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Abstract

This thesis explores methods for the automatic supervised categorization of text
according to the emotions of its author. Since “emotions” are by definition subjective,
we predict that this task will present a number of significant challenges. We know
that there is low inter-annotator agreement on gold-standard data, since humans
find it hard to identify emotions in text, which results in datasets that are noisy and
difficult to learn from. In addition to (and maybe partially as a consequence of) this
annotation difficulty, existing emotion datasets are relatively small. This makes the
task even more challenging, as there is very little data from which a classification
algorithm can infer a model.

To explore the possibilities and limitations of automatic emotion classification, we
develop two very different case studies in detail.

In a first case study, we attempt to automatically classify sentences from business
conversations according to a dimensional emotion model called Leary’s Rose, or the
Interpersonal Circumplex. We discretize this model into eight emotion categories,
and attempt to find the best features to capture the problem using a Support Vector
Machines-based classification system. Considered feature types include word tokens
and lemmas, character n-grams, part of speech tags, lexicon entries from two different
subjectivity lexicons, and contextual information regarding the previous positions of
speaker and hearer on Leary’s Rose. We determine that character n-grams are good
at capturing relevant information, and that they are well supplemented with carefully
selected emotion keywords. In theory, a speaker’s previous emotional state makes for
an excellent predictor of their current position on the Circumplex, but in practice,
we find that performance is too low for contextual class information to be useful. We
compare the classifiers’ performance to the inter-annotator agreement on the dataset,
and conclude that the ambiguity is also present in the gold standard data, as even
human agreement is very low.

The second case study concerns the automatic identification of emotions in suicide
notes. We again classify on a sentence by sentence basis, but the class system is
resolutely discrete (meaning there is no explicit dimensional relationship between
the considered emotions, as there was on the Interpersonal Circumplex). It is also
possible for one sentence to contain more than one emotion. To solve this multi-label
classification problem, we use a SVM-based system which attributes a class label if
its probability exceeds an experimentally determined threshold. We experiment with
token and character n-grams, and again conclude that character n-grams capture
relevant features well. The results of the case study also show very clearly that the
number of training instances for a class has a very large influence on the classifier’s
performance on that class. Sparse classes are extremely difficult to predict well. This
is hardly a surprising finding, but given the limited size of existing emotion datasets,
sparse classes are a problem that needs to be tackled.
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Having determined that low-agreement training data and data sparseness are signifi-
cant hurdles for emotion classification, we try to find solutions to work around these
problems, or to at least mitigate their negative impact. While it seems unrealistic
to build a large, high-agreement corpus for every new emotion classification task, it
might be possible to build a single large, reliable corpus, which can then be used
in a variety of other tasks. To determine if this approach is a valid one, we exper-
iment with cross-domain classification and domain adaptation. We conclude that
while there cannot be a single, universal, domain-independent “emotion classifier”,
it is possible to build a cross-domain classifier that outperforms a classifier built on
target data only. When a dataset is especially skewed and difficult, taking a larger,
more stable dataset as training data can improve performance significantly, espe-
cially when this cross-domain data is supplemented with part of the target dataset.
This way the learner can adapt to particularities of the target dataset, while still
having enough general information to build a stable emotion model. We also show
that applying a few simple domain adaptation techniques can improve cross-domain
performance even further.

Encouraged by these results, we attempt to limit training noise and data skewedness
in the training set even further, in the hope that a limited but well-balanced and rep-
resentative dataset will serve as a good training set —when supplemented with some
target data— for cross-domain emotion classification. We attempt to counter the neg-
ative effects of unbalanced class distributions by applying class weights: strengthen-
ing smaller classes, and weighing down large classes. We conclude that this technique
helps with highly skewed datasets, but that it is detrimental in most other cases.
We also attempt to build a hierarchical classification system: a top-level classifier
determines if an instance is neutral or if it contains an emotion; the bottom-level
classifier —trained only on emotional instances— assigns emotion labels, but only to
those instances that were accepted by the top-level classifier. This technique turns
out not to be effective, as the hierarchical structure only serves to multiply classifi-
cation errors: an instance that was wrongly classified by the top-level classifier, can
never be corrected at the bottom level.
Finally, we attempt to limit the training data to only those instances that are typical
for their class. Filtering out “noisy” atypical instances in this way, however, turns
out to be problematic, as this technique cuts down the number of instances in an
already very small dataset, which accentuates the problem of data sparseness.

We conclude our exploration of automatic emotion classification with some pointers
for the present and hopes for the future: it is usually a good idea to have a larger
dataset with higher-confidence emotion annotations, even if this training dataset
and the target data do not belong to the same domain. When supplemented with
a part of the target data, it will serve as a good basis for a cross-domain emotion
classifier. In terms of features, we have found that character n-grams capture a lot of
relevant information, and that it is a good idea to supplement these with a limited
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set of carefully selected emotion keywords (from an emotion lexicon, for instance).
Dealing with any remaining noise and data skewedness is best left to the classifier,
as manipulating the instance space prior to training will likely result in performance
loss.
For the future, we hope to the see available emotion datasets grow both in size and
in quality, but we believe text-based emotion classification can only go so far. This
is why we hope to see more and more multi-modal approaches to emotion detection,
approaches that do not abstract away from the treasure of emotional information
that is to be found in intonation, facial expressions, body language...

Samenvatting

In “Emotie meten” onderzoeken we methodes voor het automatische identificeren
van emoties in tekst. Gegeven een tekstfragment, in welke mate is het mogelijk om
een computer te trainen om de emotie van de auteur af te leiden, zonder terug te
grijpen naar niet-tekstuele informatie?

Om op deze vraag te antwoorden, worden er twee verschillende casestudies in detail
uitgewerkt. Deze casestudies wijzen ook meteen op de potentiële applicaties van het
onderzoek naar automatische emotieclassificatie.

In de eerste casestudy wordt er een systeem ontwikkeld dat zinnen uit business-
conversaties classificeert volgens een dimensioneel emotiemodel: de Roos van Leary,
of het Interpersonele Circumplex. Dit systeem werd geïntegreerd in een proof-of-
conceptapplicatie, deLearyous, in de vorm van een virtuele conversatiepartner die
kan gebruikt worden om communicatieskills te trainen. Zinnen uit conversaties
worden met behulp van machine learners (Support Vector Machines) automatisch
in één van acht mogelijke octanten geplaatst, waarbij elk octant overeenkomt met
een mogelijke emotie. Experimenteel werd vastgesteld dat de machine learners de
emotie-informatie het best kunnen vatten wanneer ze getraind worden met specifieke
emotietermen en met character n-grams (karaktersequenties) die geëxtraheerd wor-
den uit een dataset van reeds geclassificeerde conversaties. In theorie is de emotie
van dezelfde spreker in een vorige zin in de conversatie ook een zeer sterke indicator,
maar de kwaliteit van de voorspellingen ligt te laag om daar in de praktijk efficiënt
gebruik van te kunnen maken. We stellen vast dat de voorspellingen van het systeem
vaak te wensen overlaten, maar tonen ook aan dat mensen ook slecht scoren op het
identificeren van emoties in tekst. Dit nuanceert de resultaten van de automatische
systemen, maar werpt ook vragen op over de betrouwbaarheid van emotiedatasets in
het algemeen.

In een tweede casestudy worden er emoties geclassificeerd in zelfmoordbriefjes. Een
systeem dat emoties in dit soort teksten kan terugvinden, zou gebruikt kunnen wor-
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den in medische context; om te helpen bij diagnose van depressie, of zelfs bij het
voorkomen van zelfmoordpogingen. Ook hier wordt de tekst zin per zin geclassi-
ficeerd in één van 15 mogelijke klasses, en ook hier worden machine learners getraind
op vooraf gelabelde teksten. Character n-grams scoren goed, op voorwaarde dat er
genoeg training data aanwezig is voor de te voorspellen klasse. Dit wijst op het
belang van uitgebreid en goed gebalanceerd trainingsmateriaal.

Uit de casestudies concluderen we dat de onbetrouwbaarheid (die logisch volgt uit de
subjectieviteit van emoties) en de schaarsheid van trainingsdata de grootste struikel-
blokken zijn voor automatische emotieclassificatie. We zoeken dan ook naar oplossin-
gen om deze belemmeringen uit de weg te ruimen, of alleszins te minimaliseren.

Hoewel het ondoenbaar lijkt om voor elke emotieclassificatietaak één uitgebreide
en betrouwbare dataset te bouwen, kan er wel gewerkt worden op één “universele”
emotiedataset. We tonen aan dat het aan de hand van enkele simpele domeinadap-
tatietechnieken mogelijk is om een systeem dat getraind is op één dataset, aan te
passen aan een andere dataset, met in sommige gevallen zelfs een verbetering in clas-
sificaties als gevolg. We tonen ook aan dat enkele technieken die direct ingrijpen
op de featurevectoren minder aangewezen zijn, daar deze leiden tot overfitting en
slechtere voorspellingen.

We concluderen ons onderzoek met enkele “best practices” omtrent trainingdatas-
electie en training features. We kijken uit naar de combinatie van de technieken
die toegepast werden tijdens dit onderzoek –puur gebaseerd op tekstuele informatie–
met technieken die aanspraak doen op niet-tekstuele bronnen: intonatie, gezichtsuit-
drukkingen, lichaamstaal, etc.
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Chapter 1

Introduction

What if your computer could understand how you feel? What if —based on the
e-mails you wrote today, based on your posts on social networks, on the reviews
you wrote online— your computer could deduce your mood, and react accordingly?
”Feeling down? Here’s some upbeat music you like!”, ”Stressed out? Allow me to
change your desktop’s color scheme to a more soothing setting.”

The above scenario probably sounds far-fetched. And it is, in a way; we are still
far from reaching a point where a machine can use textual information to reliably
identify something as complex and subtle as human emotions. Let’s not even mention
the trial-and-error and fine-tuning it would require to determine how and when a
system should react to whatever emotion it has identified. (One can imagine, for
instance, that the last thing one would want when feeling grumpy, is a computer
trying to do things it was never asked to do.) Despite all this, automatic emotion
classification —which, as the name implies, involves automatically categorizing text
fragments according to the emotions they contain— is most definitely an active field
of research. And one day, perhaps by combining what we will have learned from text
with information from other sources (biometric input devices are in full development,
for instance), we will no longer see a “feeling” system as preposterous.

As things are now, however, automatic emotion classification of text is in its infancy.
This thesis is our contribution to the field, and as the reader will realize, we will not
refrain from bringing bad news if we deem it necessary. After all, reducing something
that is by definition subjective to something that can be processed through objective
(unfeeling?) algorithms and statistics, sounds like an uphill battle.
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1.1. QUANTIFYING THE UNQUANTIFIABLE

1.1 Quantifying the unquantifiable

There are inherent problems with wanting to automatically identify emotions. Speak-
ing strictly from a computational linguistics point of view, we run into our first,
significant roadblock before even attempting to classify anything: putting together
a good dataset is problematic.
We take a “good” dataset —at least in the case of supervised text classification— to
imply two things. First, it needs to be large enough so that all categories we want
to learn are sufficiently represented. Put simply, if we have not seen that a certain
feature (say, a word like down) can point to a certain class (for instance the sadness
category), our model will not be able to learn that there is an association between
the two. Secondly, the dataset needs to contain reliable information. While most
machine learning algorithms are designed to deal with a significant amount of noise,
too many noisy examples will eventually confuse any system.
The biggest problem for emotion datasets is to be found in the latter point: relia-
bility. We will see in-depth examples of this in the following chapters, but emotion
classification of text is a difficult task, even for humans. The likelihood that multiple
annotators agree on the emotional contents of a text fragment is very slim, and even
the average agreement between pairs of annotators will be low. How we perceive
emotions in a text fragment is strongly correlated with the context the text occurs
in, but it is also influenced by personal biases such as personality and mood. Ad-
ditionally, a lot of information regarding a speaker’s (or writer’s) emotional state is
to be found in non-textual data. In the case of text transcribed from speech, we
lose intonation, body language, facial expressions, etc., which in some cases make
the difference between one emotion and the next. As a result, text collections an-
notated according to emotion usually have relatively low inter-annotator agreement,
and the “gold” labels —which we train our classifiers on— are hard to pin down.
On some texts, disagreement may have been caused by an annotator making a mis-
take or misinterpreting a text fragment, but in most cases, disagreement is simply
that: annotators disagree on the emotions present, because emotions are inherently
subjective.

The fact that it is difficult to acquire reliable emotion data indirectly means that it
is also difficult to acquire a lot of emotion data. Annotation is a lengthy and difficult
process, and not many researchers are willing to invest the time or resources to
produce a dataset which is likely to have less-than-optimal reliability. An alternative
is to harvest data from the Internet. The web is full of textual information, and
in some rare cases texts are tagged with moods or emotions. Facebook1 has the
ability to tag status updates with emotions, and LiveJournal2 has long allowed users
to select a mood tag to accompany their blog entries. It would be possible to put

1http://www.facebook.com - Last accessed on July 17th, 2014.
2http://www.livejournal.com - Last accessed on July 17th, 2014
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CHAPTER 1. INTRODUCTION

together a large emotion dataset by mining these online resources (Mishne (2005)
and Keshtkar & Inkpen (2009), amongst others, have used LiveJournal data to train
their mood classifiers), but again, reliability is a problem. There is no guarantee that
the authors of the online texts use these emotion tags reliably or consistently, and
the interpretation of the tags may vary from author to author.

In short, there are no perfect datasets for automatic emotion classification, because
emotions are in themselves subjective. This, however, will not stop us from investi-
gating the possibilities. In the following chapters, we will explore what is currently
achievable in emotion classification. We will use a variety of datasets, which all
have their own strength and flaws, to answer questions regarding the feasibility of
automatic emotion classification, and the robustness of emotion classifiers.

Chapter 2 will start by placing “emotion classification” in a broader context. We
will briefly outline the fields of text categorization and sentiment mining, and we
will see how emotion classification of text borrows extensively from both. We will
focus on the “emotion” in emotion classification, as it is anything but a unambigu-
ous term. What “emotions” are and which emotions should be seen as distinct is a
subject of heated debate among psychologists. Should emotions be seen as discrete,
or should we see an emotion as a position in a continuous space? If we adopt the
former approach, how many discrete emotions should we consider? What dimen-
sions —should we adopt the dimensional hypothesis— define emotional space? The
answers to these questions should influence how computational linguists choose to
represent their emotion classification tasks, but we will see that the choice of model
is often driven by convenience and practical considerations, rather than by findings
in psychology. The chapter will also serve to outline the state of the art in the au-
tomatic emotion classification of text, as we will give a few salient examples of how
the problem is most often tackled.

The next two chapters are case studies, in which we describe our approach to carrying
out two very different emotion classification tasks.

The first case study is described in Chapter 3. The deLearyous dataset is a relatively
small dataset of transcribed conversations from a business environment, annotated
according to Leary’s Rose, also known as the Interpersonal Circumplex, a dimensional
model for emotion classification. In this case study, the task is to determine the
position of the participants in a conversation on this Rose, on a sentence-by-sentence
basis, based only on textual information. To our knowledge, this is the first time
that conversations have been analyzed automatically for their participants’ positions
on the Interpersonal Circumplex.

