
CoNLL 2008: Proceedings of the 12th Conference on Computational Natural Language Learning, pages 151–158
Manchester, August 2008

Trainable Speaker-Based Referring Expression Generation

Giuseppe Di Fabbrizio and Amanda J. Stent and Srinivas Bangalore
AT&T Labs - Research, Inc.

180 Park Avenue
Florham Park, NJ 07932, USA

{pino,stent,srini}@research.att.com

Abstract

Previous work in referring expression gen-
eration has explored general purpose tech-
niques for attribute selection and surface
realization. However, most of this work
did not take into account: a) stylistic dif-
ferences between speakers; or b) trainable
surface realization approaches that com-
bine semantic and word order information.
In this paper we describe and evaluate sev-
eral end-to-end referring expression gener-
ation algorithms that take into considera-
tion speaker style and use data-driven sur-
face realization techniques.

1 Introduction

Natural language generation (NLG) systems have
typically decomposed the problem of generating
a linguistic expression from a conceptual specifi-
cation into three major steps: content planning,
text planning and surface realization (Reiter and
Dale, 2000). The task in content planning is to
select the information that is to be conveyed to
maximize communication efficiency. The task in
text planning and surface realization is to use the
available linguistic resources (words and syntax) to
convey the selected information using well-formed
linguistic expressions.
During a discourse (whether written or spoken,

monolog or dialog), a number of entities are in-
troduced into the discourse context shared by the
reader/hearer and the writer/speaker. Construct-
ing linguistic references to these entities efficiently
and effectively is a problem that touches on all

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

parts of an NLG system. Traditionally, this prob-
lem is split into two parts. The task of selecting
the attributes to use in referring to an entity is the
attribute selection task, performed during content
planning or sentence planning. The actual con-
struction of the referring expression is part of sur-
face realization.
There now exist numerous general-purpose al-

gorithms for attribute selection (e.g., (Dale and Re-
iter, 1995; Krahmer et al., 2003; Belz and Gatt,
2007; Siddharthan and Copestake, 2004)). How-
ever, these algorithms by-and-large focus on the
algorithmic aspects of referring expression gener-
ation rather than on psycholinguistic factors that
influence language production. For example, we
know that humans exhibit individual differences in
language production that can be quite pronounced
(e.g. (Belz, 2007)). We also know that the
language production process is subject to lexical
priming, which means that words and concepts that
have been used recently are likely to appear again
(Levelt, 1989).
In this paper, we look at attribute selection and

surface realization for referring expression gener-
ation using the TUNA corpus 1, an annotated cor-
pus of human-produced referring expressions that
describe furniture and people. We first explore
the impact of individual style and priming on at-
tribute selection for referring expression genera-
tion. To get an idea of the potential improvement
when modeling these factors, we implemented a
version of full brevity search that uses speaker-
specific constraints, and another version that also
uses recency constraints. We found that using
speaker-specific constraints led to big performance
gains for both TUNA domains, while the use of re-

1http://www.csd.abdn.ac.uk/research/tuna/

151



cency constraints was not as effective for TUNA-
style tasks. We then modified Dale and Reiter’s
classic attribute selection algorithm (Dale and Re-
iter, 1995) to model individual differences in style,
and found performance gains in this more greedy
approach as well.
Then, we look at surface realization for re-

ferring expression generation. There are sev-
eral approaches to surface realizations described
in the literature (Reiter and Dale, 2000) rang-
ing from hand-crafted template-based realizers to
data-driven syntax-based realizers (Langkilde and
Knight, 2000; Bangalore and Rambow, 2000).
Template-based realization provides a straightfor-
ward method to fill out pre-defined templates with
the current attribute values. Data-driven syntax-
based methods employ techniques that incorporate
the syntactic relations between words which can
potentially go beyond local adjacency relations.
Syntactic information also helps in eliminating un-
grammatical sentence realizations. At the other ex-
treme, there are techniques that exhaustively gen-
erate possible realizations with recourse to syntax
in as much as it is reflected in local n-grams. Such
techniques have the advantage of being robust al-
though they are inadequate to capture long-range
dependencies. We explore three techniques for
the task of referring expression generation that are
different hybrids of hand-crafted and data-driven
methods.
The layout of this paper is as follows: In Sec-

tion 2, we describe the TUNA data set and the task
of identifying target entities in the context of dis-
tractors. In Section 3, we present our algorithms
for attribute selection. Our algorithms for sur-
face realization are presented in Section 4. Our
evaluation of these methods for attribute selection
and surface realization are presented in Sections 5
and 6.

