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Abstract 

Previous work has argued that memory-based 
learning is better than abstraction-based learn-
ing for a set of language learning tasks. In this 
paper, we first attempt to generalize these re-
sults to a new set of language learning tasks 
from the area of spoken dialog systems and to 
a different abstraction-based learner. We then 
examine the utility of various exceptionality 
measures for predicting where one learner is 
better than the other. Our results show that 
generalization of previous results to our tasks 
is not so obvious and some of the exceptional-
ity measures may be used to characterize the 
performance of our learners. 

1 Introduction 
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Our paper is a follow-up of the study done by Daele-
mans et al. (1999) in which the authors show that keep-
ing exceptional training instances is useful for 
increasing generalization accuracy when natural lan-
guage learning tasks are involved. The tasks used in 
their experiments are: grapheme-phoneme conversion, 
part of speech tagging, prepositional phrase attachment 
and base noun phrase chunking. Their study provides 
empirical evidence that editing exceptional instances 
leads to a decrease in memory-based learner perform-
ance. Next, the memory-based learner is compared on 
the same tasks with a decision-tree learner and their 
results favor the memory-based learner. Moreover, the 
authors provide evidence that the performance of their 
memory-based learner is linked to its property of hold-
ing all instances (including exceptional ones) and gen-
eral properties of language learning tasks (difficultness 
in discriminating between noise and valid exceptions 
and sub-regularities for those tasks). 

We continue on the same track by investigating if 
their results hold on a different set of tasks. Our tasks 

come from the area of spoken dialog systems and have 
smaller datasets and more features (with many of the 
features being numeric, in contrast with the previous 
study that had none). We observe in our experiments 
with these tasks a much smaller exceptionality measure 
range compared with the previous study. Our results 
indicate that the previous results do not generalize to all 
our tasks. 

An additional goal of our research is to investigate a 
new topic by looking into whether exceptionality meas-
ures can be used to characterize the performance of our 
learners: a memory-based learner (IB1-IG) and a rule-
based learner (Ripper). Our results indicate that for 
some of the exceptionality measures we will examine, 
IB1-IG is better for predicting typical instances while 
Ripper is better for predicting exceptional instances. 

We will use the following conventions throughout 
the paper. The term “exceptional” will be used to label 
instances that do not follow the rules that characterize 
the class they are part of (in language learning terms, 
they are “bad” examples of their class rules). We will 
use “typical” as the antonym of this term; it will label 
instances that are good examples of their class rules. 
The fact that an instance is typical should not be con-
fused with an exceptionality measure we will use that 
has the same name (typicality measure). 

Learning methods 

We will use in our study the same memory-based 
learner that was used in the previous study: IB1-IG. The 
abstraction-based learner used in the previous study was 
C5.0 (a commercial implementation of the C4.5 deci-
sion tree learner). In our study we will use a rule-based 
learner, Ripper. Although the two abstraction-based 
learners are different, they share many features (many 
techniques used in rule-based learning have been 
adapted from decision tree learning (Cohen, 1995))1.  

 
1 We used Ripper because its implementation was available 
and previous studies on our language learning tasks were per-
formed using Ripper  



2.1 IB1-IG 
Our memory-based learner is called IB1-IG and is part 
of TiMBL, a software package developed by the ILK 
Research Group, Tilburg University and the CNTS Re-
search Group, University of Antwerp. TiMBL is a col-
lection of memory-based learners that sit on top of the 
classic k-NN classification kernel with added metrics, 
algorithms, and extra functions.  

Memory-based reasoning is based on the hypothesis 
that humans, in order to react to a new situation, first 
compare the new situation with previously encountered 
situations (which reside in their memory), pick one or 
more similar situations, and react to the new one based 
on how they reacted to those similar situations.  This 
type of learning is also called lazy learning because the 
learner does not build a model from the training data. 
Instead, typically, the whole training set is stored. To 
predict the class for a new instance, the lazy learner 
compares it with stored instances using a similarity met-
ric and the new instance class is determined based on 
the classes of the most similar training instances. At the 
algorithm level, lazy learning algorithms are versions of 
k-nearest neighbor (k-NN) classifiers. 