Chapter 4 describes the second case study: the automatic classification of emotions
in suicide notes. The dataset in this study uses a discrete emotion framework, and
the nature of the texts is radically different from the more restrained business con-
versations transcribed in the deLearyous dataset. Furthermore, we do not assume

3



1.1. QUANTIFYING THE UNQUANTIFIABLE

that emotions are mutually exclusive, and carry out multi-label emotion classifica-
tion.

The case studies will back up our introductory claims that the size of the training
set and low human agreement are problematic for emotion classification. In the next
two chapters, we will explore ways to circumvent these problems. We will investigate
whether or not is it possible to use a dataset from a source domain that is different
from the domain of the target dataset, to improve classification performance on the
target task. While in general, one would expect a classifier to perform best when
trained on data from the same domain as the test documents, we hypothesize that
when the training dataset is small and noisy, a classifier trained on a larger, more
reliable dataset —even if the data is from a different domain— will give significantly
better results.

In Chapter 5, we will determine to what extent a model trained on a single dataset
can be called a “universal” emotion classifier. How well will a classifier from one
domain perform in a different domain, and why? What can we do to make a model
generalize better, and how does this influence performance of the model in the source
domain? We will see our hypotheses confirmed, as performance on a smaller, more
difficult dataset is significantly improved by using a larger training set from a different
domain, especially after applying a few simple domain-adaptation tricks.

Chapter 6 will dig into slightly more advanced techniques with the hope of improving
in-domain and cross-domain emotion classification even further. We will attempt to
limit the noise in the training dataset, and we will try to limit the skewedness of the
data distribution, in the assumption that a more uniform class-distribution and more
typical instances will result in a more stable training set. We will adopt a variety of
approaches to test these theories, including adapting class weights in the classification
algorithms, applying a hierarchical classifier ensemble, and using typicality-based
instance resampling. We will however notice that class weighting only works in very
specific cases, that hierarchical classification increases classification errors, and that
only retaining typical instances accentuates data sparseness problems, which results
in a performance drop.

We will wrap up our findings in Chapter 7. While we will by no means have solved
the emotion classification problem, we will be able to give some pointers on how
to maximize performance (or on how to minimize performance loss across datasets)
given the datasets currently available for emotion classification. We will also give our
thoughts on what we believe the future of emotion classification will look like, and
what we believe will be the necessary steps to take in order to build emotion classifiers
that are accurate enough to serve as the basis for practical applications.
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Chapter 2

Related research

The automatic identification of emotions in text is a problem that is traditionally in-
terpreted as a text categorization task. To properly introduce emotion classification,
it is therefore necessary to take a step back, and to first introduce text categorization
in general. This is what we will do in section 2.1. Section 2.2 will zoom into sen-
timent analysis, as many of the tools (section 2.2.1) and techniques (section 2.2.2)
used in sentiment analysis are also used in emotion classification. Finally, section 2.3
will describe emotion classification proper. We will first investigate how emotions are
classified in psychology (section 2.3.1), and if (and how) these classification frame-
works are useful for automatic emotion classification. We will investigate a set of
lexicons constructed specifically to help in the categorization of emotional text (sec-
tion 2.3.2), and we will give a short overview of the state of the art in emotion
classification (section 2.3.3).

2.1 Automated text categorization

It is impossible to write an overview of the work in automated emotion classification
without first referring to the more general framework of automated text categoriza-
tion. The goal of a text categorization task is to automatically associate natural
language texts with predefined thematic categories, or, more formally, given a do-
main of documents D and a set of predefined categories C = (c1, ..., c|c|), the goal is
to determine for each document-category pair ⟨dj , ci⟩ whether or not the document
dj should be filed under category ci (Sebastiani, 2002). In practice, this may imply
automatically labeling a set of news articles with their topics (politics, sports...) or
classifying e-mails as either spam or ham. Less straightforward applications include
determining part of speech tags of words (should the word “trip” be categorized as a
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2.2. SENTIMENT ANALYSIS

noun or as a verb?) or word-sense disambiguation (does the word “trunk” in a given
context refer to the luggage or to a tree?).

Automated text categorization (also known as text classification) has been around
since the early 60s (Maron, 1961), but with the increasing prevalence of electronic
documents, the possible applications for text categorization, as well as the possibil-
ities for research, have multiplied. Sebastiani (2002) convincingly summarizes the
research in text categorization, regrouping a fragmented field and providing a solid
foundation for future researchers to build upon. While research in text classification
has by no means stalled in the last decade, the definitions and methods outlined in Se-
bastiani’s work are still very relevant today. Preferences in machine learning methods
have shifted over the years, and current research often isn’t averse to incorporating
information sources that are external to the source documents (lexicons, knowledge
bases...), yet the experimental methods have largely remained the same.

As restating what is elegantly described in Sebastiani (2002) would be redundant,
we will instead focus on where our research starts to diverge from the canonical
“text categorization” as he outlined it. Both the terms “text” and “category” can be
interpreted in a variety of ways. A text may vary in length, meaning the goal of a text
categorization task may be to attribute single words to a given category, just as it is
possible to categorize sentences, paragraphs, documents or entire monographs. The
term “category” is even more open to interpretation. At its most straightforward,
a category can be defined as a “topic”, i.e. all documents that belong to a single
category are concerned with the same subject matter. It is also possible to categorize
texts on a more abstract level. What if the goal is not to determine the topic of
the document, but to determine the opinion the author holds regarding the topic
he writes about? This is what the more specific domains of opinion mining and
sentiment analysis are concerned with.

2.2 Sentiment analysis

“Sentiment analysis” and “opinion mining” (also sometimes “subjectivity analysis”)
are terms that can be used interchangeably (Pang & Lee, 2008). Sentiment analysis
is a specific subtask within the broader field of text categorization, in that the goal
is to classify a text according to the sentiment or opinion that it expresses. Pop-
ular applications of sentiment analysis are determining the sentiment expressed in
user comments on online blogs (Chesley et al., 2006), the automatic classification
of product reviews into positive and negative reviews (Morinaga et al., 2002; Dave
et al., 2003), or determining which aspects of a product are positively or negatively
reviewed (Baccianella et al., 2009).
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The difference between topic classification and sentiment analysis isn’t just a matter
of class definitions, however. Topic classification usually comes down to determining
the topic of a document using simple, low-level features such as the presence of specific
keywords. For instance, to decide whether a document belongs to the sports or the
politics category, a good approach would be to identify key terms occurring in the
text. If the document contains words like “ball”, “player” or “homerun”, one might
reasonably expect the text to deal with sports. If, however, words like “presidency”,
“liberal” or “conservative” pop up, the politics category might be a safer bet.

To determine the sentiment orientation (also termed semantic orientation) of a text,
the key features are rarely related to its topic. It is possible to write about politics
in a positive or negative way, just as it is possible to express a positive or a negative
opinion about sports. The relevant features used to determine the sentiment orienta-
tion of a text dealing with any topic will most likely be very similar: “disappointing”
is usually negative while “stunning” is positive, and the subject of the text will do
little to influence this.

The relatively domain-independent nature of sentiment features is why a significant
part of the research in sentiment analysis has been concerned with generating sub-
jectivity lexicons. Words that have strong associations with positive or negative
sentiment are catalogued, and optionally associated with a score reflecting their sen-
timent orientation. The resulting lists can then be used to gauge the sentiment of a
text document, either by simply asserting the presence (or absence) of these keywords
(often in combination with negation rules: “far from stunning” should not be seen
as contributing to a positive sentiment), or by using these keywords as features for
a more complex machine learning system. We will use a number of sentiment lexi-
cons in our emotion classification experiments in the next chapters, which is why we
summarily describe the most important lexicons in the following paragraphs.

2.2.1 Subjectivity lexicons

There are numerous lexicons for sentiment analysis (“subjectivity lexicons”, as we will
term them), and their creation processes can differ greatly. The most straightforward
construction method is to compile the list of sentiment keywords manually. While this
approach allows for total control over the contents of the lexicon, it is also very time-
consuming. This problem can be alleviated using a semi-supervised approach, where
a limited set of “seed” words are selected manually, but where the seed list is expanded
through automatic means. It is also possible to construct lexicons fully automatically
by identifying and extracting opinion-carrying words from large corpora.

As an example of the first approach, the lexicon used in the SO-CAL Semantic
Orientation Calculator (Taboada et al., 2011) was constructed manually. Adjectives,
verbs, nouns, and adverbs taken from a set of 400 reviews were ranked on a scale from
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-5 (strongly negative) to +5 (strongly positive) by human annotators. The authors
show that by using their lexicon and taking into account intensifiers (adverbs such
a “slightly”, “very”, “extraordinarily” etc.) and negation, it is possible to calculate
the polarity of an entire text with a simple rule-based system, without ever resorting
to more complex classification algorithms.

Turney & Littman (2003) adopted a semi-supervised method to construct their lex-
icon. They used two different statistical measures for word association –Pointwise
Mutual Information and Latent Semantic Analysis– to expand an original set of
positive and negative words. Their methods were tested on a collection of 3,596
manually labeled nouns, adjectives, verbs and adverbs, and reached accuracies up
to 95%, indicating that this approach is indeed a valid way to construct a reliable
lexicon.

SentiWordNet (Baccianella et al., 2010), a sentiment lexicon based on WordNet, was
also created using a semi-supervised approach. Starting from two small seeds of
7 positive and 7 negative synsets, the semantic orientation values were propagated
through WordNet using the semantic relations present in the network, either keeping
the same orientation in the case of synonymy-type relations, or flipping the orienta-
tion for antonymy-like links. The resulting synset lists were further expanded using
a learner trained on descriptions of known synsets, and in a final pass, sentiment
orientation scores were refined based on the intuition that if the gloss for a synset
contains many positive terms, the synset itself is highly likely to be positive.

The approach adopted by Mohammad et al. (2009) also makes use of an initial set of
seed words. Their seed set was partially made up of a pre-existing semantic orienta-
tion lexicon –the General Inquirer lexicon (Stone et al., 1966)– and partially of au-
tomatically retrieved pairs of words that fit predefined affixation patterns (“honest”-
“dishonest”, “possible”-“impossible”, “sense”-“nonsense”). The motivation for this
second source of terms is to be found in the idea that, given a pair consisting of an
explicitly marked word and its unmarked counterpart, the marked word will tend to
have the negative semantic orientation (as can be easily verified in the aforementioned
word pairs). Given the set of seed words, the authors set out to label words in the
Macquarie Thesaurus (Bernard, 1986), assigning positive orientation if a thesaurus
“paragraph” (one such paragraphs consists of a set of near-synonyms) contains more
positive seed words than negative ones, and assigning negative semantic orientation if
the opposite was true. The MSOL (Macquarie Semantic Orientation Lexicon) result-
ing from this relatively straightforward procedure appears to have a higher coverage
than the aforementioned SentiWordNet, and a higher accuracy compared to other
subjectivity lexicons (Mohammad et al., 2009).

Finally, it is possible to create a subjectivity lexicon in a fully unsupervised man-
ner, deducing the semantic orientation of words from their usage in large corpora.
Hatzivassiloglou & McKeown (1997) searched the Wall Street Journal corpus for
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conjunctions of adjectives. Adjectives that occur conjoined will most likely carry the
same polarity (in the case of the conjunctions “and” or “or”), or opposite polarities
(in the case of “but”). Consider for instance corrupt and brutal vs. *corrupt and
legitimate. Given the fact that unmarked word forms are usually most common and
the fact that the unmarked forms of a word often carry the positive connotation
(knowledge which is also exploited by Mohammad et al. (2009) in the method de-
scribed in the previous paragraph), it is assumed that the cluster with the highest
average word frequency will be the cluster of positively oriented adjectives.

Since part of the experiments that will be described further in this work (see Chapter
3) will be carried out on Dutch data, it is also interesting to mention that similar sen-
timent lexicons have been constructed for Dutch (Jijkoun & Hofmann, 2009; Jijkoun
et al., 2010). The creation of the DuOMAn lexicon (Jijkoun & Hofmann, 2009) was
inspired by the technique used by Esuli & Sebastiani (2007), where a PageRank-like
algorithm is applied to WordNet synsets to rank them according to their opinion-
related properties. The authors start by automatically translating the positive and
negative polarity words in the English subjectivity lexicon in OpinionFinder (Wilson
et al., 2005) into Dutch. Using the relations present in Cornetto (Vossen et al., 2007),
an expanded Dutch Wordnet, the initial sentiment orientation scores (+1 or −1, de-
pending on the polarity in the original English lexicon) are propagated to related
synsets. Synonymy relations keep the sign of the score, while antonymy relations
flip it. A dampening factor is also at play, ensuring that the seed words retain more
weight than words reached through semantic links. The final result of this iterative
procedure is a list of words ordered by their polarity score.

Another subjectivity lexicon for Dutch was generated by Maks & Vossen (2012).
Using three different corpora containing three different text types –a corpus of
Dutch Wikipedia articles, a corpus of Dutch news articles, and a corpus of reader
comments— subjective words are automatically extracted. An important difference
compared to previous lexicons, is that the authors make the distinction between
speaker/writer subjectivity (“Bush is bad for the economy.”) and actor subjectivity
(“Bush is angry over Obama’s leaking of private conversations”). Their hypothesis
is that speaker/writer subjectivity will be most prevalent in reader comments, and
actor subjectivity in the news articles. Wikipedia articles serve as a dataset of neu-
tral, objective texts. Comparing word frequencies across the three datasets allowed
the authors to determine which words were most strongly associated with subjec-
tive text, and whether they were associated with speaker/writer subjectivity or actor
subjectivity.

Finally, De Smedt & Daelemans (2012b) created a subjectivity lexicon of Dutch adjec-
tives by manually annotating 1,100 adjectives according to polarity and subjectivity
strength, and by automatically expanding this manually annotated set using two
different unsupervised techniques: distributional extraction and Wordnet expansion.
The first step relies on the fact that words that occur in similar contexts will likely
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have similar meanings. After analysing the distribution of nouns and adjectives in
a large corpus, for each of the 1,100 adjectives in the seed set, the adjectives that
are calculated to be most similar inherit the polarity, subjectivity, and intensity of
their parent. In a second step, the resulting enhanced lexicon is further expanded
by traversing Cornetto (Vossen et al., 2007) relations, passing on subjectivity scores
from synset to related synset. The result of this two-step process is a Dutch subjec-
tivity lexicon of 5,407 adjectives with values for polarity, subjectivity, intensity, and
reliability.

We will use both the DuOMAn lexicon by Jijkoun & Hofmann (2009) and the Pattern
lexicon by De Smedt & Daelemans (2012b) in Chapter 3, where they will serve as
sources for extra features for our Support Vector Machines (SVM)-based emotion
classifiers.