2 The TUNA Corpus

The TUNA corpus was constructed using a web-
based experiment. Participants were presented
with a sequence of web pages, on each of which
they saw displayed a selection of 7 pictures of ei-
ther furniture (e.g. Figure 1) or people (e.g. Fig-
ure 2) sparsely placed on a 3 row x 5 column
grid. One of the pictures (the target) was high-
lighted; the other 6 objects (the distractors) were
randomly selected from the object database. Par-
ticipants were told that they were interacting with a

computer system to remove all but the highlighted
picture from the screen. They entered a description
of the object using natural language to identify the
object to the computer system.
The section of the TUNA corpus we used was

that provided for the REG 2008 Challenge2. The
training data includes 319 referring expressions in
the furniture domain and 274 in the people domain.
The development data (which we used for testing)
includes 80 referring expressions in the furniture
domain and 68 in the people domain.

Figure 1: Example of data from the furniture do-
main (The red couch on top).

Figure 2: Example of data from the people domain
(The bald subject on the bottom with the white
beard).

3 Attribute Selection Algorithms

Given a set of entities with attributes appropriate
to a domain (e.g., cost of flights, author of a book,

2http://www.nltg.brighton.ac.uk/research/reg08/. Prelimi-
nary versions of these algorithms were used in this challenge
and presented at INLG 2008.

152



color of a car) that are in a discourse context, and a
target entity that needs to be identified, the task of
attribute selection is to select a subset of the at-
tributes that uniquely identifies the target entity.
(Note that there may be more than one such at-
tribute set.) The efficacy of attribute selection can
be measured based on the minimality of the se-
lected attribute set as well as its ability to deter-
mine the target entity uniquely. There are varia-
tions however in terms of what makes an attribute
set more preferable to a human. For example, in
a people identification task, attributes of faces are
generally more memorable than attributes pertain-
ing to outfits. In this paper, we demonstrate that
the attribute set is speaker dependent.
In this section, we present two different attribute

selection algorithms. The Full Brevity algorithm
selects the attribute set by exhaustively searching
through all possible attribute sets. In contrast, Dale
and Reiter algorithm orders the attributes based
on a heuristic (motivated by human preference)
and selects the attributes in that order until the tar-
get entity is uniquely determined. We elaborate on
these algorithms below.

Full Brevity (FB) We implemented a version of
full brevity search. It does the following: first,
it constructs AS, the set of attribute sets that
uniquely identify the referent given the distrac-
tors. Then, it selects an attribute set ASu ∈ AS
based on one of the following four criteria: 1) The
minimality (FB-m) criterion selects from among
the smallest elements of AS at random. 2) The
frequency (FB-f) criterion selects the element of
AS that occurred most often in the training data.
3) The speaker frequency (FB-sf) criterion se-
lects the element of AS used most often by this
speaker in the training data, backing off to FB-f if
necessary. This criterion models individual speak-
ing/writing style. 4) Finally, the speaker recency
(FB-sr) criterion selects the element of AS used
most recently by this speaker in the training data,
backing off to FB-sf if necessary. This criterion
models priming.

Dale and Reiter We implemented two variants
of the classic Dale & Reiter attribute selection
(Dale and Reiter, 1995) algorithm. For Dale &
Reiter basic (DR-b), we first build the preferred
list of attributes by sorting the attributes according
to frequency of use in the training data. We keep
separate lists based on the “LOC” condition (if its

value was “+LOC”, the participants were told that
they could refer to the target using its location on
the screen; if it was “-LOC”, they were instructed
not to use location on the screen) and backoff to
a global preferred attribute list if necessary. Next,
we iterate over the list of preferred attributes and
select the next one that rules out at least one en-
tity in the contrast set until no distractors are left.
Dale & Reiter speaker frequency (DR-sf) uses
a different preferred attribute list for each speaker,
backing off to the DR-b preferred list if an attribute
has never been observed in the current speaker’s
preferred attribute list. For the purpose of this task,
we did not use any external knowledge (e.g. tax-
onomies).

