
Knowledge Extraction and Recurrent Neural Networks:
An Analysis of an Elman Network trained on a Natural Language Learning

Task

Ingo Schellhammer*#, Joachim Diederich* , M ichael Towsey* ,
 Claudia Brugman**

* Neurocomputing Research Centre, Queensland University of Technology, QLD, 4001, Australia
Dept of Information Systems, University of Muenster, D-48149 Muenster, Germany

**School of Languages, University of Otago, New Zealand
joachim@fit.qut.edu.au

Abstract

We present results of experiments with Elman recurrent
neural networks (Elman, 1990) trained on a natural
language processing task. The task was to learn sequences
of word categories in a text derived from a primary
school reader. The grammar induced by the network was
made explicit by cluster analysis which revealed both the
representations formed during learning and enabled the
construction of state-transition diagrams representing the
grammar. A network initialised with weights based on a
prior knowledge of the text’s statistics, learned slightly
faster than the original network.

1. Introduction
Since their renaissance in the mid-1980s, Artificial
Neural Network (ANN) techniques have been
successfully applied across a broad spectrum of problem
domains such as pattern recognition and function
approximation. However despite these capabilities, to an
end user an ANN is an arcane web of interconnected
input, hidden, and output units. Moreover an ANN
solution manifests itself entirely as sets of numbers in
the form of activation function parameters and weight
vectors. As such a trained ANN offers little or no
insight into the process by which it has arrived at a
given result nor, in general, the totality of "knowledge"
actually embedded therein. This lack of a capacity to
provide a "human comprehensible" explanation is seen
as a clear impediment to a more widespread acceptance
of ANNs.

In order to redress this situation, recently considerable
effort has been directed towards providing ANNs with
the requisite explanation capability. In particular a
number of mechanisms, procedures, and techniques
have been proposed and developed to extract the
knowledge embedded in a trained ANN as a set of
symbolic rules which in effect mimic the behaviour of
the ANN. A recent survey conducted by Andrews et al.
(1995) offered an insight into the modus operandi of a
broad cross-section of such techniques.

In this paper we focus on the extraction of
grammatical rules from trained Artificial Neural
Networks and, in particular, Elman-type recurrent
networks (Elman, 1990). Unlike Giles & Omlin (1993
a,b) who used an ANN to simulate a deterministic Finite
State Automaton (FSA) representing a regular grammar,
we have extracted FSA’s from a network trained on a
natural language corpus. The output of k-means cluster
analysis is converted to state-transition diagrams which
represent the grammar learned by the network. We
analyse the prediction and generalisation performance
of the grammar.

2. Methods

2.1. The data

The data for these experiments were obtained from a
first-year primary school reader published circa 1950’s
(Hume). To keep this initial task simple, sentences with
embedded structures (relative clauses) and a length of
more than eight words were eliminated. The resulting
corpus consists of 106 sentences ranging from three to
eight words in length, average length 5.06 words. The
words were converted to 10 lexical categories, including
a sentence boundary marker. The categories, their
abbreviations as used in the text and their percent
frequencies are shown in Table 1. The resulting data
consist of a string of 643 categories in 106 sentences.
There are 62 distinct sentence sequences of which 43
occur only once, the rest being replicated. The
maximum replication of any sequence is eight-fold.
Where sequences, such as PR,VB,AR, are referred to in
the text, AR is the current input, VB the previous input
(at time step t-1) and PR the input at time step t-2.

2.2. The network

Elman simple recurrent networks (SRN), with ten input
and ten output units representing the sparse coded
lexical categories, were trained on the category
sequence. The task was to predict the next lexical
category given the current category.

73Schellhammer, Diederich, Towsey and Brugman Knowledge Extraction and Recurrent Neural Nets

Knowledge Extraction and Recurrent Ingo Schellhammer, Joachim Diederich, Michael Towsey and Claudia Brugman (1998)
In D.M.W. Powers Neural Networks: An Analysis of an Elman Network trained on a Natural Language Learning Task.

ACL, pp 73-78.NeMLaP3/CoNLL98: New Methods in Language Processing and Computational Natural Language Learning, (ed.)

The networks were trained by standard
backpropagation with momentum and state unit
activations were NOT reset to zero on presentation of a
sentence boundary. Two networks were trained, one
having two hidden units and the other nine, until
prediction error stopped declining. The network with
two hidden units had learned 51% of the training data
and that with nine hidden units had learned 69% of the
data. By way of comparison, 48%, 62%, 72% and 76%
correct predictions could be obtained using bi-, tri-, 4-
and 5-gram models of the training data respectively. At
the end of training, the networks performed one pass
through the data without learning in order to recover
their hidden unit activations. Cluster analysis of the 642
output vectors was performed by graphical means for
the two-hidden unit case and by k-means clustering for
the nine-hidden unit case. Clusters from the latter case
were used to prepare FSA’s.