2.2.2 Determining the sentiment of text

Armed with the aforementioned subjectivity lexicons, it seems more feasible to clas-
sify documents according to their semantic orientation. Still, there are various ways
of integrating these lexicons in the classification process. Pure lexicon-based meth-
ods use only the lexicon to determine the sentiment of a given text, and no machine
learning is involved (Balahur et al., 2010; Kim & Hovy, 2004; Mohammad et al., 2009;
Taboada et al., 2011). A lexicon can also serve as a source of features for a machine
learning algorithm (Councill et al., 2010; de Albornoz et al., 2010; Rentoumi et al.,
2010; Reyes & Rosso, 2011; Wawer, 2010; Balahur, 2013), which is also the approach
we will use in Chapter 3. Using subjectivity lexicons is obviously not an absolute
requirement for sentiment classification, and many researchers choose to instead rely
on different feature types altogether to train a machine learner (van Atteveldt et al.,
2008; Pak & Paroubek, 2010; Tsur et al., 2010; Bermingham & Smeaton, 2011). We
will outline only one of each type of application, as giving an overview of all experi-
ments carried out within the domain of sentiment classification would take us much
too far, but interested readers may want consult the aforementioned sources for more
examples.

Lexicon-based methods

Balahur et al. (2010) realize the full potential of sentiment lexicons while attempting
to determine the sentiment carried by a speaker in fragments of reported speech from
newspaper articles. They make use of (combinations of) four different sentiment lex-
icons: WordNet Affect (Strapparava & Valitutti, 2004), SentiWordNet (Baccianella
et al., 2010), MicroWNOp (Cerini et al., 2007) and their own JRC Tonality. The
sentiment scores from each of these sources are remapped to a value on a scale from
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−4 (highly negative) to 4 (highly positive), so as to obtain a collection of uniformly
labeled terms. The overall subjectivity present in a fragment of reported speech is
then simply calculated by taking the sum of the sentiment scores of the words in a
window around the opinion target. One possible problem with this approach, how-
ever, is that one might end up detecting good vs. bad news instead of a positive
vs. negative opinion on the news. To avoid this, the authors experimented with
removing all sentiment words which were also potentially category words (relating
to a news topic). For some sentiment lexicons, this resulted in a significant improve-
ment, while for others no change was noted. Balahur et al. (2010) report that the
best results were obtained using JRC Tonality and MicroWNOp with a window of 6
words around the opinion target. The authors also note that most resources did not
reach baseline scores, and that the size of a lexicon is not necessarily related to its
performance in sentiment classification tasks.

Combining machine learning and sentiment lexicons

As we outlined in the previous section, it is possible to use subjectivity lexicons as
the only resource to determine the sentiment of a text. But why not bundle the
advantages of a lexicon with the power of a machine learner and see subjectivity
lexicons as an extra source of features to learn from?

An example of this is to be found in Wawer’s 2010 work. They investigate the per-
formance of machine learning algorithms (focusing specifically on Support Vector
Machines) trained on features extracted from existing lexical resources. They evalu-
ate features extracted from the General Inquirer dictionary (Stone et al., 1966), the
Dictionary of Affect in Language (DAL) (Whissell, 1989) and SentiWordNet (Bac-
cianella et al., 2010). The authors evaluate the different lexicons and pay special
attention to the interaction between the size of the feature set and the C param-
eter in the SVM classifier. The authors’ conclusions seem to illustrate that using
only the terms or categories present in a lexicon is not a valid alternative to us-
ing bag-of-words-like features, as a classifier trained with token or synset unigrams
(even without disambiguation) performed significantly better than any of the clas-
sifiers that used only lexicon features. Noticing that SentiWordNet is consistently
outclassed by other lexicons, Wawer hypothesize that assigning subjectivity scores
on the synset level may not be ideal, since different senses of the same synset may
carry different connotations (e.g. “a quack” vs. “medically unqualified”).

Pure machine learning methods

It is perfectly possible to perform sentiment classification without resorting to lexi-
cons, and to rely instead only on machine learning and features extracted from the
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documents themselves. Bermingham & Smeaton (2011), for instance, after having de-
termined in previous research (Bermingham & Smeaton, 2010) that using supervised
learners for sentiment classification worked better than using sentiment lexicons, de-
cide to adopt the same approach to model sentiment in tweets concerning the Irish
general elections of 2011, aiming to use this information to predict election results.
Starting from a set of manually annotated tweets relating to parties and candidates
for the election, they trained a task-specific classifier which discriminates between
positive, neutral or negative tweets. The authors report that the initial performance
of a simple SVM or Naïve Bayes classifier was disappointing, mostly due to the strong
class imbalance (the positive class contained only 12% of all tweets). They managed
to mitigate this problem by using their Multinomial Naïve Bayes classifier in a boost-
ing setup (Adaboost), which increases the weight of instances from minority classes
to boost their performance. The tweets that were labelled as being positive by the
classifier turned out to be useful for the prediction of the election results.

Pak & Paroubek (2010) also turn to Twitter for sentiment analysis, and they too
adopt supervised learning for sentiment classification. They start by gathering a
large corpus of tweets that is automatically split into three subsets: tweets contain-
ing positive emotion, tweets containing negative emotion, and neutral tweets not
containing either. This automatic division of the data happens quite simply by iden-
tifying emoticons. If a positive emoticon is identified (:), :-), =), :D...), the tweet is
allocated to the positive subset. If a negative emoticon is found (:(, :-(, =(, ;(...),
the tweet ends up in the negative subset. Objective tweets were gathered from the
Twitter accounts of popular newspapers or magazines. Analysis of the corpus showed
that part of speech tags have different distributions for subjective tweets and objec-
tive tweets, making them valid indicators of subjective text. Strong pointers for
tweets carrying sentiment include interjections, personal pronouns and the superla-
tive forms of adjectives, whereas objective tweets contain more common and proper
nouns.

2.3 Emotion classification

Whereas sentiment classification focuses on placing a document in two or more classes
positioned between a “positive” and a “negative” pole, emotion classification takes
a text document (the term “document” can, again, refer to a text of any length,
ranging from an entire monograph to a single phrase) and places it into one or
several emotion classes. What these classes are, however, depends on the underlying
emotion framework one decides to use. We will outline the most important emotion
classification frameworks in the following paragraphs.
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2.3.1 Emotion frameworks

Emotions are, by definition, highly subjective. Consequently, researchers in the fields
of psychology and emotion science have long debated the way in which emotions are
to be defined (Gendron & Barrett, 2009). Many different frameworks exist, and it
is not our goal to list or describe them all. However, it is important to be aware
of the fact that the emotion frameworks can be grouped into two sets according to
their defining viewpoints: discrete frameworks and dimensional frameworks (Zachar
& Ellis, 2012). This distinction is relevant in the context of this thesis, since in
our experiments in Chapter 3, we will use a dimensional framework of emotion,
whereas the other chapters (Chapters 4, 5, and 6) will focus on discrete emotion
frameworks.

Discrete frameworks

Proponents of the discrete frameworks see emotions as fundamentally different and
separate. According to them, there is a set of “basic” emotions which have a psy-
chological and biological basis (Ekman, 1971). These emotions are often considered
universal, and can be distinguished based on our physiological reactions when we
experience them. The most popular set of “basic” emotions are without a doubt
Ekman’s emotions (Ekman, 1971): anger, disgust, fear, happiness, sadness and sur-
prise. Ekman determined that these emotions must be “basic” after discovering
that the members of an isolated, preliterate tribe in Papua New Guinea appeared
to associate facial expressions to emotion-provoking situations in a similar way as
we do in Western cultures. Since this tribe could not have been influenced by our
culture in any way, he concluded that there must be universal emotions which are
innate and not the result of cultural influences. Ekman later added a number of
emotions that are not reflected through facial expressions to his initial list, but much
of the literature in emotion research and computational linguistics alike prefers to
stick to the aforementioned “big six”. Even among proponents of a discrete emotion
framework, there is disagreement on whether these emotions are a product of na-
ture (evolutionary psychology) or nurture (social constructionism). Some even argue
that we have a limited set of innate emotions which are molded and expanded by
our interactions with others, thus reconciling the “nature” and “nurture” viewpoints.
(Prinz, 2004)

Regardless of the heated psychological debate, discrete emotion classification frame-
works are popular, and especially so among text categorization researchers. Au-
tomatically classifying text documents according to their emotional contents is a
compelling task, but having a limited, clearly defined set of possible emotion classes
is clearly a blessing, as it makes the task easier to tackle. A significant part of
emotion classification research adopts this discrete approach, and the most popular

13



2.3. EMOTION CLASSIFICATION

framework in this respect is indeed Ekman’s set of six basic emotions. Among the
emotion classification papers we will discuss, a great many classify documents into
the “big six” (Bellegarda, 2010; Ghazi et al., 2010; Strapparava & Mihalcea, 2008;
Purver & Battersby, 2012; Strapparava et al., 2007; Ghazi et al., 2012; Strapparava
& Mihalcea, 2007; Aman & Szpakowicz, 2007; Mohammad, 2012b).

Alm et al. (2005) slightly adapt the Ekman emotions in that they divide surprise
into positive surprise and negative surprise. Tokuhisa et al. (2008) use a set of 10
discrete emotions. Happiness, fear, sadness and anger overlap with the “big six”, but
surprise and disgust are nowhere to be found, instead being replaced by pleasantness,
unpleasantness, relief, disappointment, loneliness and anxiety. It is not immediately
apparent why the authors chose these emotion classes for their experiments.

Lin & Chen (2008) let their class system be determined by their data. They use
news articles from the Chinese Yahoo! Komo News service. This website has the
particuliarity that users can vote on one of eight possible emotions (heartwarming,
happy, sad, surprising, angry, boring, awesome, useful) according to how the news
article makes them feel. Thanks to this rating feature, the Yahoo! News site is
actually a large, crowd-annotated dataset.

Roberts et al. (2012) supplement the six basic emotions with love, hypothesizing that
in their informal data, which are comprised of tweets reflecting on a FIFA World Cup,
love would be a common emotion.

De Albornoz et al.’s framework (2012) is a combination of the discrete models by
Arnold (1960), Plutchik (1980) and Parrott (2001). Whether this is acceptable from
a psychological point of view is debatable, but the authors nevertheless obtain a set
of 16 possible emotions. Expanding these emotions so each emotion has an antonym,
and then again reducing the framework when some emotions weren’t present in any
of their annotated data, de Albornoz et al. were left with 14 emotional categories,
which are linked pair-wise with antonymy relations.

Inkpen et al. (2009), Jung et al. (2006) and Mishne (2005) do not perform emotion
classification in the strictest sense, but instead attempt to identify “moods” in text.
That mood and emotion are not entirely unrelated, though, is immediately apparent
when we see that the LiveJournal1 hierarchy of moods, which is used in all three
papers, has many of the “basic” emotions at its top level. Jung et al. (2006) only
use four of these top-level classes and classify blog posts into happy, sad, angry or
fearful texts. Inkpen et al. (2009) use all top-level moods and include a variety of
moods that do not overlap with emotion frameworks from psychology research. These
include moods such as confused, determined, enthralled or even working. As far as we
know, LiveJournal’s moods have no basis in any psychological processes, but it is a
convenient source of crowd-annotated data to use in classification experiments.

1http://www.livejournal.com – Last visited on July 17th, 2014
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Finally, in the context of a shared task on emotion classification in suicide notes (Pes-
tian et al., 2012), participating teams were instructed to classify individual sentences
into one or several emotion classes. The possible classes were hopelessness, love,
guilt, blame, thankfulness, anger, sorrow, hopefulness, fear, happiness/peacefulness,
pride, forgiveness, and somewhat more controversially, instructions, information and
abuse. These emotion classes cannot immediately be linked to any existing emotion
classification frameworks, but they are instead intimately linked to the emotions one
tends to find in the rhetoric of individuals with suicidal thoughts. We will discuss the
technical details of the participants’ approaches to emotion detection in Chapter 4,
which deals specifically with this shared task.

Dimensional frameworks

The thesis that our emotions are distinct and separable is a daring one. Not much
in our biology is discrete, and many researchers argue that the same applies to our
psychology, and to the way emotions function. The dimensional models argue that
emotions are the surface realizations of two or more underlying dimensions. What
exactly these dimension are, however, is again the subject of much debate (Rubin &
Talarico, 2009).

A popular dimensional model of emotion is the circumplex model (Russell, 1980;
Feldman Barrett & Russell, 1998; Russell & Barrett, 1999). The two dimensions that
define the circumplex model are valence and activation. Valence (also referred to as
the pleasure dimension) refers to whether an emotion is positive or negative. Acti-
vation (or arousal) refers to the intensity with which the emotion is experienced or
expressed. Both dimensions are independent, in that the valence of an emotion does
not affect its activation and vice versa. A positive emotion can be highly activated,
or it can be low on the activation axis (“deactivated”), and deactivated emotions
can be positive or negative. The valence and activation dimensions in themselves
are bipolar, meaning that if an emotion has a highly positive valence, it cannot have
a high negative valence (Russell, 1980; Russell & Carroll, 1999). Russell & Barrett
(1999) argue that any “core” emotion can be described using a combination of these
dimensions. Emotionally charged words can thus be assigned valence and activa-
tion values, and they naturally seem to form a circle or ring in the two-dimensional
emotional space, hence the term circumplex model (see Figure 2.1).

The circumplex model is not the only dimensional model of emotion. Bradley et al.
(1992) attempted to link the strength of an emotional response when first encoun-
tering an object to the long term memory recall of the object. Subjects were shown
pictures which caused a certain emotional response, and were asked to recall these
picture at a later date. The authors found that there was a significant correlation
between recall and the arousal/activation dimension, but that the pleasure/valence
dimension had no effect on long-term memory performance. The vector model
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Figure 2.1: The positions of 28 emotion words in a two-dimensional space defined by the
pleasure (horizontal axis) and arousal (vertical axis) dimensions. Reproduced from Russell
(1980).

(see Figure 2.2) reflects these findings, in that the underlying dimension of arousal
determines the strength of a vector, while valence simply determines its direction.
An important practical difference between the vector and the circumplex model, is
that the vector model does not allow for entities that are rated high on arousal but
neutral in valence. The circumplex model on the other hand, needs these data points
to complete the “circle” that gives the model its name. Rubin & Talarico (2009)
had participants rate emotion related stimuli on scales for valence and intensity (or
arousal), and attempted to fit the circumplex and vector models on this data. Inter-
estingly, they were unable to find high-intensity neutral words, which gives credit to
the vector model over the circumplex model when dealing with textual data. They
further showed that the words in the ANEW lexicon (Bradley & Lang (1999b), also
see section 2.3.2) which were labeled as having neutral valence but high intensity,
were in fact not truly neutral, but their neutral values were an average over different,
compensating positive and negative ratings.

Another well-respected model is the PANA model (Watson & Tellegen, 1985; Wat-
son et al., 1988; Watson & Clark, 1999). PANA stands for “Positive Activation -
Negative Activation”, and it differs from the vector and circumplex models in the
fact that the two defining dimensions (positive and negative activation) are unipolar,
i.e. they can be measure independently, and a high PA value does not necessarily
imply a low NA value. As was the case for the vector model, the PANA model sug-
gests that emotions that are neutral in valence tend to be lowly activated, and that
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Figure 2.2: A graphical representation of where emotional words should be situated ac-
cording to the circumplex model (left) and according to the vector model (right). Repro-
duced and adapted from Rubin & Talarico (2009).

highly activated neutral emotions are unlikely.