4 Surface Realization Approaches

A surface realizer for referring expression genera-
tion transforms a set of attribute-value pairs into a
linguistically well-formed expression. Our surface
realizers, which are all data-driven, involve four
stages of processing: (a) lexical choice of words
and phrases to realize attribute values; (b) genera-
tion of a space of surface realizations (T ); (c) rank-
ing the set of realizations using a language model
(LM ); (d) selecting the best scoring realization.
In general, the best ranking realization (T∗) is de-
scribed by equation 1:

T ∗ = Bestpath(Rank(T,LM)) (1)

We describe three different methods for creating
the search space of surface realizations – Template-
based, Dependency-based and Permutation-based
methods. Although these techniques share the
same method for ranking, they differ in the meth-
ods used for generating the space of possible sur-
face realizations.

4.1 Generating possible surface realizations

In order to transform the set of attribute-value
pairs into a linguistically well-formed expression,
the appropriate words that realize each attribute
value need to be selected (lexical choice) and the
selected words need to be ordered according to
the syntax of the target language (lexical order).
We present different models for approximating the
syntax of the target language. All three models
tightly integrate the lexical choice and lexical re-
ordering steps.

153



4.1.1 Template-Based Realizer
In the template-based approach, surface realiza-

tions from our training data are used to infer a set
of templates. In the TUNA data, each attribute in
each referring expression is annotated with its at-
tribute type (e.g. in “the large red sofa” the sec-
ond word is labeled ‘size’, the third ‘color’ and
the fourth ‘type’). We extract the annotated re-
ferring expressions from each trial in the training
data and replace each attribute value with its type
(e.g. “the size color type”) to create a tem-
plate. Each template is indexed by the lexicograph-
ically sorted list of attribute types it contains (e.g.
color size type). If an attribute set is not
found in the training data (e.g. color size)
but a superset of that set is (e.g. color size
type), then the corresponding template(s) may be
used, with the un-filled attribute types deleted prior
to output.
At generation time, we find all possible realiza-

tions (l) (from the training data) of each attribute
value (a) in the input attribute set (AS), and fill in
each possible template (t) with each combination
of the attribute realizations. The space of possible
surface realizations is represented as a weighted
finite-state automaton. The weights are computed
from the prior probability of each template and
the prior probability of each lexical item realizing
an attribute (Equation 2). We have two versions
of this realizer: one with speaker-specific lexi-
cons and templates (Template-S), and one without
(Template). We report results for both.

P (T |AS) =
∑

t

P (t|AS)∗
∏

a∈t

∑

l

P (l|a, t) (2)

4.1.2 Dependency-Based Realizer
To construct our dependency-based realizer, we

first parse all the word strings from the train-
ing data using the dependency parser described
in (Bangalore et al., 2005; Nasr and Rambow,
2004). Then, for every pair of words wi, wj that
occur in the same referring expression (RE) in the
training data, we compute: freq(i < j), the fre-
quency with which wi precedes wj in any RE;
freq(dep(wi, wj) ∧ i < j), the frequency with
which wi depends on and precedes wj in any RE,
and freq(dep(wi, wj)∧j < i), the frequency with
which wi depends on and follows wj in any RE.
At generation time, we find all possible realiza-

tions of each attribute value in the input attribute

set, and for each combination of attribute realiza-
tions, we find the most likely set of dependencies
and precedences given the training data. In other
words, we bin the selected attribute realizations
according to whether they are most likely to pre-
cede, depend on and precede, depend on and fol-
low, or follow, the head word they are closest to.
The result is a set of weighted partial orderings on
the attribute realizations. As with the template-
based surface realizer, we implemented speaker-
specific and speaker-independent versions of the
dependency-based surface realizer. Once again,
we encode the space of possible surface realiza-
tions as a weighted finite-state automaton.

