5.1 we reproduce the editing and comparison experi-
ments from the previous study to see if their results gen-
eralize to our tasks. In 5.2, we move to our next goal:
characterizing learners’ performance using exceptional-
ity measures. Both learners were run using default pa-
rameters2.

Natural language learning and memory-
based learning

First, we performed the editing experiments from the
previous study. The purpose of those experiments was
to see the impact of editing exceptional and typical in-
stances on the accuracy of the memory-based learner.
Since our datasets were small, unlike the previous study
which performed editing only on the first train-test par-
tition of a 10-fold cross validation, we performed the
editing experiment on all partitions of a 10-fold cross
validation. For every fold, we edited 0, 1, 2, 5, 10, 20,
30, 40 and 50% of the training set based on extreme
values of all our exceptionality criteria. Accuracy after
editing a given percent was averaged among all folds
(there is a significant difference in accuracies among
folds but all folds exhibit a similar trend with the aver-
age). Figure 2 shows our results for the ISCORR dataset

79.0%

79.5%

80.0%

80.5%

81.0%

81.5%

82.0%

82.5%

83.0%

0 1 2 5 10 20 30 40 50

Percentage of instances removed

A
ve

ra
ge

 a
cc

ur
ac

y

High CPS
Low CPS
High Local Typ.
Low Local Typ.
High Typicality
Low Typicality

Figure 2. IB1-IG average accuracy after editing a given percent of the

training set based on high and low extremes of all exceptionality
measures (ISCORR dataset with all features)

2 We performed parameter tuning experiments for both predic-
tors: for every fold of a 10-fold cross validation, part of the
training set was used as a validation set (for tuning parame-
ters). Our results indicate that the tuned parameters depend on
the fold used and there was no clear gain to accuracy from
tuning (in some cases there was even loss in accuracy). Inte-
grating tuned parameters with our leave-one-out experiments
presents additional problems.

using six types of editing (editing based on low and high
value for all three criteria). In contrast with the previous
study, where for all tasks even the smallest editing led
to significant accuracy decreases, for our task there was
no clear decrease in performance. Moreover, for some
criteria (like low local-typicality) we can even see an
initial increase in performance. Only after editing half
of the training set is there a clear decrease in perform-
ance for all editing criteria on this task.

Editing experiments for the other dataset-feature set
combinations yield similar results.

Next, we compared the memory-based learner with
our abstraction-based learner on all tasks. Since the
datasets were relatively small, we performed leave-one-
out cross validations. Table 1 summarizes our results.
The baseline used is the majority class baseline. First,
we run the predictors on all tasks using all features. In
contrast with the previous study which favored the
memory-based learner for almost all their tasks, our
results favor IB1-IG for only two of the four tasks
(ISCORR and STATUS). In Section 4, we mentioned
that the typicality range for our tasks was very small
compared with the previous study. Contrary to what we

expected, the tasks where IB1-IG performed better were
the ones with smaller typicality range. To investigate
the typicality range impact on our predictors, we tried to
make our datasets similar to the datasets from the previ-
ous study by tackling the feature set. We eliminated all
numeric features (since the tasks from the previous
study had none) and performed experiments on the tasks
that had the less typicality range (again, ISCORR and
STATUS). Again, when typicality range was increased,
even though there were no numeric features, IB1-IG
performed worse than Ripper. IB1-IG error rate in-
creased when using only non-numeric features for both
tasks compared with the error rate when using all fea-
tures. This observation led us to assume that, at least for
IB1-IG, some of the relevant features for classification
were numeric and they were not present in our feature
set. Thus, we selected two sets of features (First9 and
First15) based on the features’ relevance and performed
the experiments again on the ISCORR dataset. We can

 Error rate
Data-Feat. set IB1-IG Ripper Baseline

Typicality
range

Iscorr-All 14.99% 16.15% 28.99% 0.94 - 1.06
Status-All 22.25% 23.71% 43.04% 0.96 - 1.10
Cabin-All 13.10% 12.11% 30.50% 0.90 - 1.12
Werbin-All 17.65% 11.90% 39.22% 0.90 - 1.10
Iscorr-Nonnum 17.01% 16.24% 28.99% 0.81 - 1.49
Status-Nonnum 23.93% 21.99% 43.04% 0.88 - 1.62
Iscorr-First9 17.78% 16.07% 28.99% 0.86 - 1.17
Iscorr-First15 14.69% 14.95% 28.99% 0.88 - 1.14

Table 1. IB1-IG, Ripper and majority class baseline error
rate on some of our dataset-feature set combinations

observe that as the number of relevant features is in-
creased, the error rate for both predictors and the typi-
cality range are decreasing and IB1-IG takes the lead
when the First15 feature set is used. Our results indicate
that the predictor that performs better depends on the
task, the number of features and the type of features we
use.