It is also not uncommon to represent emotions in terms of not two, but three dimen-
sions. Often referred to as the PAD model, the pleasure-arousal-dominance model
posits the existence of a third defining emotional dimension in addition to pleasure
and arousal, namely the dominance dimension (Wundt, 1896; Osgood et al., 1957;
Osgood, 1969; Russell & Mehrabian, 1977; Bradley & Lang, 1994; Scherer et al.,
2006). This dimension refers to the controlling or submissive nature of an emotion,
and is interesting for our purposes, as it will reoccur when we attempt to classify
dominance and affinity in Chapter 3.

Despite the heated scientific discussions relating to dimensional emotion frameworks
and the many different realizations proposed by psychologists, dimensional models
are relatively unpopular with computational linguists. Intuitively, this is easy to
explain. Text categorization, by definition, deals with categories. To be able to
predict the emotionality of a text on a continuous scale (or on multiple continuous
scales, as is the case with two- or three-dimensional frameworks) would require the
use of significantly different techniques. As a consequence, a majority of the work in
emotion classification prefers to focus on discrete frameworks.

It is also possible to discretize the space defined by a continuous model, thus reducing
the more subtle dimensional problem to a “regular” discrete classification problem.
Van Zaanen & Kanters (2010) use Thayer’s model of emotion (1990), which, much
like the circumplex model, maps emotions in a two-dimensional space defined by va-
lence and arousal. The authors partition the space into several subsets of classes (16
fine-grained classes, 4 quadrants, 4 gradations on the valence or arousal axis).
Another interesting case is presented by Kim et al. (2010), who use dimensional in-
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formation to classify sentences into four discrete emotion categories (anger, fear,
joy and sadness). They use words from the ANEW lexicon (Bradley & Lang,
1999b), which are labeled with positions in the three-dimensional valence-activation-
dominance space, to determine the position of an input sentence compared to the
position of prototypical emotion words. The final evaluation, however, still happens
on the basis of discrete classes.
Rubin et al. (2004) are also in favor of discretizing a continuous model. They argue
that the PANA model (Watson & Tellegen, 1985), which is defined by the positive
affect and negative affect dimensions, is a useful model for NLP applications when
used in the form of eight distinct octants.

2.3.2 Emotion lexicons

Before we turn to a closer examination of some of the research we mentioned in
passing in the previous paragraphs, we turn to a short description of the most im-
portant emotion lexicons. Much like sentiment lexicons (described in Section 2.2.1),
these emotion lexicons are lists of words which have been labeled according to their
emotional connotation. The label can simply be an emotion category the word is
thought to belong to, or it can be a value representing the strength of a given emo-
tional dimension reflected in the word. We will use emotion lexicons extensively in
Chapters 5 and 6.

One of the most well-known and intensively used emotion lexicons is Bradley &
Lang (1999b)’s Affective Norms for English Words (ANEW) word list. This lexi-
con was built to serve as a textual equivalent of the existing International Affec-
tive Picture System (IAPS) (Lang et al., 1999) and International Affective Digitized
Sounds (IADS) (Bradley & Lang, 1999a) databases, which respectively link images
and sounds to emotional values in a three-dimensional valence-activation-dominance
framework (Osgood et al., 1957). ANEW does the same thing, but for a set of 1,034
English words. The words were manually annotated on the three dimensions of the
framework.

Stevenson et al. (2007) added information regarding discrete emotional categories to
the ANEW lexicon. They asked annotators to determine for each word in ANEW
how strongly it belonged to one of five discrete emotion classes, using a scale from
1 (not at all) to 5 (extremely). These classes were happiness, anger, sadness, fear,
disgust. Note that these are five out of the six Ekman emotions (Ekman, 1971), and
that only surprise is missing.

Warriner et al. (2013) extended the ANEW lexicon to include close to 14,000 words,
which were manually annotated through the Amazon Mechanical Turk service2.

2See https://www.mturk.com/mturk/welcome - Last accessed on May 18th, 2014
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Moors et al. (2012) generated an ANEW-like lexicon for Dutch words. A set of 4,300
words were annotated by Flemish and Dutch students on, again, valence, activation
and dominance scales.

Not all lexicons are based on ANEW and its three-dimensional model. The NRC-10
lexicon, for instance, is a large corpus of 14,000 words labeled with 8 emotion labels
(the “big six”, plus trust and anticipation) and positive and negative sentiment. The
corpus was built by Mohammad & Turney (2012) through crowdsourced manual
annotation (using Amazon Mechanical Turk).

De Albornoz et al. (2012) constructed SentiSense, which is a “concept-based affective
lexicon”. SentiSense attaches one of 13 possible emotion labels to senses in WordNet.
Using WordNet has a few important advantages. First of all, since emotion labels are
attached to senses as opposed to words, it is possible to avoid the problem of homo-
graphs. It if for instance not plausible that the word “tear” in the sense of “There’s
a small tear in my shirt” would have the same emotional value as the same word in
the sense of “He wiped a tear off his cheek”, which is a distinction that cannot be
made without the word sense information present in WordNet. Secondly, annotating
emotions directly on WordNet makes it possible to use all WordNet relations, such
as synonymy, antonymy, hyperonymy etc.

Finally, the WordNet Affect lexicon (Strapparava & Valitutti, 2004) is also an ex-
tended version of WordNet (more specifically, of WordNet Domains3). The con-
struction of the lexicon was bootstrapped manually (by annotating a set seed of
word senses with emotion labels), and expanded automatically through WordNet
relations.

We will use the NRC lexicon (Mohammad & Turney, 2012) in our experiments in
Chapters 5 and 6. We will also use a portion of the LIWC lexicon (Pennebaker et al.,
2001), which is a lexicon on terms arranged by category, including categories relating
to psychological –and emotional– processes.

2.3.3 Identifying emotion in text

We will now conclude this section on related research by reviewing some concrete
examples of existing research into automatic emotion classification of text.

An important benchmark in emotion classification was the SemEval-2007 task on
affective text organized by Strapparava et al. (2007). The task consisted of the clas-
sification of 1,000 headlines from various news sources (Google News4, CNN, New
York Times, BBC News) according to the six Ekman emotions (Ekman, 1971) or
according to valence (positive vs. negative). The former task is of special interest to

3See http://wndomains.fbk.eu/wnaffect.html - Last accessed on March 22nd, 2013
4https://news.google.com/ - Last accessed on March 26th, 2013
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us. Participants were asked to construct a system that would assign a score between
0 and 100 for each of the possible emotion classes to each test headline. The predicted
scores were evaluated in a fine-grained and in a coarse-grained way. The fine-grained
evaluation used Pearson correlation with the gold score, and the coarse-grained eval-
uation set a threshold for each emotion ([0, 50) = absent, [50, 100] = present), thus
making it possible to use the more common accuracy, precision and recall measures.
The gold scores were determined by taking the average of the scores assigned by six
different annotators. The inter-annotator agreement was measured using the fine-
grained Pearson correlation, taking the average of the correlations between each of
the annotators and their five peers. The reported agreement scores range from 36.07
(surprise) to 68.19 (sadness). Five teams participated in the task at the time, three
of which built a system to identify emotions (as opposed to only determining valence)
(Chaumartin, 2007; Katz et al., 2007; Kozareva et al., 2007).

Chaumartin (2007)’s UPAR7 system was in essence rule based. In a first step, the
capitalization of words in the news headlines was normalized, i.e. only named entities
retained capitalization. This made it possible to correctly parse the headlines using
an automated parser. The resulting combinations of words and part-of-speech tags
allowed the authors to look up each word in WordNet, and to retrieve emotion ratings
from an expanded version of WordNet Affect and SentiWordNet. Since word-sense
disambiguation is almost impossible given the inexistent context of news headlines,
the rating for each word was a weighted average of emotion ratings for each of the
possible senses for the word. Since the agent or cause of an emotion can mean the
difference between emotions such as sadness and anger (when the cause of your
misfortune is another human being, anger is a more likely response, while sadness
is more logical with natural phenomena), the authors also detected the presence of
nouns relating to either human intention or natural factors, and adjusted emotion
scores accordingly. The total scores for the complete news heading was calculated by
attributing a significantly higher weight to what was identified to be the “main” word
(determined using the dependency tree from the parser output) and by detecting
verbs that signify an increase or a decrease (“reduce risk” is positive, despite the
connotation of “risk”). Chaumartin’s system achieves more than respectable results,
finishing first on 4 out of 6 emotions according to fine-grained evaluation. Fine-
grained scores range from 12.85 (disgust) to 44.92 (fear). Coarse-grained results
seem more modest, with UPAR7 only winning in the sadness category.

Katz et al. (2007) used a supervised approach for their SWAT system. They expanded
the initial development set of headlines (which contains only 250 instances) with
an additional, manually annotated 1,000 headlines. They report on the agreement
between the annotators of the original development data and their own annotators,
which range from 0.19 (surprise and fear) to 0.81 (sadness). They also make two
interesting points regarding the difficulty of the annotation task. First of all, the
emotions experienced by the entities in the headline may not be the same emotion
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experienced by the reader (e.g. “White House surprised at reaction to attorney
firings”). Secondly, depending on the annotator’s opinions and beliefs, their reaction
may differ greatly from that of others (e.g. “Germany defeats Argentina in World
Cup Final”).
The extended training set was lemmatized, and the words in the training data were
given emotion scores based on their co-occurrence with emotion labels. Synonyms
and antonyms were added using a thesaurus. The resulting “emotion lexicon” was
used to assign scores to the test headlines, averaging the emotion scores of the words
that were present in the lexicon. SWAT took first place in the fine-grained evaluation
only for the disgust class, and had the highest F-score only for joy.

Kozareva et al. (2007) built the UA system, which followed an approach similar to the
one used by Hatzivassiloglou & McKeown (1997), who argued that words with sim-
ilar valence occur together more often, making it possible to automatically expand
lists of subjective terms. Kozareva et al. calculate Pointwise Mutual Information
scores for each emotion label and the content words in a headline using the web as a
reference corpus. Formally, the Pointwise Mutual Information score for emotion e is
calculated as log2 hits(e,cw)

hits(e)hits(cw) , where cw stands for the content words in the current
headline, and hits are the number of hits returned by a search engine. The resulting
scores on the test set were normalized between 0 and 100 and evaluated using fine-
grained Pearson correlation and accuracy, precision and recall, as was the case for
the other participants. This corpus-based approach seems to work reasonably well
given a coarse-grained evaluation, since the UA system has the best F-scores for 3
out of 6 emotions. They don’t do so well when evaluated using Pearson correlation,
where they’re consistently outranked by their peers.

Another shared task that can serve as a useful benchmark for emotion classification
was the 2011 Medical NLP Challenge, or more specifically, Track 2 of this chal-
lenge, which involved the identification of emotions in suicide notes (Pestian et al.,
2012). The dataset from this task will form the basis of a case study in Chapter 4,
and as such, related work on the 2011 Medical NLP Challenge will be described in
Section 4.3.

Suicide notes and news headlines are not the only text types that can be analyzed for
their emotional contents. Blogs (including Microblogs) are another sources of textual
information that has garnered much attention in the field of emotion classification
recently. Both blogs and microblogs are often used to share personal opinions —
though the length of the message varies—, and as such they are valuable source of
emotional text.

As we mentioned in Section 2.3.1, Mishne (2005) compiled a dataset of blog posts
mined from LiveJournal5. LiveJournal is an especially interesting source of emotional

5http://www.livejournal.com – Last visited on April 2nd, 2013
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text, since its very concept —writing an online journal— encourages the creation of
emotionally-charged material. Equally interestingly, LiveJournal allows users to label
their posts according to a predefined set of moods, which implies that a significant
part of the posts on LiveJournal is pre-labeled. Strapparava & Mihalcea (2008),
for instance, use a subset of the blog dataset by Mishne (2005) —its mood labels
restricted to Ekman’s “big six”— to train a Naïve Bayes classifier to categorize news
headers from the SemEval 2007 shared task (Strapparava et al., 2007). The blog-
based classifier is compared to a number of other methods (an approach based on
WordNet Affect, and a number of Latent Semantic Analysis-based approaches), and
the authors note that it is the best performer for those emotions that are strongly
represented in the training data, whereas the other emotions were identified best
using an Latent Semantic Analysis-based approach.

Aman & Szpakowicz (2007) constructed a smaller-scale emotion corpus of blog posts,
mined from the web using a seed of emotional keywords. They then used this corpus
to train and evaluate SVM classifiers trained with bag-of-words features, features
from WordNet Affect (Strapparava & Valitutti, 2004), and emotional terms extracted
from Roget’s Thesaurus (1852). They conclude that the best performing system is a
system that uses features from all of these sources.
Ghazi et al. (2010) use this same blog dataset to show that it is worthwhile to
classify emotions hierarchically. They propose a two-level classification scheme (the
first level separates emotional documents from neutral ones, whereas the second
level determines the exact emotion of the emotional documents) and a three-level
model (neutral vs. emotive; positive vs. negative emotion; specific emotion classes).
They conclude that conceptualizing and implementing emotion classification as a
hierarchical task can result in improvements in classification performance.
The NRC-10 lexicon (Mohammad (2012b), see Section 2.3.2) was also evaluated on
Aman’s blog dataset. Mohammad found that their emotion lexicon managed to
produce respectable results across domains, whereas a classifier trained on n-grams
from a given source domain will lose most of its relevance when applied to data from
a different target domain. The corpus by Aman & Szpakowicz (2007) will be one
of the corpora we use in Chapters 5 and 6, and we will describe the corpus in more
detail when appropriate. In these chapters, we will also form our own opinion on the
portability of emotion features in cross-domain experiments, and on the effectiveness
of hierarchical emotion classification.

Microblogs are also an increasingly popular source of textual data for automated
analysis. All over the world, people are generating a constant stream of short bits
of text, often expressing thoughts and opinions, which can be highly emotionally
charged. Twitter6 is without a doubt the most popular example of the medium.

6http://www.twitter.com – Last accessed February 3rd, 2014
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Twitter users generate 5,700 tweets per second, on average7, so having a system that
can analyze tweets automatically would be immensely valuable, as the medium has
long outgrown the limits of what can be examined manually.

Mohammad (2012a) created a corpus of tweets (the Twitter Emotion Corpus) by
relying on emotion hashtags assigned by Twitter users (a technique also followed
by Wang et al. (2012)). Tweets with hashtags corresponding to the six Ekman
emotions (#anger, #disgust, #fear, #joy, #sadness, and #surprise) were mined
straight from Twitter. The reliability of a dataset where these hashtags are used as
class labels is unknown, but the authors evaluate classifiers based on this Twitter
data on a known dataset (the news headlines from the SemEval2007 Shared task
by Strapparava et al. (2007)), positing that performance similar to previous work
(Chaffar & Inkpen, 2011) indicates that the TEC dataset is sufficiently consistent.
They also show that it is possible to improve on in-domain classification performance
on the SemEval2007 dataset by adding the TEC data to the training dataset, and
by performing a simple domain adaptation technique (Daume III, 2007)8, which
further supports the hypothesis that the user-chosen emotion hashtags are indeed
reliable.

