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Abstract.  

In this paper, we propose a new metho-
dology based on directed graphs and the 
TextRank algorithm to automatically in-
duce general-specific noun relations from 
web corpora frequency counts. Different 
asymmetric association measures are im-
plemented to build the graphs upon 
which the TextRank algorithm is applied 
and produces an ordered list of nouns 
from the most general to the most specif-
ic. Experiments are conducted based on 
the WordNet noun hierarchy and assess 
65.69% of correct word ordering.   

1 Introduction 

Taxonomies are crucial for any knowledge-
based system. They are in fact important because 
they allow to structure information, thus foster-
ing their search and reuse. However, it is well 
known that any knowledge-based system suffers 
from the so-called knowledge acquisition bottle-
neck, i.e. the difficulty to actually model the do-
main in question. As stated in (Caraballo, 1999), 
WordNet has been an important lexical know-
ledge base, but it is insufficient for domain spe-
cific texts. So, many attempts have been made to 
automatically produce taxonomies (Grefenstette, 
1994), but (Caraballo, 1999) is certainly the first 
work which proposes a complete overview of the 
problem by (1) automatically building a hierar-
chical structure of nouns based on bottom-up 
clustering methods and (2) labeling the internal 
nodes of the resulting tree with hypernyms from 
the nouns clustered underneath by using patterns 
such as “B is a kind of A”. 
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In this paper, we are interested in dealing with 
the second problem of the construction of an or-
ganized lexical resource i.e. discovering general-
specific noun relationships, so that correct nouns 
are chosen to label internal nodes of any hierar-
chical knowledge base, such as the one proposed 
in (Dias et al., 2006). Most of the works pro-
posed so far have (1) used predefined patterns or 
(2) automatically learned these patterns to identi-
fy hypernym/hyponym relationships. From the 
first paradigm, (Hearst, 1992) first identifies a set 
of lexico-syntactic patterns that are easily recog-
nizable i.e. occur frequently and across text genre 
boundaries. These can be called seed patterns. 
Based on these seeds, she proposes a bootstrap-
ping algorithm to semi-automatically acquire 
new more specific patterns. Similarly, (Carabal-
lo, 1999) uses predefined patterns such as “X is a 
kind of Y” or “X, Y, and other Zs” to identify 
hypernym/hyponym relationships. This approach 
to information extraction is based on a technique 
called selective concept extraction as defined by 
(Riloff, 1993). Selective concept extraction is a 
form of text skimming that selectively processes 
relevant text while effectively ignoring surround-
ing text that is thought to be irrelevant to the do-
main. 
A more challenging task is to automatically learn 
the relevant patterns for the hypernym/hyponym 
relationships. In the context of pattern extraction, 
there exist many approaches as summarized in 
(Stevenson and Greenwood, 2006). The most 
well-known work in this area is certainly the one 
proposed by (Snow et al., 2005) who use ma-
chine learning techniques to automatically re-
place hand-built knowledge. By using depend-
ency path features extracted from parse trees, 
they introduce a general-purpose formalization 
and generalization of these patterns. Given a 
training set of text containing known hypernym 
pairs, their algorithm automatically extracts use-
ful dependency paths and applies them to new 
corpora to identify novel pairs. (Sang and Hof-
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mann, 2007) use a similar way as (Snow et al., 
2006) to derive extraction patterns for hy-
pernym/hyponym relationships by using web 
search engine counts from pairs of words en-
countered in WordNet. However, the most inter-
esting work is certainly proposed by (Bollegala 
et al., 2007) who extract patterns in two steps. 
First, they find lexical relationships between 
synonym pairs based on snippets counts and ap-
ply wildcards to generalize the acquired knowl-
edge. Then, they apply a SVM classifier to de-
termine whether a new pair shows a relation of 
synonymy or not, based on a feature vector of 
lexical relationships. This technique could be 
applied to hypernym/hyponym relationships al-
though the authors do not mention it. 
On the one hand, links between words that result 
from manual or semi-automatic acquisition of 
relevant predicative or discursive patterns 
(Hearst, 1992; Carballo, 1999) are fine and accu-
rate, but the acquisition of these patterns is a te-
dious task that requires substantial manual work. 
On the other hand, works done by (Snow et al., 
2005; Snow et al., 2006; Sang and Hofmann, 
2007; Bollegala et al., 2007) have proposed me-
thodologies to automatically acquire these pat-
terns mostly based on supervised learning to le-
verage manual work. However, training sets still 
need to be built.  
Unlike other approaches, we propose an unsu-
pervised methodology which aims at discovering 
general-specific noun relationships which can be 
assimilated to hypernym/hyponym relationships 
detection2. The advantages of this approach are 
clear as it can be applied to any language or any 
domain without any previous knowledge, based 
on a simple assumption: specific words tend to 
attract general words with more strength than the 
opposite. As (Michelbacher et al., 2007) state: 
“there is a tendency for a strong forward associa-
tion from a specific term like adenocarcinoma to 
the more general term cancer, whereas the asso-
ciation from cancer to adenocarcinoma is weak”.  
Based on this assumption, we propose a metho-
dology based on directed graphs and the Tex-
tRank algorithm (Mihalcea and Tarau, 2004) to 
automatically induce general-specific noun rela-
tionships from web corpora frequency counts. 
Indeed, asymmetry in Natural Language 
Processing can be seen as a possible reason for 