To explore why the previous study’s results do not
generalize in our case, we are planning to replicate these
experiments on the dialog-act tagging task on the
Switchboard corpus (a task more similar in size and
feature types with the previous study than our tasks but
still in the area of spoken dialog systems – see Shriberg
et al. (1998)).

5.2 Characterizing learners’ performance
using exceptionality measures

The next goal of our study was to see if we can charac-
terize the performance of our predictors on various
classes of instances defined by our exceptionality crite-
ria. In other words, we wanted to try to answer ques-
tions like: is IB1-IG better at predicting exceptional
instances than Ripper? How about typical instances?
Can we combine the two learners and select between
them based on the instance exceptionality?

To answer these questions, we performed the leave-
one-out experiments described above and recorded for
every instance whether our predictors predicted it cor-
rectly or incorrectly. Next, we computed the exception-
ality of every instance using all three measures. Figure 3
shows the exceptionality distribution using the typicality
measure for the ISCORR dataset with all features3. The

0

50

100

150

200

250

300

350

400

450

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.06

Typicality

Fr
eq

ue
nc

y

IB1-IG
Ripper
Full dataset

Figure 3. Typicality distribution for all instances, instances correctly

predicted by IB1-IG and instances correctly predicted by Ripper
(ISCORR dataset with all features)

typicality distributions of all instances from the
ISCORR dataset, of instances correctly predicted by
IB1-IG, and of instances correctly predicted by Ripper
are plotted in the figure. The graph shows that for this
dataset there are a lot of boundary instances, very few
exceptional instances and few typical instances. The

typicality range for all our datasets (usually between
0.85 and 1.15) is far less than the one from the previous
study (0.43 up to 10 or even 3500). According to Zhang
(1992) hard concepts are often characterized by small
typicality spread. Moreover, small typicality spread is
associated with low accuracy in predicting.

3 For other dataset-feature set combination graphs see:
http://www.cs.pitt.edu/~mrotaru/exceptionality

Figure 4 shows the same information as Figure 3,
but instead of plotting the count, we plot the percentage
of the instances with typicality between a given interval
that have been correctly classified by one of the predic-
tors. We can observe that accuracy of both predictors
increases with typicality. That is, the more typical the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.06

Typicality

Co
rr

ec
tly

 p
re

di
ct

ed
 -

pe
rc

en
ta

ge

IB1-IG
Ripper

Figure 4. Percent of instances predicted correctly by IB1-IG and Rip-
per based on instance typicality (ISCORR dataset with all features)

instance, the more reliable the prediction; the more ex-
ceptional the instance, the more unreliable the predic-
tion. This observation holds for all our dataset-feature
set combinations. It is not clear for the ISCORR dataset
whether one predictor is better than the other based on
the typicality. But for datasets CABIN and WERBIN
where, overall, IB1-IG did worse than Ripper, the same
graph (see Figure 5) shows that IB1-IG’s accuracy is
worse than Ripper’s accuracy when predicting low typi-
cality instances4. Given the problems with typicality if
the concepts we want to learn are clustered, we decided

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.89 0.91 0.93 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.07 1.09 1.11

T ypicality

Co
rr

ec
tly

 p
re

di
ct

ed
 -

pe
rc

en
ta

ge

IB1-IG

Ripper

Figure 5. Percent of instances predicted correctly by IB1-IG and Rip-

per based on instance typicality (CABIN dataset with all features)

4 It was not our point to investigate statistical significance of
this trend. As we will see later, this trend is powerful enough
to yield interesting results when combining the predictors
based on exceptionality measures.

to investigate if this observation holds for other excep-
tionality measures.