Where Mohammad used emotion hashtags as de facto labels for their Twitter data,
Qadir & Riloff (2013) take things a step further, and attempt to bootstrap sets of
emotion-related hashtags, which can then serve as the basis for new emotion clas-
sifiers. Starting from a seed set of manually chosen hashtags, they mine Twitter
for data to train a logistic regression classifier. This classifier is then applied to
new tweets, and the hashtags from the tweets that were classified with the highest
confidence are added to the set of corresponding emotion hashtags. Through this
iterative process, Qadir & Riloff end up with a relatively large set of tags for each
emotion, and they show that combining conventional n-gram-based classifiers with
list lookup in their bootstrapped hashtag lexicon significantly improves classification
performance.

It is clear that the automatic emotion classification of text has many potential appli-
cations, and that the research community is still hard at work to find reliable tools,
methods and datasets to work with. In the following two chapters, we will focus on
two case studies. In Chapter 3, we will attempt to build a system that can classify
Dutch conversations from a business context according to Leary’s Rose, a model
for interpersonal communication. Chapter 4 will focus on the 2011 Medical NLP
Challenge task (Pestian et al., 2012), which involved the automatic identification of
emotions in suicide notes.

7https://blog.twitter.com/2013/new-tweets-per-second-record-and-how – Last visited on July
17th, 2014

8The domain adaptation technique by Daume III (2007) will also be used in Chapter 6, though
on different datasets.
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Chapter 3

Case study: deLearyous

In this chapter and in Chapter 4, we will tackle two well-defined emotion classifi-
cation tasks. We will walk the reader through the entire process, starting with a
description of the data, following up with the instance creation steps, the training
and optimization of the machine learner, and the evaluation of the resulting classifi-
cation models. Both case studies have their unique features and eccentricities. The
first case study, using the deLearyous dataset, is unique in that we attempt to classify
sentences in a conversation between two parties according to a framework for inter-
personal communication. The conversations in the deLearyous dataset are in Dutch,
but the techniques we will describe in this chapter are applicable to any language.
To our knowledge, this is the first time that anyone has ever tried to automatically
classify text according to Leary’s Rose (see Section 3.1.1), and we hope this chapter
will provide inspiration and pointers for future, similar tasks.

3.1 Task description

The deLearyous dataset was created in the context of the eponymous deLearyous
project1, during which a serious game was developed that allowed users to converse
with a virtual character using written natural language. Conversing with these virtual
agents would help players learn about behavioral patterns and communicative roles.
As a proof-of-concept, one scenario was fully implemented, meaning the the virtual
agent (the AI) was capable of conversing with the player as long as the player stayed
within the confines of this well-defined conversational topic. The deLearyous dataset

1See http://delearyous.groept.be (last accessed on July 10th, 2013) for further information con-
cerning this IWT-TETRA project. deLearyous was a collaboration between Groep T’s e-media
Research Lab, the CLiPS Research Center at the University of Antwerp, and Opikanoba.
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contains all training materials used to build the virtual agent, and to build the
classifier that would interpret the player’s natural language text input according to
the emotional stance they adopt.

The proof-of-concept scenario was a conversation between an employer (played by
the trainee) and his employee (the AI), after the company revoked free parking rights.
There were several versions of this scenario, depending on the initial state of mind of
the virtual character. The AI could be angry about this situation, in which case the
player would be asked to try to calm their “employee” down. The AI could appear
impassive, and the player would be instructed to get the virtual character to speak
its mind. In another version, the AI would somewhat inappropriately try to impose
its own solution to the problem, and it would be up to the player to firmly put it in
its place.

Of course, the evolutions in the virtual character’s state of mind in response to the
player’s input can’t simply happen at random. There is an underlying framework
that justifies these interactions, and it is about exactly this framework that the
application is supposed to teach the trainees. The underlying model of interpersonal
communication that we developed the application for —and the origin of the name
deLearyous— is Leary’s Rose (Leary, 1957).

3.1.1 Leary’s Rose

Leary’s Rose, also known as the Interpersonal Circumplex, takes its name from Tim-
othy Leary, who devised it in 1957. The Rose shares many similarities to the di-
mensional emotion frameworks we described in Section 2.3.1. Much like Russell’s
circumplex model (Russell, 1980), the framework is two dimensional and takes on
a circular shape (Figure 3.1). The valence-dimension is replaced with the closely-
related affinity dimension, and instead of the arousal-dimension, the Interpersonal
Circumplex’s vertical dimension is defined by dominance, which brings it closer to
Osgood et al.’s three-dimensional model of affect (Osgood et al., 1957). According to
Leary, the space defined by the affinity and dominance dimensions is ideal to describe
and analyze the emotions of participants in a conversation.

As figure 3.1 shows, the horizontal and vertical axes divide the Circumplex into four
quadrants. Each quadrant is again divided into two octants. These octants should
be sufficient to describe the dynamics at play in interpersonal communication.

Other than a descriptive function, however, Leary’s Rose also has a predictive func-
tion. Based on one participants’ position on the Rose, it is possible to anticipate the
position the conversation partner will adopt in response.
There are two main mechanisms at play in the Interpersonal Circumplex: positions
on the affinity-axis evoke a similar reaction, while positions on the dominance-axis
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Figure 3.1: Leary’s Rose (Leary, 1957)

evoke complementary reactions (see Figure 3.2). In practice, this means that some-
one who will act in a friendly way will most likely see their partner react in a sim-
ilarly friendly manner, while rude or unfriendly statements will engender similarly
unfriendly reactions. At the same time, dominant behavior solicits an instinctive
submissive reaction from the conversation partner, while more docile behavior from
the speaker will encourage the listener to take the lead. These dynamics make it
possible to predict the most likely response of the listener to any way the speaker
positions themselves in the Rose’s two-dimensional space. We use this mechanic to
steer the virtual character’s state of mind.

Before we can steer the AI into the direction prescribed by Leary’s Rose, we have to
know the state of mind of the player, and this is where automatic emotion classifica-
tion comes in. Given only the user’s textual input and the conversation history, we
attempt to position the player on the Interpersonal Circumplex.

The following section will describe the process behind this automatic classification
task, starting with a description of the dataset (Section 3.2.1), followed by an expla-
nation of the instance creation procedure (Section 3.2.2), and finally a description of
the training and testing of the machine learning algorithms (Section 3.2.3).
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Figure 3.2: Leary’s Rose and the two major dynamics at play in interpersonal communi-
cation: the complementarity of dominance, and the similarity of affinity reactions.

3.2 Classification procedure

3.2.1 Data description

The deLearyous dataset consists of 11 conversations between two parties on the
topic agreed upon for the deLearyous proof-of-concept application. The scenario for
the proof-of-concept was a conversation between employer (human player) and em-
ployee (virtual character) after the announcement that the company would revoke
free parking rights. The data was collected in a Wizard-of-Oz setup, meaning the
virtual character was replaced with a professional actor. Player and actor communi-
cated with the same restrictions as those that would apply in the final application,
i.e. the player could only send text, while the AI/actor could react to this textual
input with both audio and video.

Eleven different conversations were played out, the employee starting from varying
positions on Leary’s Rose, and the conversations were entirely logged and transcribed.
The result is a dataset of 1, 143 sentences (or 12, 277 words) in 812 turns, with
conversations ranging from short 23-sentence conversations to longer conversations
of up to 187 sentences (or in terms of turns, from 19 to 115 turns). The relatively
large variance in conversation length can be explained by the fact that participants
in the Wizard-of-Oz tests were not asked to respect a time limit, but were instead
encouraged to take the conversation to its natural conclusion.
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Figure 3.3: GUI for annotation of deLearyous data

The conversations were subsequently annotated. Initially, four annotators annotated
non-overlapping groups of conversations, attributing a position on the Interpersonal
Circumplex to each of the sentences in the conversation. To facilitate and streamline
the annotation process, a tailor-made graphical interface was built (see Figure 3.3),
which the annotators had to make use of. The sentences in a conversation ap-
peared in order, and were marked for the current speaker (employer or employee).
It was possible to look back at and correct previous annotations if necessary. To
ensure agreement in the thought processes of the annotators, they were asked to
determine the position of the sentence on Leary’s Rose using the following series of
questions:

1. Is the current speaker acting dominantly or submissively towards his interlocu-
tor?
Determines if the sentence is to be placed on the upper or the lower half of the
Rose.

2. Is the speaker attempting to co-operate with the listener, or are they instead
only trying to further their own goals?
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Determines if the sentence is to be placed on the left or the right half of the
Rose, and thus locks in the quadrant.

3. Which of the two aforementioned aspects is the strongest? Dominance or affin-
ity?
Determines the exact octant the sentence should be placed in.

4. How strongly is the emotion expressed?
Determines the distance from the origin. Strongly expressed emotions will be
placed further from the origin. Sentences with negligible emotional contents
should be placed within the inner ring, while exceptionally strong expressions of
emotion should be placed in the outer ring.

To evaluate inter-annotator agreement, one randomly chosen conversation was an-
notated by three annotators. The agreement was calculated on both the quadrant
level (each quadrant of Leary’s Rose is considered as one class) and on the octant
level. The result of these calculations can be found in Table 3.1. The agreement is
reported in terms of Fleiss’ κ, which allows one to measure agreement scores with
more than two annotators (Fleiss, 1971). Even though there are no firm guidelines
as to how one should interpret κ scores, scores between 0.20 and 0.40 are usually
taken to indicate “fair agreement” while lower scores indicate “low agreement”. We
also report on pairwise overlaps between annotators in Tables 3.2 and 3.3.

# of classes κ
4 0.28
8 0.19

Table 3.1: Inter-annotator agreement in terms of Fleiss’ κ on the Wizard-of-Oz dataset, 3
annotators

annotator 1 annotator 2 annotator 3
annotator 1 1.00
annotator 2 0.36 1.00
annotator 3 0.47 0.46 1.00

average
0.43

Table 3.2: Pairwise overlap between annotators on the Wizard-of-Oz dataset, quadrant
level

It is immediately clear that the annotation of text on Leary’s Rose is an extremely
difficult task. Our three annotators, who were familiar with and had experience with
Leary’s Rose, find themselves disagreeing on the emotional contents of the sentences
in the majority of cases. To give one more indication of the extent of the annotator-
disagreement, the three annotators assigned the same quadrant in 26% of the cases,
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annotator 1 annotator 2 annotator 3
annotator 1 1.00
annotator 2 0.23 1.00
annotator 3 0.33 0.32 1.00

average
0.29

Table 3.3: Pairwise overlap between annotators on the Wizard-of-Oz dataset, octant level

and they agreed on only 16% of the octant labels. Given the difficulty of manually
annotating this dataset, we expect it to be similarly difficult to automatically classify
text input in terms of Leary’s Rose.

Table 3.4 shows the distribution of sentences across class labels as well as the resulting
random baselines.

1143 sentences

together-above: 370 sentences leading: 135 sentences
helping: 235 sentences

together-below: 227 sentences co-operative: 161 sentences
dependent: 66 sentences

opposed-below: 192 sentences withdrawn: 100 sentences
defiant: 92 sentences

opposed-above: 297 sentences aggressive: 169 sentences
competitive: 128 sentences

Random baseline 24.0% 12.8%

Table 3.4: Distribution of classes within the Wizard-of-Oz dataset

3.2.2 Feature extraction and instance creation

Looking at the sentences in the deLearyous dataset, it is not immediately obvious
what aspects of a sentence indicate how it should be positioned on Leary’s Rose.
Consider, for instance, the following example:

dat is een beslissing die we met het bestuur hebben moeten nemen
that’s a decision we had to take with management

This sentence does contain a few words which, semantically, have a clear link to
leadership, namely “decision” and “management”. It is however not because the ut-
terance refers to concepts that fit under the topic of “leadership”, that the player
can automatically be said to be positioned in the leading octant on Leary’s Rose. It
is perfectly possible, for instance, that the player is on the defensive, attempting to
justify management’s decision (defiant behavior, in terms of the Interpersonal Cir-
cumplex), or that they are attempting to pass on responsibility to someone other
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than themselves (in which case withdrawn would be a better fit). Clues to the “cor-
rect” octant might also be found in the use of verbs (“a decision we had to take”
instead of “a decision we took”). Much depends on the context in which the sentence
was written. The position of the previous sentence of both the speaker and their
interlocutor will most likely be a very strong indicator of the position of the current
sentence.

The above superficial analysis already points to three feature types we will attempt
to extract from the deLearyous data. First, a simple bag-of-words approach will
allow us to assert the presence or absence of certain words. This will capture any
individual words that could provide a clue to the speaker’s state of mind. If we wish
to capture syntactic information, such as the frequency of verbs, we can parse the
data and use part of speech tags as the basis of part of speech n-grams. Contextual
information can also be extracted from the data, in the form of the previous positions
of both speakers on the Interpersonal Circumplex.

Since we do not expect to benefit from differentiating between specific word forms
(“decisions” vs. “decision”) in the bag-of-words approach, we will also use n-grams
of lemmas instead of word tokens, which allows us to map the occurrence of different
forms of the same word to the same feature. We also take it one step further by using
character n-grams. These sequences of n characters allow us to capture, among
other things, the roots of semantically related words in one and the same feature
(“management”, manager, managing, etc.). Character n-grams also provide some
resilience to spelling errors, as an incorrectly spelled word may still be mapped to
the same feature as a correctly spelled word, provided that a cluster of characters
still overlaps (Kapočiute-Dzikiene et al., 2012).

In order to extract lemmas and part of speech tags, the deLearyous dataset was first
parsed using Frog, a parser for Dutch (van den Bosch et al., 2007). Frog tokenizes
and parses the input text, returning a variety of syntactic information including
a morphological breakdown of the words, the lemmas, fine-grained part of speech
information, the chunks present in the sentences, dependency structures, and even
named entity information. An example of the output is displayed in Table 3.5. The
respective columns contain: the token index, the token, the lemma, the morphological
analysis of the token, the part of speech tags, the chunks tags, the index of the
parent token of the current word, and finally the syntactic function of the word in
the sentence.

Note that in the case of part of speech n-grams, we use the base part of speech tag (i.e.
the tag before the parentheses) as the basis for the n-grams. The fine-grained part
of speech tags, while more informative, make for extremely sparse feature vectors,
which makes it very hard for a machine learner to learn anything given the limited
size of the dataset.
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1 dat dat [dat] VNW(aanw,pron,stan,vol,3o,ev) B-NP 2 su
2 is zijn [zijn] WW(pv,tgw,ev) B-VP 0 ROOT
3 een een [een] LID(onbep,stan,agr) B-NP 4 det
4 beslissing beslissing [beslis][ing] N(soort,ev,basis,zijd,stan) I-NP 2 predc
5 die die [die] VNW(betr,pron,stan,vol,persoon,getal) B-SBAR 4 mod
6 we we [we] VNW(pers,pron,nomin,red,1,mv) B-NP 10 su
7 met met [met] VZ(init) B-PP 10 None
8 het het [het] LID(bep,stan,evon) B-NP 9 det
9 bestuur bestuur [be][stuur]/[bestuur] N(soort,ev,basis,onz,stan) I-NP 7 obj1
10 hebben hebben [heb][en] WW(pv,tgw,mv) B-VP 5 body
11 moeten moeten [moet][en] WW(inf,vrij,zonder) I-VP 10 vc
12 nemen nemen [neem][en] WW(inf,vrij,zonder) I-VP 11 vc

Table 3.5: An example of the output of the Frog parser (version 0.12.16)

N-grams of any of the above-mentioned feature types can be represented in several
ways. We will compare four different feature representations: a binary representa-
tion (an n-gram either occurs in the document or it doesn’t), absolute frequencies
(how many times does the n-gram occur in the document?), relative frequencies (the
absolute frequency normalized by the number of features in the document), and tf-
idf scores (which put a number on the informativeness of a feature for the given
document in a corpus).

