
Named Entity Recognition using Hundreds of Thousands of Features

James Mayfield and Paul McNamee and Christine Piatko
The Johns Hopkins University Applied Physics Laboratory

11100 Johns Hopkins Road, Laurel, Maryland 20723-6099 USA
{mayfield,mcnamee,piatko }@jhuapl.edu

Abstract

We present an approach to named entity recog-
nition that uses support vector machines to cap-
ture transition probabilities in a lattice. The
support vector machines are trained with hun-
dreds of thousands of features drawn from the
CoNLL-2003 Shared Task training data. Mar-
gin outputs are converted to estimated prob-
abilities using a simple static function. Per-
formance is evaluated using the CoNLL-2003
Shared Task test set; Test B results were Fβ=1

= 84.67 for English, and Fβ=1 = 69.96 for Ger-
man.

1 Introduction

Language independence is difficult to achieve in named
entity recognition (NER) because different languages ap-
pear to require different features. Most NER systems (or
taggers) are severely limited in the number of features
they may consider, because the computational expense of
handling large numbers of features is high, and because
the risk of overtraining increases with the number of fea-
tures. Thus, the feature set must be finely tuned to be
effective. Such constrained feature sets are naturally lan-
guage dependent.

Increasing the number of features that a tagger can han-
dle would ameliorate this problem, because the designer
could select many relatively simple features in lieu of a
few highly tuned features. Because support vector ma-
chines (SVMs) (Vapnik, 1995) can handle large numbers
of parameters efficiently while simultaneously limiting
overtraining, they are good candidates for application to
named entity recognition. This paper proposes a novel
way to use SVMs for named entity recognition called
SVM-Lattice, describes a large feature space that we used
on the CoNLL-2003 Shared Task (Tjong Kim Sang and
De Meulder, 2003), and presents results from that task.

2 Model

We are interested in a lattice-based approach to named
entity recognition. In this approach, each sentence is pro-
cessed individually. A lattice is built with one column
per word of the sentence (plus a start state). Each column
contains one vertex for each possible tag. Each vertex in
one column is connected by an edge to every vertex in the
next column that may legitimately follow it (some tran-
sitions, such as from I-LOC to B-PER are disallowed).
Given such a lattice, our task is first to assign probabili-
ties to each of the arcs, then to find the highest likelihood
path through the lattice based on those probabilities. This
path corresponds to the highest likelihood tagging of the
sentence.

Hidden Markov models break the probability calcula-
tions into two pieces: transition probabilities (the proba-
bility of moving from one vertex to another independent
of the word at the destination node), and emission proba-
bilities (the probability that a given word would be gener-
ated from a certain state independent of the path taken to
get to that state). These probability distributions are cal-
culated separately because the training data are typically
too sparse to support a reasonable maximum likelihood
estimate of the joint probability. However, there is no
reason that these two distributions could not be combined
given a suitable estimation technique.

A support vector machine is a binary classifier that uses
supervised training to predict whether a given vector is in
a target class. All SVM training and test data occupy
a single high-dimensional vector space. In its simplest
form, training an SVM amounts to finding the hyperplane
that separates the positive training samples from the neg-
ative samples by the largest possible margin. This hyper-
plane is then used to classify the test vectors; those that
lie on one side of the hyperplane are classified as mem-
bers of the positive class, while others are classified as
members of the negative class. In addition to the clas-
sification decision, the SVM also produces amargin for



each vector–its distance from the hyperplane.
SVMs have two useful properties for our purposes.

First, they can handle very high dimensional spaces, as
long as individual vectors are sparse (i.e., each vector has
extent along only a small subset of the dimensions). Sec-
ondly, SVMs are resistant to overtraining, because only
the training vectors that are closest to the hyperplane
(calledsupport vectors) dictate the parameters for the hy-
perplane. So SVMs would seem to be ideal candidates
for estimating lattice probabilities.

Unfortunately, SVMs do not produce probabilities, but
rather margins. In fact, one of the reasons that SVMs
work so well is precisely because they do not attempt to
model the entire distribution of training points. To use
SVMs in a lattice approach, then, a mechanism is needed
to estimate probability of category membership given a
margin.

Platt (1999) suggests such a method. If the range of
possible margins is partitioned into bins, and positive and
negative training vectors are placed into these bins, each
bin will have a certain percentage of positive examples.
These percentages can be approximated by a sigmoid
function: P (y = 1 | f) = 1/(1 + exp(Ax + b)). Platt
gives a simple iterative method for estimating sigmoid
parameters A and B, given a set of training vectors and
their margins.

This approach can work well if a sufficient number of
positive training vectors are available. Unfortunately, in
the CoNLL-2003 shared task, many of the possible label
transitions have few exemplars. Two methods are avail-
able to handle insufficient training data: smoothing, and
guessing.

In the smoothing approach, linear interpolation is used
to combine the model for the source to target pair that
lacks sufficient data with the model made from a com-
bination of all transitions going to the target label. For
example, we could smooth the probabilities derived for
the I-ORG to I-LOC transition with the probability that
any tag would transition to the I-LOC state at the same
point in the sentence.