4.1.3 Permute and Rank Realizer
In this method, the lexical items associated with

each attribute value to be realized are treated as a
disjunctive set of tokens. This disjunctive set is
represented as a finite-state automaton with two
states and transitions between them labeled with
the tokens of the set. The transitions are weighted
by the negative logarithm of the probability of the
lexical token (l) being associated with that attribute
value (a): (−log(P (l|a))). These sets are treated
as bags of tokens; we create permutations of these
bags of tokens to represent the set of possible sur-
face realizations.
In general, the number of states of the minimal

permutation automaton of even a linear automaton
(finite-state representation of a string) grows expo-
nentially with the number of words of the string.
Although creating the full permutation automaton
for full natural language generation tasks could
be computationally prohibitive, most attribute sets
in our two domains contain no more than five at-
tributes. So we choose to explore the full permu-
tation space. A more general approach might con-
strain permutations to be within a local window of
adjustable size (also see (Kanthak et al., 2005)).
Figure 3 shows the minimal permutation au-

tomaton for an input sequence of 4 words and a
window size of 2. Each state of the automaton is
indexed by a bit vector of size equal to the number
of words/phrases of the target sentence. Each bit
of the bit vector is set to 1 if the word/phrase in
that bit position is used on any path from the initial
to the current state. The next word for permutation
from a given state is restricted to be within the win-
dow size (2 in our case) positions counting from
the first as-yet uncovered position in that state. For
example, the state indexed with vector “1000” rep-

154



0000

10001

0100

2
1100

2

10103

1

11103

1101
4

1111

4

3

2

Figure 3: Locally constraint permutation automaton for a sentence with 4 positions and a window size
of 2.

resents the fact that the word/phrase at position 1
has been used. The next two (window=2) posi-
tions are the possible outgoing arcs from this state
with labels 2 and 3 connecting to state “1100” and
“1010” respectively. The bit vectors of two states
connected by an arc differ only by a single bit.
Note that bit vectors elegantly solve the problem of
recombining paths in the automaton as states with
the same bit vectors can be merged. As a result, a
fully minimized permutation automaton has only a
single initial and final state.

4.2 Ranking and Recovering a Surface
Realization

These three methods for surface realization create
a space of possible linguistic expressions given the
set of attributes to be realized. These expressions
are encoded as finite-state automata and have to be
ranked based on their syntactic well-formedness.
We approximate the syntactic well-formedness of
an expression by the n-gram likelihood score of
that expression. We use a trigram model trained
on the realizations in the training corpus. This
language model is also represented as a weighted
finite-state automaton. The automaton represent-
ing the space of possible realizations and the one
representing the language model are composed.
The result is an automaton that ranks the possible
realizations according to their n-gram likelihood
scores. We then produce the best-scoring realiza-
tion as the target realization of the input attribute
set.
We introduce a parameter λ which allows us

to control the importance of the prior score rela-
tive to the language model scores. We weight the
finite-state automata according to this parameter as
shown in Equation 3.

T ∗ = Bestpath(λ ∗ T ◦ (1 − λ) ∗ LM) (3)

DICE MASI Acc. Uniq. Min.
Furniture

FB-m .36 .16 0 1 1
FB-f .81 .58 .40 1 0
FB-sf .95 .87 .79 1 0
FB-sr .93 .81 .71 1 0
DR-b .81 .60 .45 1 0
DR-sf .86 .64 .45 1 .04

People
FB-m .26 .12 0 1 1
FB-f .58 .37 .28 1 0
FB-sf .94 .88 .84 1 .01
FB-sr .93 .85 .79 1 .01
DR-b .70 .45 .25 1 0
DR-sf .78 .55 .35 1 0

Overall
FB-m .32 .14 0 1 1
FB-f .70 .48 .34 1 0
FB-sf .95 .87 .81 1 .01
FB-sr .93 .83 .75 1 .01
DR-b .76 .53 .36 1 0
DR-sf .82 .60 .41 1 .02

Table 1: Results for attribute selection

5 Attribute Selection Experiments

Data Preparation The training data were used
to build the models outlined above. The develop-
ment data were then processed one-by-one.