                                                 
2 We must admit that other kinds of relationships may be 
covered. For that reason, we will speak about general-
specific relationships instead of hypernym/hyponym rela-
tionships. 

the degree of generality of terms (Michelbacher 
et al., 2007). So, different asymmetric associa-
tion measures are implemented to build the 
graphs upon which the TextRank algorithm is 
applied and produces an ordered list of nouns, 
from the most general to the most specific. Expe-
riments have been conducted based on the 
WordNet noun hierarchy and assessed that 65% 
of the words are ordered correctly. 

2 Asymmetric Association Measures 

In (Michelbacher et al., 2007), the authors 
clearly point at the importance of asymmetry in 
Natural Language Processing. In particular, we 
deeply believe that asymmetry is a key factor for 
discovering the degree of generality of terms. It 
is cognitively sensible to state that when some-
one hears about mango, he may induce the prop-
erties of a fruit. But, when hearing fruit, more 
common fruits will be likely to come into mind 
such as apple or banana. In this case, there exists 
an oriented association between fruit and mango 
(mango → fruit) which indicates that mango at-
tracts more fruit than fruit attracts mango. As a 
consequence, fruit is more likely to be a more 
general term than mango. 
Based on this assumption, asymmetric associa-
tion measures are necessary to induce these asso-
ciations. (Pecina and Schlesinger, 2006) and 
(Tan et al., 2004) propose exhaustive lists of as-
sociation measures from which we present the 
asymmetric ones that will be used to measure the 
degree of attractiveness between two nouns, x 
and y, where f(.,.), P(.), P(.,.) and N are respec-
tively the frequency function, the marginal prob-
ability function, the joint probability function and 
the total of digrams. 
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All seven definitions show their asymmetry by 
evaluating the maximum value between two hy-
potheses i.e. by evaluating the attraction of x 
upon y but also the attraction of y upon x. As a 
consequence, the maximum value will decide the 
direction of the general-specific association i.e. 
(x → y) or (y → x). 

3 TextRank Algorithm 

Graph-based ranking algorithms are essential-
ly a way of deciding the importance of a vertex 
within a graph, based on global information re-
cursively drawn from the entire graph. The basic 
idea implemented by a graph-based ranking 
model is that of voting or recommendation. 
When one vertex links to another one, it is basi-
cally casting a vote for that other vertex. The 
higher the number of votes that are cast for a ver-
tex, the higher the importance of the vertex. 
Moreover, the importance of the vertex casting 
the vote determines how important the vote itself 
is, and this information is also taken into account 
by the ranking model. Hence, the score asso-
ciated with a vertex is determined based on the 
votes that are cast for it, and the score of the ver-
tices casting these votes. 
Our intuition of using graph-based ranking algo-
rithms is that more general words will be more 
likely to have incoming associations as they will 
be associated to many specific words. On the 
opposite, specific words will have few incoming 
associations as they will not attract general words 
(see Figure 1). As a consequence, the voting pa-
radigm of graph-based ranking algorithms should 
give more strength to general words than specific 
ones, i.e. a higher voting score. 
For that purpose, we first need to build a directed 
graph. Informally, if x attracts more y than y at-
tracts x, we will draw an edge between x and y as 
follows (x → y) as we want to give more credits 
to general words. Formally, we can define a di-
rected graph G = (V, E) with the set of vertices V 
(in our case, a set of words) and a set of edges E 
where E is a subset of V×V (in our case, defined 
by the asymmetric association measure value 
between two words). In Figure 1, we show the 
directed graph obtained by using the set of words 
V = {isometry, rate of growth, growth rate, rate} 
randomly extracted from WordNet where rate of 