TABLE 1: Percent frequencies of the ten lexical
categories in the text.

Lexical Category % frequency

Article AR 8%
Conjunction CC 1%
Preposition IN 7%
Adjective JJ 4%
Noun NN 30%
Pronoun PR 10%
Possessive (‘s) PS 2%
Adverb RB 1%
Verb VB 20%
Sentence boundary /S 17%

2.3. Cluster Analysis and Preparation of
Finite State Automata

(i) K-means cluster analysis software was used to label
the 642 hidden unit activation vectors with cluster
numbers between 1 and k. Each vector was thus

assigned to a state, St
i
, where 1 ≤ i ≤ k and t uniquely

identifies the time step for each member of cluster i.

(ii) For every current input, xt and previous state, S 1−t
i

,

there is a transition to a new state, St
i
 with a resulting

output, ot. A transition table was created from this data.
(iii) If the same input lead to more than one transition
from a given state, the transition having highest
frequency was chosen. Similarly, if any transition
brought about by a given input, generated more than one
possible output, the most frequent output was chosen.
(iv) The transition rules so derived were used to
construct deterministic FSA’s having k states
corresponding to the k clusters. We generated ten FSA’s
with k taking values in the range 6 to 22.

(v) Each automaton was tested on the string of 643
categories used to train the original network. They were
scored for total correct predictions, the fraction of
missing transitions and score on the non-missing
transitions.
(vi) In some experiments, low frequency transitions
(having less than 5 occurrences) were pruned from the
automaton and the resulting automaton again tested for
its performance on the original data sequence. Missing
transitions were handled by jumping to a predefined
‘ rescue’ state and producing a predefined ‘rescue’
output. In the default instance, the rescue state was the
state, whose preceding inputs had earliest position in the
sentence. The rescue output was always NN, the
category having highest frequency.

2.4. Weight Initialisation with Domain
Knowledge

From an examination of bigram probabilities derived
from the data sequence, it was determined that output
categories NN and /S have the highest predictive rate.
This knowledge can be used to initialise an Elman
network with non-random weights in the expectation
that training error should decline more rapidly than if
the all the weights are initialised randomly. We
initialised an Elman net having 11 hidden units with
random weights between –0.1 and 0.1, and then
manually set to a value of +4.0 some of the weights
linking the hidden layer to the input units coding for NN
and /S. We refer to these as the set links. In different
trials, we set 0, 1, 5, 8, or 11 of both the NN and /S links
in such a way as to minimise the number of hidden units
having two set links. Zero set links means that none of
the original random weights were changed.

3. Results

3.1. Graphical cluster analysis of the
network having two hidden units.

Graphical cluster analysis for the 2-hidden unit case is
shown in Figure 1. Clusters are labeled with the current
input. There is marked separation of clusters
representing the high frequency inputs, NN, VB, /S, PR
and IN. There is overlap of those clusters representing
low frequency inputs. Although only 51% of the
training set was learned by the network, there is
evidence of further clustering based on the current and
previous inputs. For example, Figure 2 shows cluster
formation when NN is the current input and either AR,
NN, PR, PS, VB or /S is the previous input. The PR,NN
sub-cluster could be further broken down into sub-sub-
clusters, representing the three input sequences
/S,PR,NN and IN,PR,NN and VB,PR,NN.

74Schellhammer, Diederich, Towsey and Brugman Knowledge Extraction and Recurrent Neural Nets

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Unit 1

U
n

it
 2

AR

CC

IN

JJ

NN

PR

PS

RB

VB

/S

Figure 1: Hidden unit activations (of an Elman network with two hidden units) labeled according to which of the ten
input categories is the current input producing that activation. The activations tend to be clustered according to the
input. Clusters representing high frequency categories such as NN, VB and /S are more dispersed and broken into
sub-clusters that represent both the current and previous inputs.

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

unit 1

u
n

it
 2

VB,NN

/S,NN

AR,NN

/S,PR,NN

PS,NN

NN,NN

VB,PR,NN

IN,PR,NN

Figure 2: Hidden unit activations of an Elman network (with two hidden units only) when the current input category
is NN and the previous category is either VB, /S, AR, PR, PS or NN.

3.2. Analysis of the FSA’s

The performance of FSA’s having 6 to 22 states is
displayed in Table 2. The second column gives the total
number of transitions permitted by the FSA. The third
column gives the percent prediction score on the
training data. Best score is 60% which compares with
69% of the training data learned by the original Elman
network from which the hidden unit activations were
obtained. The total prediction score tends to increase
with the number of states.