We continued the experiments on the other excep-
tionality measures hoping to get more insight into the
trend observed for typicality. Indeed, Figure 6 (same as
Figure 4 but using the CPS instead of typicality) shows
the same trend: IB1-IG is worse than Ripper when pre-
dicting exceptional instances and it is better when pre-
dicting typical instances. The accuracy curves of the
two predictors seem to cross at a CPS value of 0.5,
which corresponds to boundary instances. Undefined
CPS values (0/0) are assigned a value above 1 (the
rightmost point on the graph). Ripper was the one that
offered higher accuracy in predicting instances with
undefined CPS value for almost all datasets (although
not in Figure 6). The result holds for all our dataset-
feature set combinations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00 0.08 0.17 0.25 0.34 0.42 0.51 0.59 0.68 0.76 0.85 0.93 1.02

CPS

Pr
ed

ic
te

d
co

rr
ec

tly
 -

pe
rc

en
ta

ge

IB1-IG

Ripper

Figure 6. Percent of instances predicted correctly by IB1-IG and Rip-

per based on instance CPS (ISCORR dataset with all features)5

The experiments with local typicality yield the same
results: Ripper constantly outperforms IB1-IG for ex-
ceptional instances and they switch places for typical
instances (see Figure 7). Again, the accuracy curves
cross at boundary instances (local typicality value of 1)
and the same observation holds for all dataset-feature
set combinations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.91 0.92 0.93 0.95 0.96 0.97 0.99 1.00 1.01 1.03 1.04 1.05 1.07

Local Typicality

Co
rr

ec
tly

 p
re

di
ct

ed
 -

pe
rc

en
ta

ge

IB1-IG

Ripper

Figure 7. Percent of instances predicted correctly by IB1-IG and

Ripper based on instance local typicality
(ISCORR dataset with all features)

5 Abrupt movements in curves are caused by small number of
instances in that class. We expect that a larger dataset will
smooth our graphs.

We computed what could be the reduction in error
rate if we were to employ both predictors and decide
between them based on the instance exceptionality
measure. In other words, Ripper prediction was used for
exceptional instances and for the left-hand side bound-
ary instances (CPS less than 0.5; typicality less than 1;
local typicality less than 1); otherwise IB1-IG prediction
was used. The lower bound of this reduction is when we
perfectly know which of the predictors offer the correct
prediction (in other words the error rate is the number of
times both learners furnished wrong predictions). Figure
8 plots the reduction in error rate achieved when decid-
ing between predictors based on typicality, CPS, local
typicality and perfect discrimination. The reduction is
relative to the best performer on that task. While dis-
criminating based on typicality offered no improvement
relative to the best performer, CPS was able to con-
stantly achieve improvement and local typicality im-
proved in six out of eight cases. CPS improved the error
rate of the best performer by decreasing it by 1.33% to
3.18% (absolute percentage). In contrast with CPS, local
typicality offered, for the cases when it improved the
accuracy, more improvement decreasing the error rate
by up to 4.94% (absolute percentage). A possible expla-
nation of this difference can be the fact that local typi-
cality captures much more information than CPS
(vicinity-level information compared with information
very close to the instance).

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

Is
co

rr
-

A
ll

St
at

us
-

A
ll

Ca
bi

n-
A

ll

W
er

bi
n-

A
ll

Is
co

rr
-

N
on

nu
m

St
at

us
-

N
on

nu
m

Is
co

rr
-

Fi
rs

t9

Is
co

rr
-

Fi
rs

t1
5

Typicality
CPS
Local Typicality
Perfect Discr.

Figure 8. Reduction in error rate relative to the best performer for

typicality, CPS, local typicality and prefect discrimination

In summary, all our exceptionality measures show
the same trend in predicting ability: Ripper performs
better than IB1-IG on exceptional instances while IB1-
IG performs better than Ripper on typical instances.
While the fact that IB1-IG does better on typical in-
stances may be linked to its ability to handle sub-
regularities, we have no interpretation for the fact that
Ripper does better on exceptional instances. We plan to
address this by future work that will look at the distance
between exceptional instances and the instances that
generated the rule that made the correct prediction for
those exceptional instances.

5.3 Current directions
The previous section showed that we can improve the
overall accuracy on our datasets if we combine the pre-
diction generated by our learners based on the excep-
tionality measure of the new instance. Unfortunately, all
our exceptionality measures require the class of the in-
stance. Moreover, for binary classification tasks, since
all exceptionality criteria are a ratio, changing the in-
stance class will turn an exceptional instance into a
typical instance.