growth and growth rate are synonyms, isometry 
an hyponym of the previous set and rate an 
hypernym of the same set. The weights asso-
ciated to the edges have been evaluated by the 
confidence association measure (Equation 3) 
based on web search engine counts3. 
  

 
 

Fig. 1. Directed Graph based on synset #13153496 (rate of 
growth, growth rate) and its direct hypernym (rate) and 

hyponym (isometry). 

Figure 1 clearly shows our assumption of gene-
rality of terms as the hypernym rate only has 
incoming edges whereas the hyponym isometry 
only has outgoing edges. As a consequence, by 
applying a graph-based ranking algorithm, we 
aim at producing an ordered list of words from 
the most general (with the highest value) to the 
most specific (with the lowest value). For that 
purpose, we present the TextRank algorithm pro-
posed by (Mihalcea and Tarau, 2004) both for 
unweighted and weighted directed graphs. 

3.1 Unweighted Directed Graph 

For a given vertex Vi let In(Vi) be the set of 
vertices that point to it, and let Out(Vi) be the set 
of vertices that vertex Vi points to. The score of a 
vertex Vi is defined in Equation 8 where d is a 
damping factor that can be set between 0 and 1, 
which has the role of integrating into the model 
the probability of jumping from a given vertex to 
another random vertex in the graph4. 

 
 
 (8) 

3.2 Weighted Directed Graph 

In order to take into account the edge weights, 
a new formula is introduced in Equation 9. 
 

                                                 
3 We used counts returned by http://www.yahoo.com. 
4 d is usually set to 0.85.  
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After running the algorithm in both cases, a score 
is associated to each vertex, which represents the 
“importance” of the vertex within the graph. No-
tice that the final values obtained after TextRank 
runs to completion are not affected by the choice 
of the initial values randomly assigned to the ver-
tices. Only the number of iterations needed for 
convergence may be different. As a consequence, 
after running the TextRank algorithm, in both its 
configurations, the output is an ordered list of 
words from the most general one to the most 
specific one. In table 1, we show both the lists 
with the weighted and unweighted versions of 
the TextRank based on the directed graph shown 
in Figure 1. 
 

Unweighted Weighted WordNet 
S(Vi) Word WS(Vi) Word Categ. Word 
0.50 rate 0.81 rate Hyper. rate 

0.27 
growth 

rate 
0.44 

growth 
rate 

Synset 
growth 

rate 

0.19 
rate of 
growth 

0.26 
rate of 
growth 

Synset 
rate of 
growth 

0.15 isometry 0.15 isometry Hypo. isometry 

Table 1. TextRank ordered lists. 
 
The results show that asymmetric measures 
combined with directed graphs and graph-based 
ranking algorithms such as the TextRank are 
likely to give a positive answer to our hypothesis 
about the degree of generality of terms. More-
over, we propose an unsupervised methodology 
for acquiring general-specific noun relationships. 
However, it is clear that deep evaluation is 
needed. 

4 Experiments and Results 

Evaluation is classically a difficult task in 
Natural Language Processing. In fact, as human 
evaluation is time-consuming and generally sub-
jective even when strict guidelines are provided, 
measures to automatically evaluate experiments 
must be proposed. In this section, we propose 
three evaluation measures and discuss the respec-
tive results. 