The fourth column of Table 2 gives the percentage
of the 642 transitions in the data not permitted by the
FSA’s. The number of missing transitions is small, in all

but two cases less than 2%. When a missing transition
occurs, the FSA defaults to a ‘rescue’ state. The percent
correct predictions for non-missing transitions are
shown in the rightmost column of Table 2. They are
little different from the total scores in most cases,
simply because the number of missing transitions is so
few.

The transition diagram for the 8-state FSA is shown in
Figure 3. The table in the top right of the figure shows:
(i) the number of visits to each state when the FSA is
tested, (ii) the percentage of correct predictions
associated with a transition to that state and (iii) the
average word-position in the sentence of the inputs
leading to that state.

75Schellhammer, Diederich, Towsey and Brugman Knowledge Extraction and Recurrent Neural Nets

S1

S3

S2

S4

S6 S5

S7 S8

V B /N N

N N /V B

V B /V B

A R /N N

PR /V B

PS/N N

I N /A R

J J /N N

A R /N N
PR /N N

N N /PS

P R /N N
V B /I N

N N /S

I N /A R

J J /N N
N N /S

N N /S

I N /N N

s ta te fr e q . % c o r r e c t p o s i tio n
S1 152 55.92% 1.30
S2 96 86.46% 3.06
S3 155 49.68% 3.35
S4 42 83.33% 4.38
S5 34 70.59% 5.50
S6 64 79.69% 5.67
S7 53 92.45% 5.68
S8 46 86.96% 6.46

S/N N

Figure 3: The FSA having 8 states. The double circle indicates an accept state. If the FSA is in an accept state and the
input is /S (end of sentence) then it returns to the start state, S1, with the output of NN.

Transitions with thick arrows have a frequency count
>20, transitions displayed with thin arrows have a
frequency count of 5 to 20 and transitions with a
frequency count <5 are not shown to preserve clarity.
The states have been numbered in sequence according
to the average word position of their associated inputs.
For example states 2, 6 and 8 all occur following input
of the NN category but they are distinguished in cluster
analysis by the NN having an average word-position in
the sentence of 3.1, 5.7 and 6.5 respectively.

Table 2
Performance of FSA’s prepared from k-means cluster

analysis of hidden unit activations.

No.
of

states

of
transitions

%
total
score

% missing
transitions

% score
on non-
missing

transitions
6 34 43 0.9 43
8 39 54 1.4 54
10 45 53 1.7 53
11 46 56 0.5 56
12 53 57 0.5 58
14 54 56 3.9 57
16 59 59 1.6 59
18 62 60 1.6 60
20 67 60 1.6 60
22 68 59 4.2 60

Table 3
The effect of removing low frequency transitions from

an FSA having 10 states

No. of
transitions

% total
score

% missing
transitions

% score
on non-missing

transitions
45 53 1.7 53
23 52 10.3 51

The states having highest correct prediction rate, S7
and S8, are associated with the ends of sentences. S7 is
reached when the last category in a sentence is predicted
to be NN and S8 occurs when the end-of-sentence is
predicted.

Many of the transitions in the FSA’s occur with low
frequency and could be pruned with minimal loss of
performance. For example, the FSA with ten states has
45 permitted transitions. When transitions having a
frequency ≤5 are pruned, the number of missing
transitions jumps from 1.7% to 10.28% but the
prediction score drops only slightly from 53% to 51%
(Table 3).

Finally we look at the effect of the state chosen as the
rescue state for the FSA having 10 states. The default
state is the state closest to the beginning of the sentence,
in this case state 2.

76Schellhammer, Diederich, Towsey and Brugman Knowledge Extraction and Recurrent Neural Nets

The percent score of correct predictions is greater only
in two other cases, that is when states 7 and 9 are used
as the ‘rescue’ state. Changing the ‘rescue’ state also
changes the number of transitions that the FSA does not
recognise. However only in the case of rescue state 8 is
this number less than for rescue state 2. It is apparent
that a decrease in the number of missing transitions does
not necessarily lead to a higher score.

3.3. Weight initialisation using domain
knowledge

Setting links between the hidden layer and the NN and
/S input units has a beneficial effect during the early
stages of network training. As indicated by the faster
initial decrease in prediction error, the optimum number
of set links from inputs NN and /S was 5 or 8 (Figure 3).

Table 4
The effect of choice of ‘ rescue’ state on the
performance of the resulting 10-state FSA.