The second approach is to guess at an appropriate
model without examining the training data. While in the-
ory this could prove to be a terrible approach, in practice
for the Shared Task, selection of fixed sigmoid parame-
ters works better than using Platt’s method to train the
parameters. Thus, we fixA = −2 andb = 0. We con-
tinue to believe that Platt’s method or something like it
will ultimately lead to superior performance, but our cur-
rent experiments use this untrained model.

Our overall approach then is to use SVMs to estimate
lattice transition probabilities. First, due to the low fre-
quency of B-XXX tags in the training data, we convert
each B-XXX tags to the corresponding I-XXX tag; thus,
our system never predicts B-XXX tags. Then, we featur-

ize the training data, forming sparse vectors suitable for
input to our SVM package, SVMLight 5.00 (Joachims,
1999). Our feature set is described in the following sec-
tion. Next, we train one SVM for each transition type
seen in the training data. We used a cubic kernel for all
of our experiments; this kernel gives a consistent boost
over a linear kernel, while still training in a reasonable
amount of time. If we were to use Platt’s approach, the re-
sulting classifiers would be applied to further (preferably
held-out) training data to produce a set of margins, which
would be used to estimate appropriate sigmoid parame-
ters for each classifier. Sigmoid estimates that suffered
from too few positive input vectors would be replaced
by static estimates, and the sigmoids would optionally be
smoothed.

To evaluate a test set, the test input is featurized using
the same features as were used with the training data, re-
sulting in a separate vector for each word of the input.
Each classifier built during the training phase is then ap-
plied to each test vector to produce a margin. The margin
is mapped to a probability estimate using the static sig-
moid described above. When all of the probabilities have
been estimated and applied to the lattice, a Viterbi-like
algorithm is used to find the most likely path through the
lattice. This path identifies the final tag for each word of
the input sentence.

3 Features

The advantage of the ability to handle large numbers of
features is that we do not need to consider how well a
feature is likely to work in a particular language before
proposing it. We use the following features:

1. the word itself, both unchanged and lower-cased;

2. the character 3-grams and 4-grams that compose the
word;

3. the word’s capitalization pattern and digit pattern;

4. the inverse of the word’s length;

5. whether the word contains a dash;

6. whether the word is inside double quote marks;

7. the inverse of the word’s position in the sentence,
and of the position of that sentence in the document;

8. the POS, CHUNK and LEMMA features from the
training data;

9. whether the word is part of any entity, according
to a previous application of the TnT-Subcat tagger
(Brants, 2000) (see below) trained on the tag set{O,
I-ENTITY} (Test A Fβ=1 performance was 94.70
English and 74.33 German on this tag set); and



Run Description Test LOC MISC ORG PER Overall
1. Tnt Test A 86.67 79.60 73.04 88.54 82.90

Test B 81.28 68.98 65.71 82.84 75.54
2. Tnt + subcat Test A 91.46 81.41 80.63 91.64 87.49

Test B 85.71 68.41 73.82 87.95 80.68
3. SVM-Lattice Test A 92.14 84.86 83.70 93.73 89.63

Test B 87.09 72.81 78.84 90.40 83.92
4. SVM-Lattice+ Test A 93.75 86.02 85.90 93.91 90.85

Test B 88.77 74.19 79.00 90.67 84.67

Table 1: English evaluation results. Fβ=1 measures for subcategories, and overall.

Run Description Test LOC MISC ORG PER Overall
1. Tnt Test A 59.51 49.58 48.71 53.77 53.29

Test B 66.16 46.45 50.00 64.51 59.01
2. Tnt + subcat Test A 67.62 54.97 56.18 65.04 61.46

Test B 66.13 46.01 55.35 74.07 62.90
3. SVM-Lattice Test A 67.04 54.18 65.77 64.01 63.48

Test B 68.47 51.88 60.67 73.07 65.47
4. SVM-Lattice+ Test A 72.58 58.13 65.76 74.92 68.72

Test B 73.60 50.98 63.69 80.20 69.96

Table 2: German evaluation results. Fβ=1 measures for subcategories, and overall.

10. the maximum likelihood estimate, based on the
training data, of the word’s prior probability of being
in each class.

In some runs, we also use:

11. the tag assigned by a previous application of the
SVM-Lattice tagger, or by another tagger.

Each of these features is applied not just to the word
being featurized, but also to a range of words on either
side of it. We typically use a range of three (or, phrased
differently, a centered window of seven). We also ap-
plied some of these features to the environment of the
first occurrence of the word in the document. For ex-
ample, if the first occurrence of ’Bush’ in the document
were followed by ’League,’ then the second occurrence
of ’Bush’ would receive the feature ’first-occurrence-is-
followed-by-league.’

Some values of the above features will be encountered
during testing but not during training. For example, a
word that occurs in the test set but not the training set will
lack a known value for the first feature in the list above.
To handle these cases, we assign any feature that appears
only once in the training data to a special ’never-before-
seen’ class. This gives us examples at training time of
unseen features, which we can then train on.

Using the Shared Task English training data, this ap-
proach to featurization leads to a feature space of well
over 600,000 features, while the German data results in

over a million features. Individual vectors typically have
extent along a few hundred of these features.