4.1 Constraints 

WordNet can be defined as applying a set of 
constraints to words. Indeed, if word w is the 
hypernym of word x, we may represent this rela-
tion by the following constraint y › x, where › is 
the order operator stating that y is more general 
than x. As a consequence, for each set of three 

synsets (the hypernym synset, the seed synset 
and the hyponym synset), a list of constraints can 
be established i.e. all words of the hypernym 
synset must be more general than all the words of 
the seed synset and the hyponym synset, and all 
the words of the seed synset must be more gener-
al than all the words in the hyponym synset. So, 
if we take the synsets presented in Table 1, we 
can define the following set of constraints: {rate 
› growth rate, rate › rate of growth, growth rate › 
isometry, rate of growth › isometry}. 
In order to evaluate our list of words ranked by 
the level of generality against the WordNet cate-
gorization, we just need to measure the propor-
tion of constraints which are respected as shown 
in Equation (10). We call, correctness this meas-
ure. 
 

(10) 

For example, in Table 1, all the constraints are 
respected for both weighted and unweighted 
graphs, giving 100% correctness for the ordered 
lists compared to WordNet categorization. 

4.2 Clustering 

Another way to evaluate the quality of the or-
dering of words is to apply hard clustering to the 
words weighted by their level of generality. By 
evidencing the quality of the mapping between 
three hard clusters generated automatically and 
the hypernym synset, the seed synset and the hy-
ponym synset, we are able to measure the quality 
of our ranking. As a consequence, we propose to 
(1) perform 3-means clustering over the list of 
ranked words, (2) classify the clusters by level of 
generality and (3) measure the precision, recall 
and f-measure of each cluster sorted by level of 
generality with the hypernym synset, the seed 
synset and the hyponym synset. 
For the first task, we use the implementation of 
the k-means algorithm of the NLTK toolkit5. In 
particular, we bootstrap the k-means by choosing 
the initial means as follows. For the first mean, 
we choose the weight (the score) of the first word 
in the TextRank generated list of words. For the 
second mean, we take the weight of the middle 
word in the list and for the third mean, the weight 
of the last word in the list.  
For the second task the level of generality of 
each cluster is evaluated by the average level of 

                                                 
5 http://nltk.sourceforge.net/ 
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generality of words inside the cluster (or said 
with other words by its mean).  
For the third task, the most general cluster and 
the hypernym synset are compared in terms of-
precision, recall and f-measure as shown in Equ-
ation (11), (12) and (13)6. The same process is 
applied to the second most general cluster and 
the seed synset, and the third cluster and the hy-
ponym synset. 
 

(11) 

  

(12) 

 

(13) 

4.3 Rank Coefficient Test 

The evaluation can be seen as a rank test be-
tween two ordered lists. Indeed, one way to eva-
luate the results is to compare the list of general-
specific relationships encountered by the Tex-
tRank algorithm and the original list given by 
WordNet. However, we face one problem. 
WordNet does not give an order of generality 
inside synsets. In order to avoid this problem, we 
can order words in each synset by their estimated 
frequency given by WordNet7 as well as their 
frequency calculated by web search hits. An ex-
ample of both ordered lists is given in Table 2 for 
the synset #6655336 and its immediate hyper-
nyms and hyponyms. 
 

WordNet Estimated Frequency  Web Estimated Frequency 

Category Word Category Word 
Hypernym statement Hypernym statement 

Synset answer Synset reply 
Synset reply Synset response 
Synset response Synset answer 

Hyponym rescript Hyponym feedback 
Hyponym feedback Hyponym rescript 

Table 2. Estimated Frequency ordered lists for synset 
#6655336. 

 
For that purpose, we propose to use the Spear-
man’s rank correlation coefficient (Rho). The 
Spearman’s Rho is a statistical coefficient that 
shows how much two random variables are cor-

                                                 
6  Where Cluster ∩ Synset means the number of words 
common to both Synset and Cluster, and |Synset| and 
|Cluster| respectively measure the number of words in the 
Synset and the Cluster. 
7 We use WordNet 2.1. 

related. It is defined in Equation (14) where d is 
the distance between every pair of words in the 
list ordered with TextRank and the reference list 
which is ordered according to WordNet or the 
Web and n is the number of pairs of ranked 
words. 

