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Abstract

In this paper, we describe a system that applies
maximum entropy (ME) models to the task of
named entity recognition (NER). Starting with
an annotated corpus and a set of features which
are easily obtainable for almost any language,
we first build a baseline NE recognizer which
is then used to extract the named entities and
their context information from additional non-
annotated data. In turn, these lists are incor-
porated into the final recognizer to further im-
prove the recognition accuracy.

1 Introduction

In this paper, we present an approach for extracting the
named entities (NE) of natural language inputs which
uses the maximum entropy (ME) framework (Berger et
al., 1996). The objective can be described as follows.
Given a natural input sequence ����	�
� ������ ��� ���� � � we
choose the NE tag sequence � � � ��� ������� ��� ���� � � with the
highest probability among all possible tag sequences:�� � � � ������������! " #%$'&)( � � �+* � ��',.- �

The argmax operation denotes the search problem, i.e.
the generation of the sequence of named entities. Ac-
cording to the CoNLL-2003 competition, we concentrate
on four types of named entities: persons (PER), locations
(LOC), organizations (ORG), and names of miscellaneous
entities (MISC) that do not belong to the previous three
groups, e.g.

[PER Clinton] ’s [ORG Ballybunion] fans in-
vited to [LOC Chicago] .

Additionally, the task requires the processing of two
different languages from which only English was spec-
ified before the submission deadline. Therefore, the

system described avoids relying on language-dependent
knowledge but instead uses a set of features which are
easily obtainable for almost any language.

The remainder of the paper is organized as follows: in
section 2, we outline the ME framework and specify the
features that were used for the experiments. We describe
the training and search procedure of our approach. Sec-
tion 3 presents experimental details and shows results ob-
tained on the English and German test sets. Finally, sec-
tion 4 closes with a summary and an outlook for future
work.

2 Maximum Entropy Models

For our approach, we directly factorize the posterior
probability and determine the corresponding NE tag
for each word of an input sequence. We assume that
the decisions only depend on a limited window of� ��/.0�2130 �4�5�2160 ���� �5��/70 around the current word �8� and
on the two predecessor tags. Thus, we obtain the follow-
ing second-order model:
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A well-founded framework for directly modeling the
posterior probability C ( � � * �

�21 ��2160 < � ��/70�2160 , is maximum en-
tropy (Berger et al., 1996). In this framework, we have
a set of E feature functions F3G ( � �21 ��2160 < � � < � ��/70�2160 , <IH �J < �K�L� < E . For each feature function F3G , there exists a
model parameter M G . The posterior probability can then
be modeled as follows:
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Figure 1: Architecture of the maximum entropy model
approach.
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The architecture of the ME approach is summarized in
Figure 1.

As for the CoNLL-2003 shared task, the data sets often
provide additional information like part-of-speech (POS)
tags. In order to take advantage of these knowledge
sources, our system is able to process several input se-
quences at the same time.

2.1 Feature Functions

We have implemented a set of binary valued feature func-
tions for our system:

Lexical features: The words � ��/70�2130 are compared to a
vocabulary. Words which are seen less than twice in the
training data are mapped onto an ’unknown word’. For-
mally, the feature

FDCFE > E � ( � �21 ��2130 < �K� < � ��/.0�2130 , � G ( �5��/ > < ��,IHJG ( ��� <LK , <MONQPSRUT < ���� < T�V <
will fire if the word � ��/ > matches the vocabulary entry� and if the prediction for the current NE tag equals � .G ( H < H , denotes the Kronecker-function.

Word features: Word characteristics are covered by
the word features, which test for:

- Capitalization: These features will fire if � � is cap-
italized, has an internal capital letter, or is fully cap-
italized.

- Digits and numbers: ASCII digit strings and number
expressions activate these features.

- Pre- and suffixes: If the prefix (suffix) of �8� equals
a given prefix (suffix), these features will fire.

Transition features: Transition features model the de-
pendence on the two predecessor tags:

F � @ E > E � ( � �21 ��2130 < ��� < � ��/70�)130 , � G ( ���21 > < � A ,IHWG ( �K� <LK , <MONQP J < T�V �
Prior features: The single named entity priors are in-
corporated by prior features. They just fire for the cur-
rently observed NE tag:

F � ( � �21 ��2130 < � � < � ��/70�)130 , � G ( � � < �L, �
Compound features: Using the feature functions de-
fined so far, we can only specify features that refer to
a single word or tag. To enable also word phrases and
word/tag combinations, we introduce the following com-
pound features:
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Dictionary features: Given a list f of named entities,
the dictionary features check whether or not an entry off occurs within the current window. Formally,

FhgYE � ( � �21 ��2130 < ��� < � ��/70�)130 ,
� entryOccurs ( f < � ��/.0�2130 ,IHJG ( ��� <[K , �

Respectively, the dictionary features fire if an entry of
a context list appears beside or around the current word
position � � .