Metrics We report performance using the met-
rics used for the REG 2008 competition. The
MASI metric is a metric used in summarization
that measures agreement between two annotators
(or one annotator and one system) on set-valued
items (Nenkova et al., 2007). Values range from
0 to 1, with 1 representing perfect agreement.
The DICE metric is also a measure of association
whose value varies from 0 (no association) to 1 (to-
tal association) (Dice, 1945). The Accuracy met-
ric is binary-valued: 1 if the attribute set is iden-
tical to that selected by the human, 0 otherwise.
The Uniqueness metric is also binary-valued: 1 if
the attribute set uniquely identifies the target refer-
ent among the distractors, 0 otherwise. Finally, the
Minimality metric is 1 if the selected attribute set
is as small as possible (while still uniquely identi-
fying the target referent), and 0 otherwise. We note

155



that attribute selection algorithms such as Dale &
Reiter’s are based on the observation that humans
frequently do not produce minimal referring ex-
pressions.

Results Table 1 shows the results for variations
of full brevity. As we would expect, all approaches
achieve a perfect score on uniqueness. For both
corpora, we see a large performance jump when
we use speaker constraints for all metrics other
than minimality. However, when we incorporate
recency constraints as well performance declines
slightly. We think this is due to two factors: first,
the speakers are not in a conversation, and self-
priming may have less impact than other-priming;
and second, we do not always have the most recent
prior utterance for a given speaker in the training
data.
Table 1 also shows the results for variations of

Dale & Reiter’s algorithm. When we incorporate
speaker constraints, we again see a performance
jump for most metrics, although compared to the
best possible case (full brevity) there is still room
for improvement.
We conclude that speaker constraints can be suc-

cessfully used in standard attribute selection algo-
rithms to improve performance on this task.
The most relevant previous research is the work

of (Gupta and Stent, 2005), who modified Dale
and Reiter’s algorithm to model speaker adaptation
in dialog. However, this corpus does not involve
dialog so there are no cross-speaker constraints,
only within-speaker constraints (speaker style and
priming).

6 Surface Realization Experiments

Data Preparation We first normalized the train-
ing data to correct misspellings and remove punc-
tuation and capitalization. We then extracted a
phrasal lexicon. For each attribute value we ex-
tracted the count of all realizations of that value in
the training data. We treated locations as a spe-
cial case, storing separately the realizations of x-
y coordinate pairs and single x- or y-coordinates.
We added a small number of realizations by hand
to cover possible attribute values not seen in the
training data.

Realization We ran two realization experiments.
In the first experiment, we used the human-
selected attribute sets in the development data as
the input to realization. If we want to maxi-

λ SED ACC Bleu NIST
Furniture

Permute&Rank 0.01 3.54 0.14 0.311 3.87
Dependency 0.90 4.51 0.09 0.206 3.29
Dependency-S 0.60 4.30 0.11 0.232 3.91
Template 0.10 3.59 0.13 0.328 3.93
Template-S 0.10 2.80 0.28 0.403 4.67

People
Permute&Rank 0.04 4.37 0.10 0.227 3.15
Dependency 0.70 6.10 0.00 0.072 2.35
Dependency-S 0.50 5.84 0.02 0.136 3.05
Template 0.80 3.87 0.07 0.250 3.18
Template-S 0.70 3.79 0.15 0.265 3.59

Overall
Permute&Rank .01/.04 3.92 0.12 0.271 4.02
Dependency 0.9/0.7 5.24 0.05 0.146 3.23
Dependency-S 0.6/0.5 5.01 0.07 0.187 3.98
Template 0.1/0.8 3.77 0.10 0.285 4.09
Template-S 0.1/0.7 3.26 0.22 0.335 4.77

Table 2: Results for realization using speakers’ at-
tribute selection (SED: String Edit Distance, ACC:
String Accuracy)

mize humanlikeness, then using these attribute sets
should give us an idea of the best possible perfor-
mance of our realization methods. In the second
experiment, we used the attribute sets output by
our best-performing attribute selection algorithms
(FB-sf and DR-sf) as the input to realization.