IB1-IG is a k-NN classifier that uses a weighted 
overlap metric, where a feature weight is automatically 
computed as the Information Gain (IG) of that feature. 
The weighted overlap metric for two instances X and Y 
is defined as: 

∑
=

=∆
n

i
iii yxwYX

1
),(),( δ  (1) 

where: 

ii

ii

ii

ii

ii

yx
yx

minmax
yx

abs

yx
≠
=












−
−

=
 if
 if

else numeric, if

1
0

)(

),(δ  

Information gain is computed for every feature in 
isolation by computing the difference in uncertainty 
between situations with or without knowledge of the 
feature value (for more information, see Daelemans et 
al., 2001). These values describe the importance of that 
feature in predicting the class of an instance and are 
used as feature weights. 

 

2.2 
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3.1 

Ripper 
Ripper is a fast and effective rule-based learner devel-
oped by William Cohen (Cohen, 1995). The algorithm 
has an overfit-and-simplify learning strategy: first an 
initial rule set is devised by overfitting a part of the 
training set (called the growing set) and then this rule 
set is repeatedly simplified by applying pruning opera-
tors and testing the error reduction on another part of the 

training set (called the pruning set). Ripper produces a 
model consisting of an ordered set of if-then rules. 

There are several advantages to using rule-based 
learners. The most important one is the fact that people 
can understand relatively easy the model learned by a 
rule-based learner compared with the one learned by a 
decision-tree learner, neural network or memory-based 
learner. Also, domain knowledge can be incorporated in 
a rule-based learner by altering the type of rules it can 
learn. Finally, rule-based learners are relatively good at 
filtering the potential noise from the training set. But in 
the context of natural language learning tasks where 
distinguishing between noise and exceptions and sub-
regularities is very hard, this filtering may result in a 
decrease in accuracy. In contrast, memory-based learn-
ers, by keeping all instances around (including excep-
tional ones), may have higher classification accuracy for 
such tasks. 

Exceptionality measures 

One of the main disadvantages of memory-based learn-
ing is the fact that the entire training set is kept. This 
leads to serious time and memory performance draw-
backs if the training set is big enough. Moreover, to 
improve accuracy, one may want to have noisy in-
stances present in the training set pruned. To address 
these problems there has been a lot of work on trying to 
edit part of the training set without hampering the accu-
racy of the predictor. Two types of editing can be done. 
One can edit redundant regular instances (because the 
training set contains a lot of similar instances for that 
class) and/or unproductive instances (the ones that pre-
sent irregularities with respect to the training set space). 

There are many measures that capture both types of 
instances. We will use the ones from the previous study 
(typicality and class prediction strength) and a new one 
called local typicality. Even though these measures were 
devised with the purpose of editing part of the training 
set, they are used in our study and the previous study to 
point out instances that should not be removed, at least 
for language learning tasks. 

Typicality 
We will use the typicality definition from Daelemans et 
al. (1999) which is similar to the definition from Zhang 
(1992). In both cases, a typicality function is defined 
whose extremes correspond to exceptional and typical 
instances. The function requires a similarity measure 
which is defined in both cases as the inverse of the dis-
tance between two instances. The difference between 
the two implementations of typicality is that Zhang 
(1992) defines the distance as the Euclidian distance 
while Daelemans et al. (1999) use the normalized 



weighted Manhattan distance from (1). Thus, our simi-
larity measure will be defined as: 
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For every instance X, a subset of the dataset called 
family of X, Fam(X), is defined as being all instances 
from the dataset that have the same class as X. All re-
maining instances form the unrelated instances subset, 
Unr(X). Then, intra-concept similarity is defined as the 
average similarity between X and instances from 
Fam(X) and inter-concept similarity as the average 
similarity between X and instances from Unr(X). 
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Finally, typicality of an instance X is defined as the 
ratio of its intra-concept and inter-concept similarity.  
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The typicality values are interpreted as follows: if 
the value is higher than 1, then that instance has an in-
tra-concept similarity higher than inter-concept similar-
ity, thus one can say that the instance is a good example 
of its class (it is a typical instance). A value less than 1 
implies the opposite: the instance is not a good example 
of its class (it is an exceptional instance). Values around 
1 are called by Zhang boundary instances since they 
seem to reside at the border between concepts. 