To move our results from offline to online, we con-
sidered interpolating the exceptionality value for an
instance based on its neighbors’ exceptionality values
(the neighbors from the training set). We performed a
very simple interpolation by using the exceptionality
value of the closest neighbor (relative to equation (1)).
While previous observations are not obvious anymore in
online graphs (there is no clear crossing at boundary
instances), there is a small improvement over the best
predictor. Figure 9 shows that even for this simple in-
terpolation there is a small reduction in almost all cases
in error rate relative to the best performer when using
online CPS (interpolated CPS).

-15%

-10%

-5%

0%

5%

10%

15%

20%

Is
co

rr
-A

ll

St
at

us
-A

ll

Ca
bi

n-
A

ll

W
er

bi
n-

A
ll

Is
co

rr
-

N
on

nu
m

St
at

us
-

N
on

nu
m

Is
co

rr
-F

irs
t9

Is
co

rr
-

Fi
rs

t1
5

Offline CPS
Online CPS

Figure 9. Reduction in error rate relative to the best performer for

offline CPS and online CPS

We are currently investigating more complicated in-
terpolation strategies like learning of a model from the
training set that will predict the exceptionality value of
an instance based on its closest neighbors.

6 Conclusions

In this paper we attempted to generalize the results of a
previous study to a new set of language learning tasks
from the area of spoken dialog systems. Our experi-
ments indicate that previous results do not generalize so
obviously to the new tasks. Next, we showed that some
exceptionality measures can be used as means to im-
prove the prediction accuracy on our tasks by combin-
ing the prediction of our learners based on measures of
instance exceptionality. We observed that our memory-

based learner performs better than the rule-based learner
on typical instances and they exchange places for excep-
tional instances. We also showed that there is potential
for moving these results from offline to online by per-
forming a simple interpolation. Future work needs to
address more complicated methods of interpolation,
comparison between our method and other attempts to
combine rule-based learning and memory-based learn-
ing (Domingos, 1996; Golding and Rosenbloom, 1991),
comparison with ensemble methods, and whether the
results from this paper generalize to other spoken dialog
corpora.

Acknowledgements
We would like to thank Walter Daelemans and Antal
van den Bosch for starting us on this work.

References
William Cohen. 1995. Fast effective rule induction. ICML.

Walter Daelemans, Antal van den Bosch, and Jakub Zavrel.
1999. Forgetting exceptions is harmful in language
learning. Machine Learning 1999, 34 :11-43.

Walter Daelemans, Jakub Zavrel, Ko van der Sloot, and Antal
van den Bosch. 2001. TiMBL: Tilburg Memory Based
Learner, version 4.1, Reference Guide. ILK Technical
Report – ILK 01-04.

Pedro Domingos. 1996. Unifying Instance-Based and Rule-
Based Induction. Machine Learning 1996, 24:141-168

Andrew R. Golding and Paul S. Rosenbloom. 1991. Improving
Rule-Based Systems Through Case-Based Reasoning. Proc.
AAAI.

Julia Hirschberg, Diane J. Litman, and Marc Swerts. 2001.
Identifying User Corrections Automatically in Spoken
Dialogue Systems. Proc. NAACL.

Diane J. Litman, Julia Hirschberg, and Marc Swerts. 2000.
Predicting Automatic Speech Recognition Performance
Using Prosodic Cues. Proc. NAACL.

Diane J. Litman, Julia Hirschberg, and Marc Swerts. 2001.
Predicting User Reactions to System Error. Proc. ACL.

Diane J. Litman, Shimei Pan. 2002. Designing and Evaluating
an Adaptive Spoken Dialogue System. User Modeling and
User-Adapted Interaction, 12(2/3):111-137.

Salzberg, S. 1990. Learning with nested generalised
exemplars. Kluwer Academic Publishers.

Elizabeth Shriberg, Rebecca Bates, Paul Taylor, Andreas
Stolcke, Klaus Ries, Daniel Jurafsky, Noah Coccaro,
Rachel Martin, Marie Meteer, and Carol Van Ess-Dykema.
1998. Can prosody aid the automatic classification of
dialog acts in conversational speech?. Language and
Speech 41:439—487.

Jianping Zhang. 1992. Selecting typical instances in
instance-based learning. Proc. ICML, 470-479.

	Introduction
	Learning methods
	IB1-IG
	Ripper

	Exceptionality measures
	Typicality
	Class prediction strength
	Local typicality

	Language learning tasks
	Results
	Natural language learning and memory-based learning
	Characterizing learners’ performance using except
	Current directions

	Conclusions
	
	Acknowledgements

