Frederik Vaassen Jurgita Kapočiūtė-Dzikienė Walter Daelemans Guy De Pauw

A simple method for topic classification for morphologically complex languages 80 (3)

- 5 Task Definition
- ∞ Experiments
 - o Lithuanian
 - Russian
 - o Swahili (WIP)
- ∞ Conclusion

Task Definition

- Text classification (categorization) is a problem of assigning an electronic text document to one or more categories, based on its contents.
- So Categories = topics
- Supervised classification the type of classification, having external mechanisms (human feedback) providing information on the correct decision.
- Supervised topic classification

Topic Classification for Morphologically Complex Languages

Existing topic classification methods are effective for English (and other "popular" languages) having:

- A wide range of annotated corpora
- Grammatical tools (stemmers, lemmatizers...)
- (Ontologies, databases...)

Do these methods work for languages that are substantially different, or for resource-scarce languages?

Topic Classification for Morphologically Complex Languages

Inspiration: Lithuanian

- One of the most archaic and conservative living Indo-European languages
- Highly inflective (e.g. adjectives have 285 different word forms, expressed by different endings)
- Has rich word derivation system (e.g. 14 prefixes for phrasal verbs; 78 suffixes for diminutives and hypocoristic words, etc.)
- Bo Has rich vocabulary (0.6 million headwords)

Very little research on topic classification for Lithuanian (Kapočiūtė-Dzikienė et al. 2012)

Topic Classification for Morphologically Complex Languages

The proposed topic classification method has to be able to cope with the complexity of Lithuanian

- The external information sources should be kept to a minimum
- So Validate method on other, similarly morphologically complex languages:
 - Russian
 - o Swahili

Experiments: Datasets

Language	Dataset	# of classes	# of documents	# of tokens/document
Lithuanian	Lietuvos rytas	11	8,936	37
	Supermamos	14	11,353	62
	Rinkimu programos '04	8	2,388	13
Russian	Forumishka	5	28,556	87
	Privet	11	17,909	47
Swahili	Wikipedia	15	1,671	346

- Varying levels of formality (political programs, forums)
- Varying distance between topics
- Varying number of topics, data set sizes and document lengths

Feature types:

- Unigrams based on word tokens (bag-of-words)
- So Unigrams based on lemmatized words
- So Character n-grams (sliding window)

Classifier:

- ∞ SVM (libSVM)
- ∞ 10-fold CV

- Hypothesis 1: Bag-of-words approach should not be the best technique for Lithuanian, but lemmatization should improve classification results.
- Hypothesis 2: Character n-grams implicitly capture the relevant patterns within morphologically complex words (without having to resort to external grammatical tools).

Size of character n-grams:

∞ Examples of strong features:

- "vald":
 - "valdymas"(management)
 - "valdžia" (authority)
 - "pavaldumas" (subordination)
 - "valdyti" (to govern);
 - "įvaldyti" (to master)
 - "suvaldyti" (to manage)
 - "savivaldybė" (municipality) ("savas", own + "valdyti", to govern)
 - "žemėvalda" (land-ownership) ("žemė", land + "valdyti", to govern)
 - ...

∞ Examples of strong features:

- o "kari":
 - "karininkas" (officer)
 - "kariuomenė" (army)
 - "karinis" (military)
 - "kariai" (soldiers)
 - ...

Experiments: Russian and Swahili

∞ Can we reproduce these results on different languages with a similarly complex morphology?

Language	Dataset	# of classes	# of documents	# of tokens/document
Russian	Forumishka	5	28,556	87
	Privet	11	17,909	47
Swahili	Wikipedia	15	1,671	346

Experiments: Russian

Feature types:

- Unigrams based on word tokens (bag-of-words)
- So Unigrams based on lemmatized words
- So Character n-grams (sliding window)

Classifier:

- ∞ SVM (libSVM)
- 50 10-fold CV

Experiments: Russian

Experiments: Russian

∞ Examples of strong features:

- о "хоро"
 - "хорош" (good), masc.
 - "хороша" (good), fem.
 - "нехороша" (not good), fem.
 - "хорошая" (good), fem. pron.
 - "хорошенькая" (pretty), coll. fem.
 - ...

Experiments: Swahili

Feature types:

Dnigrams based on word tokens (bag-of-words)
Character n-grams (sliding window)

Classifier:

- SVM (libSVM)
- so 10-fold CV

Language	Dataset	# of classes	# of documents	# of tokens/document
Swahili	Wikipedia	15	1,671	346

Conclusion

∞ We formulated and confirmed two hypotheses:

- The common bag-of-words approach is not the best for morphologically complex languages; stemming or lemmatization may significantly improve topic classification performance.
- Character n-grams implicitly capture relevant patterns and can even outperform classifiers trained on stemmed or lemmatized data (without resorting to external grammatical tools).

➔ Using character n-grams is a resource-independent and effective method for topic classification for morphologically complex languages

50 Contact

- frederik.vaassen@ua.ac.be
- o j.kapociute-dzikiene@if.vdu.lt
- walter.daelemans@ua.ac.be
- guy.depauw@ua.ac.be