2.2 Feature Selection

Feature selection plays a crucial role in the ME frame-
work. In our system, we use simple count-based feature
reduction. Given a threshold i , we only include those
features that have been observed on the training data at
least i times. Although this method does not guarantee
to obtain a minimal set of features, it turned out to per-
form well in practice.

Experiments were carried out with different thresholds.
It turned out that for the NER task, a threshold of

J
for the

English data and
T

for the German corpus achieved the
best results for all features, except for the prefix and suffix
features, for which a threshold of j (

Jlk
resp.) yielded best

results.



2.3 Training

For training purposes, we consider the set of manually an-
notated and segmented training sentences to form a single
long sentence. As training criterion, we use the maximum
class posterior probability criterion:

�M = � � �����������
9l; "
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This corresponds to maximizing the likelihood of the ME
model. Since the optimization criterion is convex, there is
only a single optimum and no convergence problems oc-
cur. To train the model parameters M = � we use the Gen-
eralized Iterative Scaling (GIS) algorithm (Darroch and
Ratcliff, 1972).

In practice, the training procedure tends to result in an
overfitted model. To avoid overfitting, (Chen and Rosen-
feld, 1999) have suggested a smoothing method where a
Gaussian prior on the parameters is assumed. Instead of
maximizing the probability of the training data, we now
maximize the probability of the training data times the
prior probability of the model parameters:
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This method tries to avoid very large lambda values and
avoids that features that occur only once for a specific
class get value infinity. Note that there is only one pa-
rameter



for all model parameters M = � .

2.4 Search

In the test phase, the search is performed using the so-
called maximum approximation, i.e. the most likely se-
quence of named entities

�� � � is chosen among all possible
sequences � � � :

�� � � � ���?� ������! " � $'&)( � � � * � �� ,��
� ���?� ������! " � �9

��: ��CY9�; " ( � � * �
�21 ��2160 < � ��/70�)130 ,�� �

Therefore, the time-consuming renormalization in Eq. 1
is not needed during search. We run a Viterbi search to
find the highest probability sequence (Borthwick et al.,
1998).

3 Experiments

Experiments were performed on English and German test
sets. The English data was derived from the Reuters cor-
pus1 while the German test sets were extracted from the
ECI Multilingual Text corpus. The data sets contain to-
kens (words and punctuation marks), information about
the sentence boundaries, as well as the assigned NE tags.
Additionally, a POS tag and a syntactic chunk tag were
assigned to each token. On the tag level, we distinguish
five tags (the four NE tags mentioned above and a filler
tag).

3.1 Incorporating Lists of Names and
Non-annotated Data

For the English task, extra lists of names were provided,
and for both languages, additional non-annotated data
was supplied. Hence, the challenge was to find ways of
incorporating this information. Our system aims at this
challenge via the use of dictionary features.

While the provided lists could straightforward be inte-
grated, the raw data was processed in three stages:

1. Given the annotated training data, we used all fea-
tures except the dictionary ones to build a first base-
line NE recognizer.

2. Applying this recognizer, the non-annotated data
was processed and all named entities plus contexts
(up to three words beside the classified NE and the
two surrounding words) were extracted and stored
as additional lists.

3. These lists could again be integrated straightfor-
ward. It turned out that a threshold of five yielded
best results for both the lists of named entities as
well as for the context information.

3.2 Results

Table 1 and Table 2 present the results obtained on the
development and test sets. For both languages, 1 000 GIS
iterations were performed and the Gaussian prior method
was applied.

Test Set Precision Recall F � : �
English devel. 90.01% 88.52% 89.26
English test 84.45% 82.90% 83.67
German devel. 73.60% 57.73% 64.70
German test 76.12% 60.74% 67.57

Table 1: Overall performance of the baseline system on
the development and test sets in English and German.

1The Reuters corpus was kindly provided by Reuters Lim-
ited.
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Figure 2: Results of the baseline system for different
smoothing parameters.

As can be derived from table 1, our baseline recog-
nizer clearly outperforms the CoNLL-2003 baseline (e.g.� � : � ����� � T�� vs.

� � : � ��� J � J � ). To investigate the
contribution of the Gaussian prior method, several exper-
iments were carried out for different standard deviation
parameters



. Figure 2 depicts the obtained F-Measures

in comparison to the performance of non-smoothed ME
models (

� � : � �	� � � 
 � ). The gain in performance is ob-
vious.

By incorporating the information extracted from the
non-annotated data our system is further improved. On
the German data, the results show a performance degra-
dation. The main reason for this is due to the capitaliza-
tion of German nouns. Therefore, refined lists of proper
names are necessary.

4 Summary

In conclusion, we have presented a system for the task of
named entity recognition that uses the maximum entropy
framework. We have shown that a baseline system based
on an annotated training set can be improved by incorpo-
rating additional non-annotated data.

For future investigations, we have to think about a
more sophisticated treatment of the additional informa-
tion. One promising possibility could be to extend our
system as follows: apply the baseline recognizer to an-
notate the raw data as before, but then use the output to
train a new recognizer. The scores of the new system are
incorporated as further features and the procedure is iter-
ated until convergence.
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