3.2 

3.3 

Class prediction strength 
Another measure used in the previous study is the class 
prediction strength (CPS). This measure tries to capture 
the ability of an instance to predict correctly the class of 
a new instance. We will employ the same CPS defini-
tion used in the previous study (the one proposed by 
Salzberg (1990)). In the context of k-NN, predicting the 
class means, typically, that the instance is the closest 
neighbor for a new instance. Thus the CPS function is 
defined as the ratio of the number of times our instance 
is the closest neighbor for an instance of the same class 
and the number of times our instance is the closest 
neighbor for another instance regardless of its class. A 
CPS value of 1 means that if our instance is to influence 
another instance class (by being its closest neighbor) its 
influence is good (in the sense that predicting the class 
using our instance class will result in an accurate predic-
tion). Thus our instance is a good predictor for our class, 
i.e. it is a typical instance. In contrast, a value of 0 indi-
cates a bad predictor for the class and thus labels an 
exception instance. A value of 0.5 will correspond to 
instances at the border between concepts. 

Unlike typicality, when computing CPS, we can en-
counter situations when its value is undefined (zero di-
vided by zero). This means that the instance is not the 
closest neighbor for any other instance. Since there is no 
clear interpretation of instance properties in this case, 
we will set its CPS value to a constant higher than 1 (no 
particular meaning of the value, just to recognize it in 
our graphs).  

Local typicality 
While CPS captures information very close to an in-
stance, typicality as defined by Zhang captures informa-
tion from the entire dataset. But this may not be the 
most desirable measure in cases such as those when a 
concept is made of at least two disjunctive clusters. 
Consider the example from Figure 1. For an instance in 
the center of cluster A1, its similarity with instances 
from the same cluster is very high but very low with 
instances from cluster A2. At the same time, its similar-
ity with instances from class B is somewhere between 
above two values. When everything is averaged, in-
stance intra-concept and inter-concept similarity have 
comparable values thus leading to a typicality value 
around 1 even if the instance is highly typical for the 
cluster A1. 
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igure 1. Class distribution that causes flattening in typicality 
distribution  
To address this problem, we changed the definition 
am(X) and Unr(X). Instead of considering all in-

ces from the dataset when building the two subsets, 
will be using only instances from a vicinity of our 
ance. The typicality computed using these new sub-
 will be called local typicality. To define the vicin-
we used again the similarity metric. When two 

ances are identical, their similarity has the maximum 
e which is the sum of all feature weights. An in-
ce is in the vicinity of another instance if and only if 
r similarity has a value higher than a given percent 

aximum similarity value (using this definition of 
nity instead of a specified number of nearest 
hbors, makes our exceptionality measure adaptive 
e density of the local neighborhood). For our data-

, a percent value of 90% yields the best results fur-
ing a measure that is different from both typicality 
 CPS. 
Like CPS, division by zero can appear when com-
ng local typicality. This means that inter-concept 



similarity is zero and this can only happen if there is no 
instance with a different class in the vicinity of our in-
stance. In this case, if the intra-concept similarity is 
higher than 0 (there is at least one instance from the 
same class in the vicinity) we set the local typicality to a 
maximum value, while if the intra-concept similarity is 
0, then we set the typicality to a minimum value (no one 
in the vicinity of this instance is a good indication of an 
exceptional instance). When inter-concept similarity is 
higher than 0, we will set the local typicality to a mini-
mum value if its intra-concept similarity is 0 (so that we 
will not have a big gap between local typicality values). 
Minimum and maximum values are computed as values 
to the left and right of the local typicality interval for 
non-exceptional cases.   

We can rank our exceptionality measures by the 
level of information they capture (from most general to 
most local): typicality, local typicality and CPS. 

4 Language learning tasks 

The tasks we will be using in our study come from the 
area of spoken dialog systems (SDS). They were all 
designed as methods for potentially improving the dia-
log manager of a SDS system called TOOT (Litman and 
Pan, 2002).  This system provides access to train infor-
mation from the web via telephone and it was developed 
for the purpose of comparing differences in dialog strat-
egy. 