Metrics We report performance of our surface
realizers using the metrics used for the REG 2008
shared challenge and standard metrics used in the
natural language generation and machine trans-
lation communities. String Edit Distance (SED)
is a measure of the number of words that would
have to be added, deleted, or replaced in order to
transform the generated referring expression into
the one produced by the human. As used in the
REG 2008 shared challenge, it is unnormalized, so
its values range from zero up. Accuracy (ACC)
is binary-valued: 1 if the generated referring ex-
pression is identical to that produced by the hu-
man (after spelling correction and normalization),
and 0 otherwise. Bleu is an n-gram based met-
ric that counts the number of 1, 2 and 3 grams
shared between the generated string and one or
more (preferably more) reference strings (Papenini
et al., 2001). Bleu values are normalized and range
from 0 (no match) to 1 (perfect match). Finally,
the NIST metric is a variation on the Bleu met-
ric that, among other things, weights rare n-grams
higher than frequently-occurring ones (Dodding-
ton, 2002). NIST values are unnormalized.

156



SED ACC Bleu NIST
Furniture

FB-sf DR-sf FB-sf DR-sf FB-sf DR-sf FB-sf DR-sf
Permute&Rank 3.97 4.22 0.09 0.06 .291 .242 3.82 3.32
Dependency 4.80 5.03 0.04 0.03 .193 .105 3.32 2.46
Dependency-S 4.71 4.88 0.06 0.04 .201 .157 3.74 3.26
Template 3.89 4.56 0.09 0.05 .283 .213 3.48 3.22
Template-S 3.26 3.90 0.19 0.12 .362 .294 4.41 4.07

People
Permute&Rank 4.75 5.82 0.09 0.03 .171 .110 2.70 2.31
Dependency 6.35 6.91 0.00 0.00 .068 .073 1.81 1.86
Dependency-S 5.94 6.18 0.01 0.00 .108 .113 2.73 2.41
Template 3.62 4.24 0.07 0.04 .231 .138 2.88 1.35
Template-S 3.76 4.38 0.12 0.06 .201 .153 2.76 1.88

Overall
Permute&Rank 4.33 4.96 0.09 0.05 .236 .235 3.73 3.72
Dependency 5.51 6.00 0.02 0.01 .136 .091 2.97 2.50
Dependency-S 5.36 5.67 0.04 0.02 .159 .136 3.77 3.25
Template 3.76 4.41 0.08 0.05 .258 .180 3.69 2.89
Template-S 3.48 4.12 0.16 0.09 .288 .229 4.15 3.58

Table 3: Results for realization with different attribute selection algorithms

Furniture People
FB-sf DR-sf FB-sf DR-sf

Permute&Rank .01 .05 .05 .04
Dependency .9 .9 .9 .1
Dependency-S .2 .2 .4 .4
Template .8 .8 .8 .8
Template-S .6 .8 .8 .8

Table 4: Optimal λ values with different attribute
selection algorithms

Results Our experimental results are shown in
Tables 2 and 3. (These results are the results
obtained with the language model weighting that
gives best performance; the weights are shown in
Tables 2 and 4.) Our approaches work better for
the furniture domain, where there are fewer at-
tributes, than for the people domain. For both
domains, for automatic and human attribute se-
lection, the speaker-dependent Template-based ap-
proach seems to perform the best, then the speaker-
independent Template-based approach, and then
the Permute&Rank approach. However, we find
automatic metrics for evaluating generation qual-
ity to be unreliable. We looked at the output of the
surface realizers for the two examples in Section 2.
The best output for the example in Figure 1 is from
the FB-sf template-based speaker-dependent algo-
rithm, which is the big red sofa. The worst out-
put is from the DR-sf dependency-based speaker-
dependent algorithm, which is on the left red chair
with three seats. The best output for the exam-
ple in Figure 2 is from the FB-sf template-based
speaker-independent algorithm, which is the man
with the white beard. The worst output is from the

FB-sf dependency-based speaker-dependent algo-
rithm, which is beard man white.