 

  
(14) 

 

In particular, the Spearman’s rank correlation 
coefficient is a number between -1 (no correla-
tion at all) and 1 (very strong correlation). 

4.4 Experiments 

In order to evaluate our methodology, we ran-
domly8 extracted 800 seed synsets for which we 
retrieved their hypernym and hyponym synsets. 
For each seed synset, we then built the associated 
directed weighted and unweighted graphs based 
on the asymmetric association measures referred 
to in section 29 and ran the TextRank algorithm 
to produce a general-specific ordered lists of 
terms. 

4.4.1 Results by Constraints 

In Table 3, we present the results of the cor-
rectness for all seven asymmetric measures, both 
for the unweighted and weighted graphs. 

 
Equation Type of Graph Correctness  

Braun-Blanquet 
Unweighted 65.68% 

Weighted 65.52% 

J measure 
Unweighted 60.00% 

Weighted 60.34% 

Confidence 
Unweighted 65.69% 
Weighted 65.40% 

Laplace 
Unweighted 65.69% 
Weighted 65.69% 

Conviction 
Unweighted 61.81% 

Weighted 63.39% 

Certainty Factor 
Unweighted 65.59% 

Weighted 63.76% 

Added Value 
Unweighted 65.61% 

Weighted 64.90% 

Baseline10 None 55.68% 
Table 3. Results for the Evaluation by Constraints. 

 
The best results are obtained by the Confidence 
and the Laplace measures reaching 65.69% cor-

                                                 
8 We guarantee 98% significance level for an error of 0.05 
following the normal distribution. 
9 The probability functions are estimated by the Maximum 
Likelihood Estimation (MLE). 
10 The baseline is the list of words ordered by web hits fre-
quency (without TextRank). 
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rectness. However, the Braun-Blanquet, the Cer-
tainty Factor and the Added Value give results 
near the best ones. Only the J measure and the 
Conviction metric seem to perform worst.  
It is also important to note that the difference 
between unweighted and weighted graphs is 
marginal which clearly points at the fact that the 
topology of the graph is more important than its 
weighting. This is also confirmed by the fact that 
most of the asymmetric measures perform alike. 

4.4.2 Results by Clustering 

In Table 4, we present the results of precision, 
recall and f-measure for both weighted and un-
weighted graphs for all the seven asymmetric 
measures. The best precision is obtained for the 
weighted graph with the Confidence measure 
evidencing 47.62% and the best recall is also 
obtained by the Confidence measure also for the 
weighted graph reaching 47.68%. Once again, 
the J measure and the Conviction metric perform 
worst showing worst f-measures. Contrarily, the 
Confidence measure shows the best performance 
in terms of f-measure for the weighted graph, i.e. 
47.65% while the best result for the unweighted 
graphs is obtained by the Certainty factor with 
46.50%.  
These results also show that the weighting of the 
graph plays an important issue in our methodolo-
gy. Indeed, most metrics perform better with 
weighted graphs in terms of f-measure. 
 

Equation Graph Precision Recall F-measure 

Braun-
Blanquet 

Unweighted 46.61 46.06 46.33 

Weighted 47.60 47.67 47.64 

J measure 
Unweighted 40.92 40.86 40.89 

Weighted 42.61 43.71 43.15 

Confidence 
Unweighted 46.54 46.02 46.28 

Weighted 47.62 47.68 47.65 

Laplace 
Unweighted 46.67 46.11 46.39 

Weighted 46.67 46.11 46.39 

Conviction 
Unweighted 42.13 41.67 41.90 

Weighted 43.62 43.99 43.80 

Certainty 
Factor 

Unweighted 46.49 46.52 46.50 
Weighted 44.84 45.85 45.34 

Added 
Value 

Unweighted 46.61 46.59 46.60 

Weighted 47.13 47.27 47.19 
Table 4. Results for the Evaluation by Clustering. 