In addition to the aforementioned context-independent feature types, we integrate
features relating to the previous position of the current speaker and of the interlocu-
tor on Leary’s Rose. We will experiment with both the gold positions as provided by
the annotators, and with the predicted class labels as returned by the classifier. The
values we use for the gold labels are stored in the dataset as coordinates (normalized
between −1.0 and 1.0) on the two defining axes (affinity and dominance). The pre-
dicted labels are represented using nine binary features: one for each octant, and one
for the “neutral” label. (Only the feature corresponding to the previous predicted
label is given a value of 1, whereas the others have 0 as their values.)
It is very important to realize that the results achieved with the gold positions will
overestimate performance, as they use information which is not available when deal-
ing with unseen, unannotated data. They will however give us an impression of how
strong contextual features could be, given a perfect classifier. The predicted labels, on
the other hand, allow us to accurately simulate how much information about the cur-
rent position the classifier can extract from its previous predictions, even considering
the fact that the previous predictions will often have been incorrect.

A final feature type is extracted from external sentiment lexicons. We used two sen-
timent lexicons for Dutch (see also Section 2.2.1 in Chapter 2), namely the DuOMAn
sentiment lexicon and the Pattern sentiment lexicon. The DuOMAn lexicon contains
16, 226 lemmas with sentiment scores ranging from −1.0 (completely negative) and
0.31 (most positive). We refer to Jijkoun & Hofmann (2009); Jijkoun et al. (2010)
for a more in-depth explanation of how these scores were calculated. The Pattern
lexicon (De Smedt & Daelemans, 2012b) is a lexicon of 3, 815 adjectives with scores
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on polarity, subjectivity and intensity.

We use these sentiment lexicons in two ways. The first approach is to treat the
words in the lexicon as our feature set. To generate an instance vector for a given
sentence, we check for each of the words in the lexicon how many times it occurs
in the sentence. This is analogous to the bag-of-words approach with the important
difference that the set of words is defined through an external dictionary. The same
value representations (binary, absolute and relative frequency, tf-idf) can be used
here.
The second way of using the lexicons involves calculating a single score for each
sentence. The sentiment scores for each of the lemmas of the tokens in the sentence
are retrieved from the lexicon (if they are present), and the individual scores are
combined into a global score, optionally taking into account factors like modality,
negation and the use of intensifiers. The Pattern Python library implements an
algorithm which calculates the overall subjectivity score for a sentence taking into
account modifiers and negation. For a detailed description of the Pattern package,
we refer to De Smedt & Daelemans (2012a). For the DuOMAn lexicon, we take the
sum of the individual word scores, flipping the sign of the score should the word be
directly syntactically dependent on a negation term (“niet”, “geen”, “nooit”).

To summarize, the feature types that were extracted from the deLearyous dataset
are listed in Table 3.6. With the exception of the context features, the value of
each feature can be represented as a binary value, an absolute frequency, a relative
frequency, or a tf-idf score.

feature type n-gram sizes
token 1, 2
lemma 1, 2
character 3, 4, 5, 6
part-of-speech 1, 2, 3
DuoMan lexicon 1
Pattern lexicon 1
previous positions (gold)
previous positions (predicted)

Table 3.6: The different feature types that have been tested

3.2.3 Machine learning

Now that feature extraction and feature vector creation process have been outlined,
we can move on to the actual classification phase. Since our Wizard-of-Oz dataset
can be naturally divided into 11 individual conversations, it makes sense to adopt a
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leave-one-out evaluation strategy where each conversation occurs in the test partition
once, and where the remaining 10 are used as training material. This avoids over-
fitting on author-specific features, or on topic markers that are specific to a single
conversation.

In the context of this case study, we limit ourselves to Support Vector Machines. Our
justification for this is that our focus in this case study is on finding the appropriate
features to be able to identify emotions in text, and the specific learning algorithm
used to do so is —at this stage— only of secondary concern. (See Chapter 6 for an
analysis of more complex learner setups.) Additionally, we have shown SVMs to con-
sistently perform significantly better than other popular classifiers on the deLearyous
dataset in the past (Vaassen & Daelemans, 2011), which makes using Support Vector
Machines a logical choice.

We used a modified version of LibShortText 1.0 (Yu et al., 2012) to generate our
instances based on the bag-of-n-grams principle, and to train and test our models
(see Appendix A.1 for a description of the modifications we carried out on LibShort-
Text).

3.3 Results

All feature types described in Table 3.6 have been tested individually. Table 3.7
shows the micro-averaged F-scores2 and macro-averaged F-scores for each feature
type.

2Note that for single-label classification tasks (and deLearyous is one of them), the micro-averaged
F-score is the same as the accuracy.
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feature type n-gram size feature representation macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.)

token

1

binary 0.168 (±0.022) 0.208 (±0.053)
abs.freq. 0.172 (±0.027) 0.216 (±0.058)
rel.freq. 0.173 (±0.024) 0.202 (±0.071)
tf-idf 0.177 (±0.042) 0.201 (±0.046)

2

binary 0.183 (±0.048) 0.212 (±0.066)
abs.freq. 0.178 (±0.050) 0.208 (±0.068)
rel.freq. 0.169 (±0.047) 0.207 (±0.065)
tf-idf 0.183 (±0.061) 0.214 (±0.071)

lemma

1

binary 0.170 (±0.055) 0.206 (±0.066)
abs.freq. 0.171 (±0.050) 0.196 (±0.052)
rel.freq. 0.166 (±0.042) 0.197 (±0.053)
tf-idf 0.172 (±0.065) 0.196 (±0.063)

2

binary 0.176 (±0.037) 0.207 (±0.047)
abs.freq. 0.181 (±0.045) 0.213 (±0.052)
rel.freq. 0.177 (±0.049) 0.213 (±0.067)
tf-idf 0.182 (±0.053) 0.211 (±0.061)

character

3

binary 0.186 (±0.027) 0.213 (±0.054)
abs.freq. 0.179 (±0.034) 0.200 (±0.066)
rel.freq. 0.168 (±0.053) 0.188 (±0.074)
tf-idf 0.177 (±0.049) 0.210 (±0.066)

4

binary 0.186 (±0.044) 0.222 (±0.061)
abs.freq. 0.184 (±0.056) 0.218 (±0.063)
rel.freq. 0.181 (±0.048) 0.209 (±0.073)
tf-idf 0.177 (±0.061) 0.210 (±0.087)

5

binary 0.181 (±0.042) 0.215 (±0.067)
abs.freq. 0.183 (±0.037) 0.217 (±0.052)
rel.freq. 0.185 (±0.066) 0.223 (±0.082)
tf-idf 0.175 (±0.047) 0.223 (±0.093)

6

binary 0.177 (±0.050) 0.214 (±0.082)
abs.freq. 0.181 (±0.046) 0.212 (±0.074)
rel.freq. 0.181 (±0.061) 0.212 (±0.070)
tf-idf 0.174 (±0.040) 0.212 (±0.079)

part-of-speech

1

binary 0.125 (±0.013) 0.136 (±0.051)
abs.freq. 0.131 (±0.028) 0.143 (±0.028)
rel.freq. 0.121 (±0.032) 0.141 (±0.059)
tf-idf 0.118 (±0.014) 0.128 (±0.027)

2

binary 0.146 (±0.034) 0.160 (±0.044)
abs.freq. 0.153 (±0.027) 0.178 (±0.037)
rel.freq. 0.153 (±0.033) 0.177 (±0.045)
tf-idf 0.163 (±0.043) 0.178 (±0.052)

3

binary 0.138 (±0.046) 0.186 (±0.070)
abs.freq. 0.137 (±0.042) 0.183 (±0.061)
rel.freq. 0.130 (±0.031) 0.153 (±0.049)
tf-idf 0.141 (±0.015) 0.159 (±0.032)

DuoMan lexicon 1

binary 0.167 (±0.024) 0.174 (±0.026)
abs.freq. 0.161 (±0.040) 0.164 (±0.034)
rel.freq. 0.164 (±0.036) 0.171 (±0.023)
tf-idf 0.165 (±0.036) 0.167 (±0.023)
sentiment scores 0.172 (±0.026) 0.172 (±0.026)

Pattern lexicon 1

binary 0.099 (±0.025) 0.121 (±0.038)
abs.freq. 0.093 (±0.030) 0.111 (±0.035)
rel.freq. 0.078 (±0.015) 0.099 (±0.031)
tf-idf 0.080 (±0.020) 0.104 (±0.035)
sentiment scores 0.102 (±0.024) 0.085 (±0.032)

previous positions (gold) 0.336 (±0.021) 0.379 (±0.024)
previous positions (predicted) 0.132 (±0.038) 0.138 (±0.066)

Table 3.7: Macro-averaged and micro-averaged F1-scores for each of the possible feature
types and representations.
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As becomes clear from the results reported in Table 3.7, the system has a hard time
identifying the correct octant on Leary’s Rose, regardless of the feature type and
feature representation chosen. It is, however, perfectly possible to improve on the
random baseline of 12.8% (refer to Table 3.4 in Section 3.2.1 for a breakdown of the
data distribution), and indeed most feature types do add some useful information to
help in the classification of text according to the Interpersonal Circumplex.

Some feature types require special attention. Token n-grams, lemma n-grams and
character n-grams attain similar scores, and given the small score differences, it is
hard to paint a clear picture of which feature type would be “best” to use for this
specific task. Using part of speech tags, however, does appear to score significantly
lower than using the aforementioned feature types. This indicates that there does
not seem to be a clear link between the emotion experienced by the speaker and
their use of words in a given grammatical class (represented in the part of speech
unigrams), or between the use of certain sentence structures (which are captured by
the part of speech bigrams and trigrams) and a position on Leary’s Rose. However,
it would be inaccurate to say that the classifier learns nothing whatsoever from part
of speech tags, since the achieved micro-averaged F-scores are still higher than the
random baseline.

The results for the lexicon features are also remarkable. Using the Pattern lexicon
entries as features does not seem to be a good approach. The lexicon in itself is
relatively small, which means that for many of the sentences in the dataset, there
are simply no words present that are also present in the lexicon. The only way in
which a machine learner could learn from these “empty” instances would be if the
absence of lexicon terms in a sentence were an indication of the class to which the
sentence belongs. No classifier trained with Pattern features manages to beat the
random baseline, however, which indicates that the lexicon simply covers too little
of the deLearyous dataset.
The DuOMAn lexicon is significantly larger, and the sparseness problem is thus less
severe. This also shows in the classification results, which on the surface are a few
points lower than the lemma, character or token results, but which show no statistical
difference from them3.

Finally, the gold context features (previous positions of the speaker and the listener
on the Interpersonal Circumplex as provided by the annotators) are clearly our top
performers. The previous positions on the Rose are very telling of what the speaker’s
current position will be.
An important factor at play here is that in a conversation, there tends to be a
natural and relatively slow movement across Leary’s Rose. A speaker who starts
a conversation in a certain position will tend to stay in that position unless their
conversation partner gives them reason to change their stance. If we look at the

3Significance tested using approximate randomization testing (Noreen, 1989; Yeh, 2000). p >
0.05
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transitions between the labels of two subsequent sentences by the same speaker in the
deLearyous dataset, this becomes readily apparent. In 730 cases the speaker simply
remains in the same octant on the circumplex, while there are only 413 transitions
where a change in position occurs. In light of this pattern, it is clear how the “previous
position” features will be highly informative for the machine learner. Given, of course,
a perfect classifier that always makes accurate predictions.

Indeed, if we look at the predicted context features, we see that the positive effect
vanishes. The output labels for each instance are determined using a classifier trained
with character 4-grams, our best-performing feature type, and we use the predicted
labels from previous instances to train a new context-based classifier. Since the
character 4-gram classifier has an accuracy of only 22%, the vast majority of the
predicted labels are in fact incorrect. As a result, our context-based classifer is
trained on extremely noisy features, and fails to produce useful output.

We have looked at feature types in isolation, but it might be beneficial to train a
classifier on a combination of different feature types. Table 3.8 shows the results for
a selection of feature combinations. Since the differences between our initial token,
lemma and character n-gram features were not statistically significant, we have chosen
to take our highest-scoring feature type (in terms of macro-averaged F-score, in this
case the character 4-grams in their binary form) as the basis for our combinations.
We combine these character 4-grams with all of the other feature types (in their best
performing sizes and representations) and note the influence of these added features
on the classification results.

feature types macro-avg. F1 micro-avg. F1

part-of-speech 2-grams (tf-idf) +0.004 -0.007
DuOMAn lexicon (sentiment scores) +0.009 -0.001
Pattern lexicon (sentiment scores) +0.004 -0.008
previous positions (gold) +0.015 -0.016
previous positions (predicted) -0.008 -0.005

Table 3.8: Differences in macro-averaged and micro-averaged F1-scores for combinations
of character 4-grams with other feature types vs. the scores for character 4-grams only.

While part of speech tags did not perform well on their own, they do influence
the classification performance when combined with character 4-grams. The micro-
average F-score drops slightly, but the macro-averaged scores go up by a fraction
of a percent. Since macro-averaged F-scores give equal weights to the F-scores of
different classes, this implies that while this combination performs less well in the
majority class, it does boost the performance in some of the smaller classes. Since
in the context of the deLearyous project, every octant should be considered equally
important, macro-averaged F-scores are the metric we would like to optimize.

Adding lexicon features to bag-of-words features would make little sense, as —at least
in the training set— any word present in the lexicon would also be present in the
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bag-of-words. In the case of bags of character 4-grams, however, the lexicon features
are distinct from the n-gram features, since the lexicon contains full lemmas and
not merely sequences of 4 characters. We see that while the addition of these extra
lemmas does influence the performance, the effects remain limited. The DuOMAn
features do appear to improve the macro-averaged F-scores somewhat, with only a
very minimal hit to micro-averaged F-scores.

As expected, adding the gold context features to the character 4-grams provides a
significant boost to classification performance. However, as we described in Sec-
tion 3.1, the ultimate goal of the deLearyous classifier is for it to be integrated in
a conversation system where a player interacts with a virtual agent. The correct
classification of player input in terms of the Interpersonal Circumplex is vital in that
it will serve as an important data point for determining the emotional response of the
virtual agent. And while we know the position of the AI at all times, the previous
position of the player is unknown and is determined by the classifier itself.
The cross-validation experiments including gold contextual features are thus inher-
ently artificial. They make use of “gold” positions, which are not available to the
classifier in a real-life situation. The results only serve as an illustration that given
perfect predictions, contextual features would be very strong.