Discussion The Template-S approach achieves
the best string edit distance scores, but it is not very
robust. If no examples are found in the training
data that realize (a superset of) the input attribute
set, neither Template approach will produce any
output.
The biggest cause of errors for the Permute and

Reorder approach is missing determiners and miss-
ing modifiers. The biggest cause of errors for the
Dependency approach is missing determiners and
reordered words. The Template approach some-
times has repeated words (e.g. “middle”, where
“middle” referred to both x- and y-coordinates).
Here we report performance using automatic

metrics, but we find these metrics to be unreliable
(particularly in the absence of multiple reference
texts). Also, we are not sure that people would ac-
cept from a computer system output that is very
human-like in this domain, as the human-like out-
put is often ungrammatical and telegraphic (e.g.
“grey frontal table”). We plan to do a human eval-
uation soon to better analyze our systems’ perfor-
mance.

7 Conclusions

When building computational models of language,
knowledge about the factors that influence human
language production can prove very helpful. This
knowledge can be incorporated in frequentist and
heuristic approaches as constraints or features. In
the experiments described in this paper, we used

157



data-driven, speaker-aware approaches to attribute
selection and referring expression realization. We
showed that individual speaking style can be use-
fully modeled even for quite ‘small’ generation
tasks, and confirmed that data-driven approaches
to surface realization can work well using a range
of lexical, syntactic and semantic information.
We plan to explore the impact of human visual

search strategies (Rayner, 1998) on the referring
expression generation task. In addition, we are
planning a human evaluation of the generation sys-
tems’ output. Finally, we plan to apply our algo-
rithms to a conversational task.

Acknowledgments

We thank Anja Belz, Albert Gatt, and Eric Kow
for organizing the REG competition and providing
data, and Gregory Zelinsky for discussions about
visually-based constraints.

References
Bangalore, S. and O. Rambow. 2000. Exploiting a
probabilistic hierarchical model for generation. In
Proc. COLING.

Bangalore, S., A. Emami, and P. Haffner. 2005. Fac-
toring global inference by enriching local represen-
tations. Technical report, AT&T Labs-Research.

Belz, A. and A. Gatt. 2007. The attribute selection for
GRE challenge: Overview and evaluation results. In
Proc. UCNLG+MT at MT Summit XI.

Belz, A. 2007. Probabilistic generation of weather
forecast texts. In Proc. NAACL/HLT.

Dale, R. and E. Reiter. 1995. Computational interpre-
tations of the Gricean maxims in the generation of
referring expressions. Cognitive Science, 19(2).

Dice, L. 1945. Measures of the amount of ecologic
association between species. Ecology, 26.

Doddington, G. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurrence
statistics. In Proc. HLT.

Gupta, S. and A. Stent. 2005. Automatic evaluation
of referring expression generation using corpora. In
Proc. UCNLG.

Kanthak, S., D. Vilar, E. Matusov, R. Zens, and H. Ney.
2005. Novel reordering approaches in phrase-based
statistical machine translation. In Proc. ACL Work-
shop on Building and Using Parallel Texts.

Krahmer, E., S. van Erk, and A. Verleg. 2003. Graph-
based generation of referring expressions. Computa-
tional Linguistics, 29(1).

Langkilde, I. and K. Knight. 2000. Forest-based statis-
tical sentence generation. In Proc. NAACL.

Levelt, W., 1989. Speaking: From intention to articu-
lation, pages 222–226. MIT Press.

Nasr, A. and O. Rambow. 2004. Supertagging and
full parsing. In Proc. 7th International Workshop on
Tree Adjoining Grammar and Related Formalisms
(TAG+7).

Nenkova, A., R. Passonneau, and K. McKeown. 2007.
The Pyramid method: incorporating human con-
tent selection variation in summarization evaluation.
ACM Transactions on speech and language process-
ing, 4(2).

Papenini, K., S. Roukos, T. Ward, andW.-J. Zhu. 2001.
BLEU: A method for automatic evaluation of ma-
chine translation. In Proc. ACL.

Rayner, K. 1998. Eye movements in reading and infor-
mation processing: 20 years of research. Psycholog-
ical Bulletin, 124(3).

Reiter, E. and R. Dale. 2000. Building Natural Lan-
guage Generation Systems. Cambridge University
Press.

Siddharthan, A. and A. Copestake. 2004. Generat-
ing referring expressions in open domains. In Proc.
ACL.

158