 
In Table 5, 6 and 7, we present the same results 
as in Table 4 but at different levels of analysis 
i.e. precision, recall and f-measure at hypernym, 
seed and hyponym levels. Indeed, it is important 
to understand how the methodology performs at 
different levels of generality as we verified that 

our approach performs better at higher levels of 
generality. 

 
Equation Graph Precision Recall F-measure 

Braun-
Blanquet 

Unweighted 59.38 37.38 45.88 

Weighted 58.75 39.35 47.14 

J measure 
Unweighted 46.49 37.00 41.20 

Weighted 47.19 41.90 44.38 

Confidence 
Unweighted 59.20 37.30 45.77 

Weighted 58.71 39.22 47.03 

Laplace 
Unweighted 59.50 37.78 45.96 
Weighted 59.50 37.78 45.96 

Conviction 
Unweighted 50.07 35.88 41.80 

Weighted 52.72 40.74 45.96 

Certainty 
Factor 

Unweighted 55.90 38.29 45.45 

Weighted 51.64 42.93 46.88 

Added 
Value 

Unweighted 56.26 37.90 45.29 

Weighted 58.21 40.09 47.48 
Table 5. Results at the hypernym level. 

 
Equation Graph Precision Recall F-measure 

Braun-
Blanquet 

Unweighted 43.05 37.86 40.29 

Weighted 46.38 33.14 38.66 

J measure 
Unweighted 40.82 43.72 42.22 

Weighted 43.98 33.89 38.28 

Confidence 
Unweighted 43.03 37.67 40.17 

Weighted 46.36 33.02 38.57 

Laplace 
Unweighted 43.10 37.78 40.27 

Weighted 43.10 37.78 40.27 

Conviction 
Unweighted 40.36 38.02 39.16 

Weighted 42.60 26.39 32.59 

Certainty 
Factor 

Unweighted 44.28 40.87 42.51 
Weighted 44.14 40.70 42.35 

Added 
Value 

Unweighted 44.21 40.74 42.40 

Weighted 45.78 32.90 38.29 
Table 6. Results at the seed level. 

 
Equation Graph Precision Recall F-measure 

Braun-
Blanquet 

Unweighted 37.39 62.96 46.92 

Weighted 37.68 70.50 49.12 

J measure 
Unweighted 35.43 41.87 38.38 

Weighted 36.69 55.33 44.12 

Confidence 
Unweighted 37.38 63.09 46.95 

Weighted 37.79 70.80 49.27 

Laplace 
Unweighted 37.40 63.11 46.97 

Weighted 37.40 63.11 46.97 

Conviction 
Unweighted 35.97 50.94 42.16 

Weighted 35.54 64.85 45.92 

Certainty 
Factor 

Unweighted 39.28 60.40 47.60 

Weighted 38.74 53.92 45.09 

Added 
Value 

Unweighted 39.36 61.15 47.89 
Weighted 37.39 68.81 48.45 

Table 7. Results at the hyponym level. 
 

Indeed, the precision scores go down from 
59.50% at the hypernym level to 39.36% at the 
hyponym level with 46.38% at the seed level. 
The same phenomenon is inversely true for the 
recall with 42.93% at the hypernym level, 
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43.72% at the seed level and 70.80% at the hy-
ponym level.  
This situation can easily be understood as most 
of the clusters created by the k-means present the 
same characteristics i.e. the upper level cluster 
usually has fewer words than the middle level 
cluster which in turn has fewer words than the 
last level cluster. As a consequence, the recall is 
artificially high for the hyponym level. But on 
the opposite, the precision is high for higher le-
vels of generality which is promising for the au-
tomatic construction of hierarchical thesauri. In-
deed, our approach can be computed recursively 
so that each level of analysis is evaluated as if it 
was at the hypernym level, thus taking advantage 
of the good performance of our approach at up-
per levels of generality11. 

4.4.3 Results by Rank Test 

For each produced list, we calculated the 
Spearman’s Rho both with WordNet and Web 
Estimated Lists for weighted and unweighted 
graphs. Table 8 presents the average results for 
the 800 randomly selected synsets. 