Rescue
state

Average
word

position
of inputs

%
total
score

% missing
transitions

% score
on non-
missing

transitions
S2 1.36 52 10.3 51
S5 2.94 50 15.3 53
S8 3.30 50 9.7 49
S3 4.18 49 12.8 48
S7 4.37 53 16.2 54
S10 5.53 52 17.3 55
S9 5.55 54 11.5 55
S4 5.92 49 19.8 53
S6 5.85 52 18.9 54
S1 6.48 49 19.8 53

0 .7

0 .8

0 .9

1

1 .1

0 5 0 1 0 0 1 5 0 2 0 0

e po c h s

R
M

S
 e

rr
o

r

0 links 1 link 5 link s 8 link s 1 1 links

Figure 4: Output error of an Elman network over 200 training epochs following different weight initialisation
procedures. ‘0-links’ means that all links between hidden layer and input units are randomly initialised to values in [-
0.1, 0.1]. The network has 11 hidden units. Therefore ‘11-links’ means that every hidden unit has a set link (see
methods section 2.4 for definition of this term) to the NN and the /S input units. 1, 5 and 8 links means that this
number of hidden units has a set link to the NN and /S input units.

4. Discussion
Although an Elman network with two hidden units
could learn only 51% of the training data, nevertheless
graphical analysis reveals hierarchical clustering of
hidden unit activations. There are clusters associated
with each of the ten word categories (Figure 1),
although clusters associated with low frequency inputs
such as AR, CC and JJ tend to overlap. Clusters labeled
with the high frequency inputs revealed obvious sub-
clusters and sub-sub-clusters such as those shown in

Figure 2. In other words, the network had acquired
internal representations of temporal sequences of at
least length 3. However because the hidden unit space
had such low dimensionality, it could not be partitioned
by the output layer to achieve accurate prediction.

An FSA with 18 states derived from k-means
clustering of hidden unit activations scored 60% on the
original training data (Table 2). This compares with a
score of 69% by the original network and a score of
62% when predicting with a trigram model. Although in
theory, the trigram model requires the calculation of

77Schellhammer, Diederich, Towsey and Brugman Knowledge Extraction and Recurrent Neural Nets

10,000 transition probabilities, it reduces to 42
transition rules. This compares with of 62 transitions
rules incorporated into the 18-state FSA. Thus the
trigram model is a more compact definition of the
grammar. However, low frequency transitions can be
trimmed from the FSA’s with minimal loss of
performance as is demonstrated for the 10-state FSA in
Table 3.

Correct choice of the ‘rescue’ state is important for
the efficient performance of an FSA because it
determines the FSA’s ability to pick up the sentence
structure after a missing transition. In order to automate
the production of FSA’s following cluster analysis, we
require a heuristic for the choice of ‘ rescue’ state. Our
initial choice, that state whose inputs on average are
closest to the beginning of the sentence, seems to be a
reasonable heuristic in the absence of other information
(Table 4). Likewise, choosing the highest frequency
category (in our case, NN) as the ‘rescue’ output is also
confirmed by our results because the FSA scores
achieved on non-missing transitions are not much better
than the total scores, despite 10-20% of missing
transitions (Table 4).

The use of domain knowledge, such as category
frequencies, to bias weight initialisation is successful in
reducing error faster in the early stages of learning. Of
course if training is continued for long enough, then any
memory of the initial bias will be erased. Best results
were achieved when five links were set (such that no
hidden unit had a set link to both the NN and /S inputs)
or eight links were set (such that only five hidden units
had set links to both the NN and /S inputs).

5. Conclusions
This study has demonstrated one method for extracting
the knowledge encoded in a trained neural network.
Quite often knowledge extracted from neural networks
is in the form of propositional rules (Andrews et al.,
1995) but these are not always the most appropriate
format for explication of network learning. For example
where the network has been required to induce a
grammar, cluster analysis of hidden unit activations and
preparation of an FSA is a powerful technique to
explicate the learned grammar. However, for this
particular task, there is a trade-off between
comprehensibility of the FSA (fewer states means more
comprehensible) and its predictive performance
compared to the original neural network. In these
experiments an FSA with 18-states performed almost as
well as a trigram model. The trigram model had the
advantage of compactness, but the FSA had the
advantage of comprehensibility.

6. References
Andrews, R., Diederich, J., & Tickle A.B. (1995). A

survey and critique of techniques for extracting rules
from trained artificial neural networks. Knowledge-
Based Systems, 8(6), 373-389

Elman, J.L. (1990). Finding Structure in Time.
Cognitive Science 14, 179-211.

Giles, C.L. & Omlin, C.W. (1993a). Rule refinement
with recurrent neural networks. Proceedings. of the
IEEE International Conference on Neural Networks
(pp. 801-806). San Francisco, CA.

Giles, C.L. & Omlin, C.W. (1993b). Extraction,
insertion, and refinement of symbolic rules in
dynamically driven recurrent networks. Connection
Science, 5(3 & 4), 307-328.

78Schellhammer, Diederich, Towsey and Brugman Knowledge Extraction and Recurrent Neural Nets