Our tasks are: (1) Identifying user corrections 
(ISCORR), (2) Identifying correction-aware sites 
(STATUS), (3) Identifying concept-level speech recog-
nition errors (CABIN) and (4) Identifying word-level 
speech recognition errors (WERBIN). The first task is a 
binary classification task that labels each user turn as to 
whether or not it is an attempt from the user to correct a 
prior system recognition failure. The second task is a 4-
way classification task that extends the previous one 
with whether or not the user is aware the system made a 
recognition error. The four classes are: normal user turn, 
user only tries to correct the system, user is only aware 
of a system recognition error, and user is both aware of 
and tries to correct the system error. The third and the 
fourth tasks are binary classification tasks that try to 
predict the system speech recognition accuracy when 
recognizing a user turn. CABIN measures a binary ver-
sion of the Concept Accuracy (percent of semantic con-
cepts recognized correctly) while WERBIN measures a 
binary version of the Word Error Rate (percent of words 
recognized incorrectly). 

Data for our tasks was gathered from a corpus of 
2,328 user turns from 152 dialogues between human 
subjects and TOOT. The features used to represent each 
user turn include prosodic information, information 
from the automatic speech recognizer, system condi-
tions and dialog history. Then, each user turn was la-

beled with respect to every classification task. Even 
though our classification tasks share the same data, 
there are clear differences between them. ISCORR and 
STATUS both deal with user corrections which is quite 
different from predicting speech recognition errors 
(handled in WERBIN and CABIN). Moreover, one will 
expect very little noise or no noise at all when manually 
annotating WERBIN and CABIN. For more information 
on our tasks and features, see (Litman et al., 2000; 
Hirschberg et al., 2001; Litman et al., 2001). 

There are a number of dimensions where our tasks 
differ from the tasks from the previous study. First of all 
our datasets are smaller (2,328 instances compared with 
at least 23,898). Second, the number of features used is 
much bigger than the previous study (141 compared 
with 4-11). Moreover, many features from our datasets 
are numeric while the previous study had none. These 
differences will also reflect on our exceptionality meas-
ures values. For example, the smallest range for typical-
ity in the previous study was between 0.43 and 10.57 
while for our tasks it is between 0.9 and 1.1. To explore 
these differences we varied the feature set used. Instead 
of using all the available features (this feature set is 
called All), we restricted the feature set by using only 
non-numeric features (Nonnum – 22 features). The typi-
cality range increased when using this feature set (0.77-
1.45), but the number of features used was still larger 
than the previous study. For this reason, we next de-
vised two set of features with only 9 (First9) and 15 
features (First15). The features were selected based on 
their information gain (see section 2.1). 

Before proceeding with our results, there is one 
more thing we want to mention. At least half of our in-
stances have one or more missing values and while the 
Ripper implementation offered a way to handle them, 
there was no default handling of missing values in the 
IB1-IG implementation. Thus, we decided to replace 
missing values ourselves before presenting the datasets 
to our learners. In particular there are two types of miss-
ing values: genuine missing values (no value was pro-
vided; we will refer to them as missing values) and 
undefined values. Undefined values come from features 
that are not defined in that user turn (for example, in the 
first user turn, most of the dialog history features were 
undefined because there was no previous user turn).  

For symbolic features, we replaced missing and un-
defined values with a given string for missing values 
and another one for undefined values. For numeric fea-
tures, the problem was more complicated since the dis-
tance metric uses the difference between two numeric 
values and thus, the values used to fix the problem can 
influence the distance between instances. We experi-
mented with different replacement values: to the left and 
right of the interval boundaries for that features, both 
replacement values on one side of the interval or very 
far from the interval boundaries. All experiments with 



the values provided comparable results. For our experi-
ments, missing values were replaced with a value to the 
right of the interval for that feature and undefined val-
ues were replaced with a value to the left of that inter-
val. 

5 Results 

5.1 

In 5.1 we reproduce the editing and comparison experi-
ments from the previous study to see if their results gen-
eralize to our tasks. In 5.2, we move to our next goal: 
characterizing learners’ performance using exceptional-
ity measures. Both learners were run using default pa-
rameters2. 