More interesting are the effects of adding predicted labels to the character 4-gram
features. Our first intuition that predicted labels would be very noisy features appears
to find confirmation in the results: the predicted context features do not change the
classification results in any significant way, and in terms of raw performance, the
scores even drop a little. While there is definite potential in contextual features (as
evidenced by the higher performance of a classifier based on perfect predictions), the
accuracy of our classifier is much too low to be able to leverage this potential.

In conclusion, character n-grams appear to be the best feature type for this specific
task and dataset, and expanding the feature set with DuOMAn features may provide
the system with a small performance boost. Capturing the conversational context
of a sentence using previously predicted labels shows definite promise, but will only
be truly effective when the base classifier can achieve high enough accuracy to make
these predicted labels more reliable. On our current dataset, however, contextual
features are too noisy to be of use.

3.4 Analysis

The scores in the previous section clearly show that classifying text input according
to their interpersonal emotional stance is a very difficult task. However, the sys-
tems perform well above the random baseline, indicating something has clearly been
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learned. In this section, we will have a look at the most informative features and
their relation to the task at hand.

To determine which features were considered important by the SVM learner, we
examine the weights the learner assigned to each feature in the training set. Features
with higher weights should be strong pointers that the current sentence belongs to
a certain class. Table 3.9 shows the ten most important lemmas from the DuOMAn
lexicon, as well as the most important character 4-grams.

top DuOMAn entries top char. 4-grams
gaan .===
op _ja_
optie _ik_
kunnen ?===
laten wat_
kosten dat_
maken vind
probleem het_
zitten natu
voor snap

Table 3.9: Top DuOMAn lemmas and character tetragrams according to SVM weighting.

The strong DuOMAn features are very general lemmas that are hard to immediately
associate with a certain position on Leary’s Rose. “gaan” (go), “kunnen” (can), and
“laten” (let) are often used as auxiliary verbs, which carry very little semantic con-
tent on their own. These auxiliaries might in themselves be interesting if we can
show that the use of auxiliary verbs is linked to a certain position on the Interper-
sonal Circumplex. Instinctively, one might imagine that the use of auxiliaries gives
an utterance a more tentative, careful feel, which would associate them with the less
dominant positions on the Rose (octants on the bottom half of the Rose).
The character n-grams seem to form a complementary set of features, as the top-
weighted features appear to originate from words different from the DuOMAn entries.
Again, very few of the top features are content words. Interjections (“ja”/yes), per-
sonal pronouns (“ik”/I), interrogative or demonstrative pronouns (“dat”, “wat” /
that, what) and even punctuation marks (“.”, “?”) are all weighted heavily. The few
content words can be explained in the context of the Interpersonal Circumplex. The
“natu” n-gram is found in “natuurlijk” (naturally/of course), which is a term that
expresses certainty and the opinion that the speaker’s words are self-evident. This is
a state of mind one is unlikely to find in many of the submissive octants of the Rose.
“Vind”, from the verb “vinden” (to find), in the context of these conversations, is
used in its meaning of “holding an opinion”. Finally, “snap” is a 4-gram extracted
from the verb “snappen” (to get, to understand), which implies a certain empathy
from the speaker towards the listener.

40



CHAPTER 3. CASE STUDY: DELEARYOUS

Of course, the above ranking of features does not tell us anything about which features
contribute to which class. Instead they tell us about the importance of each feature
in the model in general. We also have a look at the most important character 4-gram
and DuOMAn features per class, based on the weights assigned to them by the SVM
classifier. Table 3.10 shows the top 5 DuOMAn lemmas for each of the nine classes,
while Table 3.11 shows the top 5 character 4-grams for each class.

aggressive competitive helping leading co-operative NEUTRAL defiant withdrawn dependent
niet zijn ik een ja niet ik ja ja
hebben luisteren zijn zijn ik ik niet niet ik
zijn ik zullen ik zijn zijn maar ik nee
ik een een hebben in een zijn zijn een
gaan gaan kunnen willen niet dagen hebben hebben zijn

Table 3.10: Top-weighted DuOMAn lemmas per class according to the SVM classifier.

aggressive competitive helping leading co-operative NEUTRAL defiant withdrawn dependent
niet _je_ ?=== een_ _ja_ .=== .=== .=== _ja_
?=== .=== _je_ _je_ .=== ..._ _ik_ niet .===
dat_ dat_ _ik_ _is_ _ik_ dag_ niet ..._ ...=
_je_ iste .=== _we_ dat_ wel_ dat_ _ja_ snap
_wat uist doen _de_ _je_ daag !=== _ik_ _ik_

Table 3.11: Top-weighted character tetragrams per class according the SVM classifier.

Judging by the top-weighted features per class according to the SVM classifier as
shown in Tables 3.10 and 3.11, it is hardly surprising that the machine learner has
a hard time making sense of the task. Many of the features are strong for many
classes, and there appear to be very few strong features that unequivocally point to
a single octant on the Interpersonal Circumplex. Some exceptions to the rule might
be found in the character 4-grams, with the top neutral features being very easy to
explain. “dag” and “daag” are both a form of a Dutch greeting, and since the initial
phase of a conversation is often the only phase one could consider truly “neutral”
(Leary’s Rose does not acknowledge the existence of a neutral stance), greetings are
a perfect fit. “Wel”, much like the English well, is an interjection that in itself carries
no emotion. And finally, “...” marks a hesitation, and could therefore rightly be said
to not carry an emotion. Likewise, it is remarkable that the exclamation mark is so
strong for defiant sentences, and that “snap” (as mentioned above, this 4-gram stems
from the verb “snappen”, which means to understand) is strong for dependent.
It is important to remark that a machine learner will not make decisions based on the
presence of singular features, but on the basis of complex combinations of multiple
features. The tables above, however, do give us an idea of the features that will most
likely contribute to the classifiers’ decisions.

In conclusion, while it is possible to beat the random baseline (12.8% in terms of accu-
racy) by a sizable margin, it appears to be extremely difficult to reach a performance
that would be acceptable for practical use.
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annotator 1 annotator 2 annotator 3
annotator 1 1.00
annotator 2 0.23 1.00
annotator 3 0.33 0.32 1.00

average
0.29

Table 3.12: Pairwise overlap between annotators on the Wizard-of-Oz dataset, octant
level. (Repeated from Table 3.3)

However, when we look back at the performance of human annotators on the same
task (Table 3.12 shows the pairwise overlap between annotators on the octant level),
maybe this low performance is hardly surprising. On average, two annotators agreed
on the position of only 29% of the sentences. Even if we managed to build a system
with better performance, an accuracy over 30% would have little meaning.
We can however draw some general conclusions on the types of features that best
serve this specific task. Simple character n-grams capture the bulk of the relevant
information, and lexicon-based features may complement the feature set by identify-
ing relevant key emotion terms. Since we are dealing with conversations, we can also
make use of context features. In theory, the label of the previous sentence makes for
a strong predictor for the current class. However, we have seen that the efficacy of
this feature type is greatly dependent on the accuracy of the system. In this case
study, the system’s performance is too low for the predicted context features to be
useful.
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Chapter 4

Case study: Emotions in
Suicide Notes

4.1 Introduction

This case study focuses on an entirely different facet of emotion classification. Where
the goal of the deLearyous task (Chapter 3) was to identify the emotional stance of
participants in a conversation based on their textual input, the goal of the current task
is to identify emotions in suicide notes. The task was initially introduced in the 2011
Medical NLP Challenge (Pestian et al., 2012), where participants in the challenge
were provided a training set of manually labeled suicide notes, and instructed to
build a system that could accurately identify emotions in an unseen test set. The
existence of such a system would greatly benefit the medical world, as it might serve
as a tool to better understand the thought processes of individuals who choose to
take their own lives, and it might thus indirectly help prevent suicides in the future.
The system might also be applied in an online moderation context, where it would
help moderators to more easily track down problematic interactions between users,
so they can intervene before things escalate (also see Project AMiCA1).

This emotion classification task differs in a few significant aspects from the deLeary-
ous case study, in ways that have an influence on the methodology.
First of all, the 2011 Medical NLP Challenge dataset contains suicide notes written
in English. The data for deLearyous was in Dutch. While this is of no practical
consequence to the way instances are created or classified, this does mean that it

1AMiCA: Automatic Monitoring for Cyberspace Applications - http://www.amicaproject.be (last
accessed on November 15th, 2013)
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is not possible to use the same Dutch lexicons that were used in the previous case
study.
Secondly, the emotion framework adopted for classification is a discrete one, whereas
deLearyous used a dimensional model. While we did not make use of the dimensional
nature of Leary’s Rose in Chapter 3, there is simply no possibility to see classes in
the suicide note dataset as contiguous or otherwise spatially ordered.
Finally, and most importantly, it is possible to assign more than one emotion to a sin-
gle sentence. This transforms a simple multi-class classification task into a multi-label
one, which requires a different approach, as will become clear in section 4.4.2.

We will start with a description of the 2011 Medical NLP Challenge dataset in Sec-
tion 4.2. In Section 4.3, we will briefly consider a few other systems that participated
in the challenge, and we will mention some related research that is relevant to our
own approach. Section 4.4 will describe our own emotion classification system, and
its results will be described and analyzed in Sections 4.5 and 4.6. We will draw our
conclusions in Section 4.7.

4.2 Data description

The 2011 Medical NLP Challenge dataset consists of 900 notes of variable length
which were left behind by people who committed suicide. These notes were anony-
mized and annotated at the token level by at least three different annotators. The
possible emotion categories are listed in Table 4.1. Token-level annotation implies
that the boundary of an emotion-carrying fragment in a suicide note need not co-
incide with a sentence boundary. It is indeed possible that only a few words in a
sentence express emotion, while the rest of the sentence remains unlabeled. It is also
possible for the same token to carry more than one label. Token-level annotations
were aggregated to the sentence level, and the final classification task was thus to
classify sentences as either being free of emotion, or as belonging to one —or several—
of the 15 possible emotion classes. Pestian et al. (2012) report an inter-annotator
agreement of 0.546 (Krippendoff’s α with Dice’s coincidence index) at the sentence
level. The dataset is split into a training set of 600 suicide notes and a test set of
300 documents.

abuse (0.18%) anger (1.38%) blame (2.15%) fear (0.50%)
forgiveness (0.12%) guilt (4.18%) happiness/peacefulness (0.50%) hopefulness (0.94%)
hopelessness (9.13%) information (5.92%) instructions (16.46%) love (5.94%)
pride (0.30%) sorrow (1.02%) thankfulness (1.89%) (no-annotation) (49.38%)

Table 4.1: Emotions present in the classification scheme, with an indication of their share
in training
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There are a few important points concerning the dataset that should be raised prior
to discussing the classification methodology. First of all, the sentences that carry no
emotion labels cannot simply be said to be entirely emotion-free or neutral. When
the annotators were unable to reach an agreement concerning a certain fragment of
text, the fragment was left unlabeled. This means that it is highly likely that if one
interprets the sentences without labels to be part of a “neutral” class, that this class
will be noisy, as it contains discarded sentences that were believed to contain an
emotion by at least one of the annotators.
A second point is that some of the classes seem to correspond less well to what is gen-
erally considered an emotion. “Instructions” and “information” are the most blatant
example of this mismatch. They are eminently appropriate for this specific classifi-
cation task, but they do not fit the conventional emotion classification frameworks.
We are also hard-pressed to see labels such as “abuse”, “blame”, and “forgiveness” as
emotional labels, as they refer more to actions than to emotional states. This does
not make the classification task any less interesting, of course, but it is important to
mention that the 2011 Medical NLP Challenge was no typical emotion classification
challenge. In Chapter 5, we will use the same suicide note dataset again, but we will
only consider the emotion classes that can be mapped to one of Ekman’s “Big Six”
(1971). This chapter, however, will solve the task as it was presented in Pestian et al.
(2012), and no changes will be made to the classification scheme.

4.3 Related research

24 teams submitted output for the 2011 Medical NLP Challenge. As it would be
rather superfluous to describe each of the participating systems in detail, we will
select a few approaches that scored particularly well. Our own submission to the
shared task was described in Luyckx et al. (2012), and we will attempt to improve
on our scores in section 4.4.

When looking at the top-scoring systems for the shared task (Yang et al., 2012; Xu
et al., 2012; Sohn et al., 2012), a common factor seems to be the combination of
machine learning methods with rule-based methods. A particularity of the task’s
data set was that some emotions were very rare, in that very few sentences (in both
the training and the test sets) were labeled as belonging to these emotion classes.
This makes these classes extremely difficult to learn for supervised machine learners,
since they have very little information to go on. To remedy this problem, some have
tried to use handcrafted rules for these specific emotions, which circumvents the need
for extensive training data.

Yang et al.’s system (Yang et al., 2012) consists of several modules, some rule-based,
others machine learning-based. In a first step, sentences are tagged and parsed in
order to obtain part-of-speech information, lemmas, chunk information, and depen-
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dency structures. A negation detection module then identifies negation terms using
a handmade lexicon of negation words collected from the training data. The next
module identifies the sentences that carry the six most common emotions. This mod-
ule is both the most essential for the task, and the most complex, as it is in itself
comprised of two components. The first component identifies emotions on a sentence
level, and is an ensemble of an SVM classifier, an Naïve Bayes classifier, and a Max-
imum Entropy model. The second component identifies emotions on the token level,
which it achieves through a combination of keyword-spotting based on an emotion
lexicon, and a Conditional Random Fields model that recognizes emotion cues. The
predictions from these modules are aggregated using several voting algorithms. A
post-processing module makes a final pass over the test data and attempts to identify
the sentences carrying information and instructions.

When evaluating their system, Yang et al. notice that the machine learners are
responsible for the bulk of the correct predictions. The lexicon-based approach only
adds very little to the the overall performance. Recall, however, that the machine
learners only predict six out of the 15 possible emotion classes, and the lexicon-based
approach is therefore solely responsible for identifying the sentences belonging to the
remaining emotion classes. Performance on these classes is very low, indicating either
that the emotion lexicon’s coverage was too low, or that lexicon-based approaches
simply cannot capture the complexity of emotions in text.

Xu et al. (2012) also note the data sparseness problem, and attempt to extend the
shared task’s limited training data by searching for similar data online. They retrieve
similarly strongly emotional material from The Suicide Project2 and annotate 1,814
sentences manually, adding the resulting documents to the training set. Even with
this extra training data, some emotions are underrepresented and generally much
more subtle and more difficult to detect. Two classes, information and instruc-
tions, seem to carry very little emotional information. Noticing these discrepancies,
the authors decide to cluster the class labels into three subgroups, each requiring a
different approach: “strong” emotions (fear, guilt, hopelessness, love, sorrow, hope-
fulness, thankfulness, happiness_peacefulness), “objective” classes (information and
instructions), and “subtle” emotions (abuse, anger, blame, pride, forgiveness).