 

Equation 
Type of 
Graph 

Rho with 
WNet Est. 

list 

Rho with 
Web Est. 

list 

Braun-
Blanquet 

Unweighted 0.38 0.30 

Weighted 0.39 0.39 

J measure 
Unweighted 0.23 0.19 

Weighted 0.27 0.27 

Confidence 
Unweighted 0.38 0.30 

Weighted 0.39 0.39 

Laplace 
Unweighted 0.38 0.30 

Weighted 0.38 0.38 

Conviction 
Unweighted 0.30 0.22 

Weighted 0.33 0.33 

Certainty 
Factor 

Unweighted 0.38 0.29 

Weighted 0.35 0.35 

Added Value 
Unweighted 0.37 0.29 

Weighted 0.38 0.38 

Baseline
12

 None 0.14 0.14 
Table 8. Results for the Spearman’s rank correlation 

coefficient. 
 

Similarly to what we evidenced in section 4.4.1., 
the J measure and the Conviction metric are the 
measures which less seem to map the correct or-
der by evidencing low correlation scores. On the 
other hand, the Confidence metric still gives the 
best results equally with the Laplace and Braun-
Blanquet metrics.  

                                                 
11 This will be studied as future work. 
12 The baseline is the list of words ordered by web hits fre-
quency. 

It is interesting to note that in the case of the web 
estimated list, the weighted graphs evidence 
much better results than the unweighted ones, 
although they do not show improved results 
compared to the WordNet list. On the one hand, 
these results show that our methodology is capa-
ble to map to WordNet lists as easily as to Web 
lists even that it is based on web frequency 
counts. On the other hand, the fact that weighted 
graphs perform best, shows that the topology of 
the graph lacks in accuracy and needs the appli-
cation of weights to counterpoint this lack.    

4.5 Discussion 

An important remark needs to be made at this 
point of our explanation. There is a large ambi-
guity introduced in the methodology by just 
looking at web counts. Indeed, when counting 
the occurrences of a word like answer, we count 
all its occurrences for all its meanings and forms. 
For example, based on WordNet, the word an-
swer can be a verb with ten meanings and a noun 
with five meanings. Moreover, words are more 
frequent than others although they are not so 
general, unconfirming our original hypothesis. 
Looking at Table 2, feedback is a clear example 
of this statement. As we are not dealing with a 
single domain within which one can expect to 
see the “one sense per discourse” paradigm, it is 
clear that the Rho coefficient would not be as 
good as expected as it is clearly biased by “incor-
rect” counts. One direct implication of this com-
ment is the use of web estimated lists to evaluate 
the methodology. 
Also, there has been a great discussion over the 
last few months in the corpora list13 whether one 
should use web counts instead of corpus counts 
to estimate word frequencies. In our study, we 
clearly see that web counts show evident prob-
lems, like the ones mentioned by (Kilgarriff, 
2007). However, they cannot be discarded so 
easily. In particular, we aim at looking at web 
counts in web directories that would act as spe-
cific domains and would reduce the space for 
ambiguity. Of course, experiments with well-
known corpora will also have to be made to un-
derstand better this phenomenon. 

5 Conclusions and Future Work 

In this paper, we proposed a new methodology 
based on directed weighted/unweighted graphs 
and the TextRank algorithm to automatically in-

                                                 
13 Finalized by (Kilgarriff, 2007). 
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duce general-specific noun relationships from 
web corpora frequency counts. To our know-
ledge, such an unsupervised experiment has nev-
er been attempted so far. In order to evaluate our 
results, we proposed three different evaluation 
metrics. The results obtained by using seven 
asymmetric association measures based on web 
frequency counts showed promising results 
reaching levels of (1) constraint coherence of 
65.69%, (2) clustering mapping of 59.50% in 
terms of precision for the hypernym level and 
42.72% on average in terms of f-measure and (3) 
ranking similarity of 0.39 for the Spearman’s 
rank correlation coefficient. 
As future work, we intend to take advantage of 
the good performance of our approach at the 
hypernym level to propose a recursive process to 
improve precision results over all levels of gene-
rality.  
Finally, it is important to notice that the evalua-
tion by clustering evidences more than a simple 
evaluation of the word order, but shows how this 
approach is capable to automatically map clus-
ters to WordNet classification.   
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