Natural language learning and memory-
based learning 

First, we performed the editing experiments from the 
previous study. The purpose of those experiments was 
to see the impact of editing exceptional and typical in-
stances on the accuracy of the memory-based learner. 
Since our datasets were small, unlike the previous study 
which performed editing only on the first train-test par-
tition of a 10-fold cross validation, we performed the 
editing experiment on all partitions of a 10-fold cross 
validation. For every fold, we edited 0, 1, 2, 5, 10, 20, 
30, 40 and 50% of the training set based on extreme 
values of all our exceptionality criteria. Accuracy after 
editing a given percent was averaged among all folds 
(there is a significant difference in accuracies among 
folds but all folds exhibit a similar trend with the aver-
age). Figure 2 shows our results for the ISCORR dataset 
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Figure 2. IB1-IG average accuracy after editing a given percent of the 

training set based on high and low extremes of all exceptionality 
measures (ISCORR dataset with all features) 

                                                           
2 We performed parameter tuning experiments for both predic-
tors: for every fold of a 10-fold cross validation, part of the 
training set was used as a validation set (for tuning parame-
ters). Our results indicate that the tuned parameters depend on 
the fold used and there was no clear gain to accuracy from 
tuning (in some cases there was even loss in accuracy). Inte-
grating tuned parameters with our leave-one-out experiments 
presents additional problems.  

using six types of editing (editing based on low and high 
value for all three criteria). In contrast with the previous 
study, where for all tasks even the smallest editing led 
to significant accuracy decreases, for our task there was 
no clear decrease in performance. Moreover, for some 
criteria (like low local-typicality) we can even see an 
initial increase in performance. Only after editing half 
of the training set is there a clear decrease in perform-
ance for all editing criteria on this task. 

Editing experiments for the other dataset-feature set 
combinations yield similar results. 

Next, we compared the memory-based learner with 
our abstraction-based learner on all tasks. Since the 
datasets were relatively small, we performed leave-one-
out cross validations. Table 1 summarizes our results. 
The baseline used is the majority class baseline. First, 
we run the predictors on all tasks using all features. In 
contrast with the previous study which favored the 
memory-based learner for almost all their tasks, our 
results favor IB1-IG for only two of the four tasks 
(ISCORR and STATUS). In Section 4, we mentioned 
that the typicality range for our tasks was very small 
compared with the previous study. Contrary to what we 

expected, the tasks where IB1-IG performed better were 
the ones with smaller typicality range. To investigate 
the typicality range impact on our predictors, we tried to 
make our datasets similar to the datasets from the previ-
ous study by tackling the feature set. We eliminated all 
numeric features (since the tasks from the previous 
study had none) and performed experiments on the tasks 
that had the less typicality range (again, ISCORR and 
STATUS). Again, when typicality range was increased, 
even though there were no numeric features, IB1-IG 
performed worse than Ripper. IB1-IG error rate in-
creased when using only non-numeric features for both 
tasks compared with the error rate when using all fea-
tures. This observation led us to assume that, at least for 
IB1-IG, some of the relevant features for classification 
were numeric and they were not present in our feature 
set. Thus, we selected two sets of features (First9 and 
First15) based on the features’ relevance and performed 
the experiments again on the ISCORR dataset. We can 

 Error rate 
Data-Feat. set IB1-IG Ripper Baseline

Typicality 
range 

Iscorr-All 14.99% 16.15% 28.99% 0.94 - 1.06
Status-All 22.25% 23.71% 43.04% 0.96 - 1.10
Cabin-All 13.10% 12.11% 30.50% 0.90 - 1.12
Werbin-All 17.65% 11.90% 39.22% 0.90 - 1.10
Iscorr-Nonnum 17.01% 16.24% 28.99% 0.81 - 1.49
Status-Nonnum 23.93% 21.99% 43.04% 0.88 - 1.62
Iscorr-First9 17.78% 16.07% 28.99% 0.86 - 1.17
Iscorr-First15 14.69% 14.95% 28.99% 0.88 - 1.14

Table 1. IB1-IG, Ripper and majority class baseline error 
rate on some of our dataset-feature set combinations 



observe that as the number of relevant features is in-
creased, the error rate for both predictors and the typi-
cality range are decreasing and IB1-IG takes the lead 
when the First15 feature set is used. Our results indicate 
that the predictor that performs better depends on the 
task, the number of features and the type of features we 
use.  

To explore why the previous study’s results do not 
generalize in our case, we are planning to replicate these 
experiments on the dialog-act tagging task on the 
Switchboard corpus (a task more similar in size and 
feature types with the previous study than our tasks but 
still in the area of spoken dialog systems – see Shriberg 
et al. (1998)). 