There is a significant practical consideration in apply-
ing the method. The vectors produced by the featur-
izer for input to the SVM package are voluminous, lead-
ing to significant I/O costs, and slowing tag assignment.
Two methods might ameliorate this problem. First, sim-
ple compression techniques would be quite effective in
reducing file sizes, if the SVM package would support
them. Secondly, most vectors represent negative exam-
ples; a portion of these could probably be eliminated en-
tirely without significantly affecting system performance.

We have done no tuning of our feature set, preferring
to spend our time adding new features and relying on the
SVMs to ignore useless features. This is advantageous
when applying the technique to a language that we do
not understand (such as any of the world’s various non-
English languages).

4 Results

We evaluated our approach using the CoNLL-2003 En-
glish and German training and test sets, and theconll-
eval scoring software. We ran two baseline tests using
Thorsten Brants’ TnT tagger (2000), and two tests of
SVM-Lattice:



1. TnT : The TnT tagger applied as distributed.

2. TnT+subcat: The TnT tagger applied to a refined
tag set. Each tag type was subcategorized into about
forty subtag types; each instance of a tag in the text
was then replaced by the appropriate subtag. For ex-
ample, a number (e.g., 221) that was part of a loca-
tion received an I-LOC-alldigits tag; a location with
an initial capital letter (e.g., Baker) received an I-
LOC-initcap tag; and one of the 30 most common
words (e.g., of) that was part of a location received a
(word-specific) I-LOC-of tag. This run served both
to calibrate the SVM-Lattice performance scores,
and to provide input for theSVM-Lattice+ run be-
low.

3. SVM-Lattice : Features 1-10 (listed above in the
Features section)

4. SVM-Lattice+ : Features 1-11, using the output of
runs SVM-Lattice and TnT+subcat as input fea-
tures.

Scores for each English test are shown in Table 1; Ger-
man tests are shown in Table 2. Table 3 shows the re-
sults of theSVM-Lattice+ run in more detail. The results
show that the technique performs well, at least compared
with the baseline technique provided with the CoNLL-
2003 data (whose English Test B Fβ=1 measure is 59.61
English and 30.30 German).

5 Conclusion

The SVM-Lattice approach appears to give good results
without language-specific tuning; it handily outperforms
the CoNLL-2003 Shared Task baseline, and beats a basic
HMM tagger as well. Use of SVMs allows the introduc-
tion of a large number of features. These features can
be introduced with little concern for dependency among
features, and without significant knowledge of the target
language. It is likely that our results reflect some degree
of overfitting, given the large number of parameters we
use; however, we suspect this effect is not large. Thus,
the SVM-Lattice technique is particularly well suited to
language-neutral entity recognition. We expect it will
also perform well on other tasks that can be cast as tag-
ging problems, such as part-of-speech tagging and syn-
tactic chunking.

Acknowledgments

Significant theoretical and implementation contributions
were made to this work by Claudia Pearce, for which we
are grateful.

We gratefully acknowledge the provision of the
Reuters Corpus Vol. 1: English language, 1996-08-20
to 1997-08-19by Reuters Limited.

English devel. Precision Recall Fβ=1

LOC 94.42% 93.09% 93.75
MISC 88.80% 83.41% 86.02
ORG 85.24% 86.58% 85.90
PER 92.79% 95.06% 93.91
overall 90.97% 90.73% 90.85

English test Precision Recall Fβ=1

LOC 88.22% 89.33% 88.77
MISC 74.89% 73.50% 74.19
ORG 79.31% 78.69% 79.00
PER 89.71% 91.65% 90.67
overall 84.45% 84.90% 84.67

German devel. Precision Recall Fβ=1

LOC 72.77% 72.40% 72.58
MISC 71.00% 49.21% 58.13
ORG 72.57% 60.11% 65.76
PER 83.70% 67.81% 74.92
overall 75.48% 63.07% 68.72

German test Precision Recall Fβ=1

LOC 75.08% 72.17% 73.60
MISC 63.62% 42.54% 50.98
ORG 69.20% 58.99% 63.69
PER 86.53% 74.73% 80.20
overall 75.97% 64.82% 69.96

Table 3: Results for the development and test evaluations
for the English and German tasks.

References

Thorsten Brants. 2000. TnT-A statistical part-of-speech
tagger. InProceedings of ANLP-2000. Seattle, Wash-
ington.

Thorsten Joachims. 1999. Making large-scale SVM
learning practical. In C. Burges B. Schölkopf and
A. Smola, editors,Support Vector Learning. MIT
Press.

John C. Platt. 1999. Probabilistic Outputs for Sup-
port Vector Machines and Comparisons to Regular-
ized Likelihood Methods. In B. Scholkopf A. Smola,
P. Bartlett and D. Schuurmans, editors,Advances in
Large Margin Classifiers. MIT Press.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the CoNLL-2003 Shared Task: Language
Independent Named Entity Recognition. InProceed-
ings of CoNLL-2003. Edmonton, Canada.

Vladimir N. Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer-Verlag.