5.2 Characterizing learners’ performance 
using exceptionality measures 

The next goal of our study was to see if we can charac-
terize the performance of our predictors on various 
classes of instances defined by our exceptionality crite-
ria. In other words, we wanted to try to answer ques-
tions like: is IB1-IG better at predicting exceptional 
instances than Ripper? How about typical instances? 
Can we combine the two learners and select between 
them based on the instance exceptionality? 

To answer these questions, we performed the leave-
one-out experiments described above and recorded for 
every instance whether our predictors predicted it cor-
rectly or incorrectly. Next, we computed the exception-
ality of every instance using all three measures. Figure 3 
shows the exceptionality distribution using the typicality 
measure for the ISCORR dataset with all features3. The 
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Figure 3. Typicality distribution for all instances, instances correctly 

predicted by IB1-IG and instances correctly predicted by Ripper 
(ISCORR dataset with all features) 

typicality distributions of all instances from the 
ISCORR dataset, of instances correctly predicted by 
IB1-IG, and of instances correctly predicted by Ripper 
are plotted in the figure. The graph shows that for this 
dataset there are a lot of boundary instances, very few 
exceptional instances and few typical instances. The 

typicality range for all our datasets (usually between 
0.85 and 1.15) is far less than the one from the previous 
study (0.43 up to 10 or even 3500). According to Zhang 
(1992) hard concepts are often characterized by small 
typicality spread. Moreover, small typicality spread is 
associated with low accuracy in predicting. 

                                                           
3 For other dataset-feature set combination graphs see: 
http://www.cs.pitt.edu/~mrotaru/exceptionality 

Figure 4 shows the same information as Figure 3, 
but instead of plotting the count, we plot the percentage 
of the instances with typicality between a given interval 
that have been correctly classified by one of the predic-
tors. We can observe that accuracy of both predictors 
increases with typicality. That is, the more typical the 
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Figure 4. Percent of instances predicted correctly by IB1-IG and Rip-
per based on instance typicality (ISCORR dataset with all features) 

instance, the more reliable the prediction; the more ex-
ceptional the instance, the more unreliable the predic-
tion. This observation holds for all our dataset-feature 
set combinations. It is not clear for the ISCORR dataset 
whether one predictor is better than the other based on 
the typicality. But for datasets CABIN and WERBIN 
where, overall, IB1-IG did worse than Ripper, the same 
graph (see Figure 5) shows that IB1-IG’s accuracy is 
worse than Ripper’s accuracy when predicting low typi-
cality instances4. Given the problems with typicality if 
the concepts we want to learn are clustered, we decided 
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Figure 5. Percent of instances predicted correctly by IB1-IG and Rip-

per based on instance typicality (CABIN dataset with all features) 

                                                           
4 It was not our point to investigate statistical significance of 
this trend. As we will see later, this trend is powerful enough 
to yield interesting results when combining the predictors 
based on exceptionality measures. 



to investigate if this observation holds for other excep-
tionality measures. 

We continued the experiments on the other excep-
tionality measures hoping to get more insight into the 
trend observed for typicality. Indeed, Figure 6 (same as 
Figure 4  but using the CPS instead of typicality) shows 
the same trend: IB1-IG is worse than Ripper when pre-
dicting exceptional instances and it is better when pre-
dicting typical instances. The accuracy curves of the 
two predictors seem to cross at a CPS value of 0.5, 
which corresponds to boundary instances. Undefined 
CPS values (0/0) are assigned a value above 1 (the 
rightmost point on the graph). Ripper was the one that 
offered higher accuracy in predicting instances with 
undefined CPS value for almost all datasets (although 
not in Figure 6). The result holds for all our dataset-
feature set combinations. 
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Figure 6. Percent of instances predicted correctly by IB1-IG and Rip-

per based on instance CPS (ISCORR dataset with all features)5 

The experiments with local typicality yield the same 
results: Ripper constantly outperforms IB1-IG for ex-
ceptional instances and they switch places for typical 
instances (see Figure 7). Again, the accuracy curves 
cross at boundary instances (local typicality value of 1) 
and the same observation holds for all dataset-feature 
set combinations. 
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Figure 7. Percent of instances predicted correctly by IB1-IG and  

Ripper based on instance local typicality  
(ISCORR dataset with all features) 

                                                           
5 Abrupt movements in curves are caused by small number of 
instances in that class. We expect that a larger dataset will 
smooth our graphs. 

We computed what could be the reduction in error 
rate if we were to employ both predictors and decide 
between them based on the instance exceptionality 
measure. In other words, Ripper prediction was used for 
exceptional instances and for the left-hand side bound-
ary instances (CPS less than 0.5; typicality less than 1; 
local typicality less than 1); otherwise IB1-IG prediction 
was used. The lower bound of this reduction is when we 
perfectly know which of the predictors offer the correct 
prediction (in other words the error rate is the number of 
times both learners furnished wrong predictions). Figure 
8 plots the reduction in error rate achieved when decid-
ing between predictors based on typicality, CPS, local 
typicality and perfect discrimination. The reduction is 
relative to the best performer on that task. While dis-
criminating based on typicality offered no improvement 
relative to the best performer, CPS was able to con-
stantly achieve improvement and local typicality im-
proved in six out of eight cases. CPS improved the error 
rate of the best performer by decreasing it by 1.33% to 
3.18% (absolute percentage). In contrast with CPS, local 
typicality offered, for the cases when it improved the 
accuracy, more improvement decreasing the error rate 
by up to 4.94% (absolute percentage). A possible expla-
nation of this difference can be the fact that local typi-
cality captures much more information than CPS 
(vicinity-level information compared with information 
very close to the instance). 
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Figure 8. Reduction in error rate relative to the best performer for 

typicality, CPS, local typicality and prefect discrimination 

In summary, all our exceptionality measures show 
the same trend in predicting ability: Ripper performs 
better than IB1-IG on exceptional instances while IB1-
IG performs better than Ripper on typical instances. 
While the fact that IB1-IG does better on typical in-
stances may be linked to its ability to handle sub-
regularities, we have no interpretation for the fact that 
Ripper does better on exceptional instances. We plan to 
address this by future work that will look at the distance 
between exceptional instances and the instances that 
generated the rule that made the correct prediction for 
those exceptional instances. 



5.3 Current directions 
The previous section showed that we can improve the 
overall accuracy on our datasets if we combine the pre-
diction generated by our learners based on the excep-
tionality measure of the new instance. Unfortunately, all 
our exceptionality measures require the class of the in-
stance. Moreover, for binary classification tasks, since 
all exceptionality criteria are a ratio, changing the in-
stance class will turn an exceptional instance into a 
typical instance. 

To move our results from offline to online, we con-
sidered interpolating the exceptionality value for an 
instance based on its neighbors’ exceptionality values 
(the neighbors from the training set). We performed a 
very simple interpolation by using the exceptionality 
value of the closest neighbor (relative to equation (1)). 
While previous observations are not obvious anymore in 
online graphs (there is no clear crossing at boundary 
instances), there is a small improvement over the best 
predictor. Figure 9 shows that even for this simple in-
terpolation there is a small reduction in almost all cases 
in error rate relative to the best performer when using 
online CPS (interpolated CPS). 
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Figure 9. Reduction in error rate relative to the best performer for 

offline CPS and online CPS 

We are currently investigating more complicated in-
terpolation strategies like learning of a model from the 
training set that will predict the exceptionality value of 
an instance based on its closest neighbors. 

6 Conclusions 

In this paper we attempted to generalize the results of a 
previous study to a new set of language learning tasks 
from the area of spoken dialog systems. Our experi-
ments indicate that previous results do not generalize so 
obviously to the new tasks. Next, we showed that some 
exceptionality measures can be used as means to im-
prove the prediction accuracy on our tasks by combin-
ing the prediction of our learners based on measures of 
instance exceptionality. We observed that our memory-

based learner performs better than the rule-based learner 
on typical instances and they exchange places for excep-
tional instances. We also showed that there is potential 
for moving these results from offline to online by per-
forming a simple interpolation. Future work needs to 
address more complicated methods of interpolation, 
comparison between our method and other attempts to 
combine rule-based learning and memory-based learn-
ing (Domingos, 1996; Golding and Rosenbloom, 1991), 
comparison with ensemble methods, and whether the 
results from this paper generalize to other spoken dialog 
corpora. 
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