The “strong” emotions are handled by a one-versus-all ensemble of SVM classifiers.
The innovation here is in the spanning n-grams the authors use, which are pairs of
token n-grams which can skip over several words in a sentence. The spanning n-
grams <take, any longer>, for instance, can be extracted from the sentence ”I can’t
take it any longer”.
The “objective” classes are also handled by an SVM classifier. The features, how-
ever, are entirely different. The authors posit that sentences from the information
and instructions classes will contain more factual words relating to items and loca-

2http://www.suicideproject.org - Last accessed on April 2nd, 2013
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tions. They thus compiled several dictionaries containing terms from the following
categories: “daily items”, “financial terms” “location prepositions” and “locations”.
Sentences are pre-processed by replacing terms with their term category. (“Please
find <financial term> <location prep> <daily item>” would be the normalized ver-
sion of “Please find my insurance in the briefcase”.) From these normalized sentences,
the authors extract n-grams of tokens, ranging from unigrams to tetragrams, which
are then used to train the SVM classifier.
The “subtle” emotions are classified entirely using pattern matching, based on a
list of strongly relevant patterns extracted from the training data, LiveJournal, and
WordNet. If a pattern is matched on a test sentence, the corresponding emotion is
added to its predicted labels.

Finally, Sohn et al. (2012) also combine machine learning and rule-based methods.
They use a Multinomial Naïve Bayes classifier and a rule-induction algorithm trained
on unigrams, bigrams and trigrams of tokens to assign the most common labels
(blame, guilt, hopelessness, information, instructions, love, and thankfulness).
For the rule-based method, the authors compiled a set of regular expressions associ-
ated with an emotion label. If a sentence matches an expression, its label is assigned.
The sentences were first parsed to make it possible for rules to generalize over part
of speech patterns or lemmas, and WordNet was used to allow for synonyms.
The final system’s output is the union of the output of these machine learning and
rule-based methods, in that a sentence is assigned any label that is assigned by either
subsystem. Much like Yang et al. (2012), however, Sohn et al. note that the ma-
chine learners do the bulk of the work, and that the rule-based methods only serve
to boost the performance slightly. The machine learner performed best on those
emotions with sufficient training data, while the rules managed to generalize better
over the more uncommon emotions.

While the participating systems vary in implementation and complexity, there does
seem to be a common thread. While it is possible to train a classifier that performs
reasonably well on the well-represented emotions, the less common classes are harder
to learn, and a rule-based approach may be a better solution for these sparse labels.
However, authors note that the improvement from a rule-based approach over a pure
machine learning system is minimal.
Our own system (Luyckx et al., 2012) consisted of a machine-learning module only,
and this will also be the focus of the current chapter.
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4.4 Classification procedure

4.4.1 Instance creation

The instance creation procedure is analogous to the procedure for the deLearyous case
study (see Chapter 3), with the important difference that we do not parse the text
prior to feature extraction. The reason for this is a practical one: the suicide notes
contain many spelling and grammatical errors, and a parser would get confused by
those errors and annotate the data incorrectly, only adding to the noise. We extracted
n-grams of tokens and of characters from the dataset and again represented them
using binary features, absolute counts, relative counts, and tf-idf scores.

4.4.2 Machine learning

The fact that it is possible to assign more than one label to a single instance makes
the classifier setup slightly more complex. We have tried three different approaches
to solve this problem.

Single-label classification using complex labels

Our first solution implies considering each combination of labels as a single com-
plex label. An instance labeled with the emotions “blame” and “guilt” will thus be
attributed the single label “blame+guilt”. This approach has the advantage that
one can simply apply any standard multi-class classification algorithm to the dataset
without worrying about multi-label instances. The disadvantage, however, is that
since any combination of labels forms a new class, in many cases these complex classes
will be extremely sparse. It is quite common, even, that a specific combination of
labels that occurs in the test set will never have occurred during training, making
instances in that class impossible to predict. One can also not rely on our SVM-
based classifier to understand that the complex label “blame+guilt” is more similar
to “blame” than it is to, for instance, “thankfulness+forgiveness”, since it sees all
labels as distinct and unrelated.

One vs. all ensembles with thresholding

Our second and third systems function in a similar way, but differ in one important
aspect. Both systems are ensembles consisting of one classifier per possible emotion
label. For each emotion, a classifier will be trained on all the instances in the training
set, but all instances which are not labeled with the given emotion will be considered
to be negative, while only the instances labeled with the emotion will be considered
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positive. During testing, each test instance will be classified by each of the 15 (the
number of possible emotions in the dataset) one vs. all classifiers. Each classifier will
return a probability score reflecting how likely it is that the current instance contains
the given emotion.

Where our two one-vs.-all systems differ, is in the way they determine which emotion
labels to assign to a test instance. Both use a thresholding approach, i.e. if a
class probability exceeds a predefined threshold, it will be included as one of the
predicted class labels. However, one system uses a single threshold, while the other
uses two thresholds. The single-threshold system straightforwardly assigns any of
the 15 emotion labels that have a probability that exceeds a given value. The dual-
threshold system, however, also takes into account the predictions of a classifier
trained to recognize sentences which carry no emotions, and thus needs a separate
threshold value for the probability of the document containing no emotion. Only
if the probability of a document not containing any emotions is low enough (below
the no-emotion threshold) do we proceed to assigning those emotion labels whose
probability exceed the emotion threshold.

4.5 Results

To be able to better compare our current results to the results achieved during the
2011 Medical NLP Challenge, we describe them in two steps. In a first phase, the
feature types, feature representations and learner parameters are determined and
evaluated on training data. In a second phase, the best performing parameters
from the first step are applied to an independent test set. We did not make any
modification to the system we selected during the training step, and no parameters
or settings were altered during the test step.

Results on training data: Single-label classification using complex la-
bels

Table 4.2 shows the results for the training experiments where combinations of labels
were interpreted as a single, complex label. We used a modified3 build of LibShort-
Text 1.0 (Yu et al., 2012) to build instances, and used an SVM classifier in a 6-fold
cross-validation setup (6 partitions of 100 training documents) to classify the training
data. We report on micro-averaged F-scores and macro-averaged F-scores and their
standard deviations4.

3See Appendix A.1 for an overview of the modifications we made to LibShortText.
4Not attributing any label to a document is not considered as equivalent to attributing a “neutral”

or “none” label. Macro-averaged F-scores and micro-averaged F-scores thus also do not assume the
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It is important to note that even though the classifiers in these experiments return
complex labels, that these complex labels are decomposed into simple labels prior
to evaluation. Concretely, this means that if our classifier predicts the “anger +
hopelessness” label, we interpret this as the classifier voting for two simple labels, i.e.
“anger” and “hopelessness”. This seems to us to be the only fair approach, as this is
how the systems were evaluated during the 2011 Medical NLP Challenge, and as it
also allows us to compare the results from these experiments with those of the one
vs. all experiments in Tables 4.3 and 4.4 below.

feature type n-gram size feature representation macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.)

token

1

binary 0.172 (±0.011) 0.418 (±0.014)
abs.freq. 0.173 (±0.027) 0.406 (±0.031)
rel.freq. 0.165 (±0.020) 0.394 (±0.017)
tf-idf 0.129 (±0.015) 0.357 (±0.024)

2

binary 0.170 (±0.015) 0.392 (±0.023)
abs.freq. 0.164 (±0.013) 0.387 (±0.028)
rel.freq. 0.152 (±0.026) 0.370 (±0.044)
tf-idf 0.156 (±0.021) 0.394 (±0.022)

character

3

binary 0.183 (±0.009) 0.419 (±0.017)
abs.freq. 0.182 (±0.016) 0.422 (±0.017)
rel.freq. 0.147 (±0.013) 0.378 (±0.014)
tf-idf 0.141 (±0.019) 0.377 (±0.047)

4

binary 0.189 (±0.024) 0.440 (±0.011)
abs.freq. 0.206 (±0.008) 0.437 (±0.017)
rel.freq. 0.155 (±0.008) 0.398 (±0.018)
tf-idf 0.146 (±0.019) 0.391 (±0.019)

5

binary 0.196 (±0.015) 0.448 (±0.012)
abs.freq. 0.191 (±0.021) 0.438 (±0.013)
rel.freq. 0.170 (±0.009) 0.421 (±0.032)
tf-idf 0.162 (±0.009) 0.415 (±0.014)

6

binary 0.190 (±0.009) 0.439 (±0.021)
abs.freq. 0.183 (±0.008) 0.432 (±0.016)
rel.freq. 0.173 (±0.017) 0.417 (±0.027)
tf-idf 0.169 (±0.011) 0.420 (±0.014)

Table 4.2: Results for the complex-label cross-validation experiments on the training data.
Macro-averaged and micro-averaged F1-scores and their standard deviations for each of the
possible feature types and representations.

Results on training data: One vs. all ensembles with a single thresh-
old

Table 4.3 shows the results on training data for the one vs. all experiments using a
single probability threshold. As explained above, if the probability of a class exceeds
a given threshold, it is assigned to the current document. As above, we used a 6-fold
cross-validation setup, with each fold having 100 of the 600 documents in test. The
probability threshold set for the experiments in Table 4.3 was 0.50. It should be
noted that at this stage, this threshold is not an optimal threshold. It was merely

existence of such an empty label. For a short overview of the different possible ways of scoring
multi-label tasks, see Appendix A.2.
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chosen as a reasonable baseline to first determine the most interesting feature types
and feature representations. A threshold of 0.50 seemed reasonable for this purpose,
as it is very close to the threshold we found in Luyckx et al. (2012). However, the
experiments we performed here are not exact matches to those performed during the
shared task, and we can expect the optimal threshold to differ.

feature type n-gram size feature representation macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.)

token

1

binary 0.084 (±0.014) 0.244 (±0.012)
abs. freq. 0.086 (±0.021) 0.240 (±0.009)
rel. freq. 0.179 (±0.025) 0.428 (±0.011)
tf-idf 0.085 (±0.010) 0.227 (±0.016)

2

binary 0.149 (±0.034) 0.355 (±0.017)
abs. freq. 0.145 (±0.033) 0.346 (±0.014)
rel. freq. 0.184 (±0.028) 0.427 (±0.008)
tf-idf 0.167 (±0.034) 0.411 (±0.012)

character

3

binary 0.095 (±0.020) 0.236 (±0.012)
abs. freq. 0.085 (±0.019) 0.224 (±0.008)
rel. freq. 0.161 (±0.017) 0.405 (±0.010)
tf-idf 0.175 (±0.020) 0.415 (±0.009)

4

binary 0.139 (±0.016) 0.345 (±0.013)
abs. freq. 0.134 (±0.015) 0.339 (±0.012)
rel. freq. 0.185 (±0.019) 0.434 (±0.006)
tf-idf 0.168 (±0.027) 0.385 (±0.006)

5

binary 0.154 (±0.022) 0.377 (±0.015)
abs. freq. 0.157 (±0.030) 0.375 (±0.016)
rel. freq. 0.188 (±0.025) 0.445 (±0.009)
tf-idf 0.175 (±0.024) 0.408 (±0.023)

6

binary 0.166 (±0.021) 0.389 (±0.014)
abs. freq. 0.159 (±0.030) 0.392 (±0.014)
rel. freq. 0.193 (±0.020) 0.455 (±0.008)
tf-idf 0.178 (±0.018) 0.433 (±0.014)

Table 4.3: Results for the one vs. all cross-validation experiments on training data using
a probability threshold of 0.50. Macro-averaged and micro-averaged F1-scores and their
standard deviations for each of the possible feature types and representations.

From the results in Table 4.3, we selected the most promising set of parameters
(character 6-grams represented as relative frequencies) and performed a search for the
optimal probability threshold. Figure 4.1 shows the effects of shifting this threshold.
It is clear (and quite logical) that as the threshold goes up, the micro-averaged
precision of the system goes up as well, but the micro-averaged recall suffers greatly.
A balance between precision and recall is struck around a threshold of 0.23. We
therefore select this threshold to apply to test set in the second phase.

Results on training data: One vs. all ensembles with dual thresh-
olds

The previous results (Table 4.3) showed the performance of an ensemble which did
not include a classifier which separates the emotionally-charged sentences from the
unlabeled sentences (as we noted in Section 4.2, calling these instances “neutral”
would be questionable). We also constructed a dual-threshold ensemble, which does
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Figure 4.1: micro-averaged precision, recall and F-score as a function of the probability
threshold set on emotion labels

include a classifier for unlabeled instances. Assigning an emotion label requires that
two conditions be met: firstly, the probability of the document being devoid of emo-
tion (as returned by this extra classifier) should be low enough, and secondly, the
probability of the emotion being present (according to the remaining one vs. all
classifiers) must be sufficiently high. Following a similar train of thought as for the
single-threshold experiments, the no-emotion threshold was set to 0.80 while the
emotion threshold was set to 0.20. These thresholds were shown to be effective in
Luyckx et al. (2012), and thus seemed like a reasonable starting point.

Again we selected the best-performing system from Table 4.4 (the system trained
with character 4-grams in their relative frequencies) and performed a grid search
on the best probability thresholds. Figure 4.2 shows micro-averaged F-scores as a
function of the “emotion” and “no-emotion” thresholds. For clarity, let us re-iterate,
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feature type n-gram size feature representation macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.)

token

1

binary 0.156 (±0.013) 0.404 (±0.007)
abs. freq. 0.156 (±0.011) 0.409 (±0.009)
rel. freq. 0.204 (±0.018) 0.470 (±0.012)
tf-idf 0.155 (±0.021) 0.394 (±0.013)

2

binary 0.188 (±0.027) 0.451 (±0.016)
abs. freq. 0.185 (±0.027) 0.449 (±0.016)
rel. freq. 0.196 (±0.025) 0.453 (±0.013)
tf-idf 0.170 (±0.023) 0.410 (±0.010)

character

3

binary 0.168 (±0.010) 0.410 (±0.014)
abs. freq. 0.173 (±0.018) 0.401 (±0.017)
rel. freq. 0.201 (±0.029) 0.473 (±0.017)
tf-idf 0.211 (±0.022) 0.483 (±0.013)

4

binary 0.190 (±0.022) 0.459 (±0.017)
abs. freq. 0.218 (±0.019) 0.454 (±0.023)
rel. freq. 0.227 (±0.016) 0.487 (±0.010)
tf-idf 0.211 (±0.022) 0.461 (±0.012)

5

binary 0.222 (±0.020) 0.476 (±0.008)
abs. freq. 0.213 (±0.015) 0.472 (±0.025)
rel. freq. 0.227 (±0.017) 0.479 (±0.015)
tf-idf 0.207 (±0.018) 0.462 (±0.011)

6

binary 0.209 (±0.021) 0.482 (±0.020)
abs. freq. 0.201 (±0.017) 0.477 (±0.015)
rel. freq. 0.218 (±0.023) 0.476 (±0.019)
tf-idf 0.201 (±0.021) 0.458 (±0.015)

Table 4.4: Results for the one vs. all cross-validation experiments on training data using
two probability thresholds: one for no-emotion (0.80), one for emotions (0.20). Macro-
averaged and micro-averaged F1-scores and their standard deviations for each of the possible
feature types and representations.

in pseudo code, how the “emotion” and “no-emotion” thresholds interact:

for instance in testset do
if P(no-emotion) > no-emotion threshold then

DO NOT assign any labels to instance;
else

for emotion in emotions do
if P(emotion) > emotion threshold then

ASSIGN emotion label to instance;
end

end
end

end

The best results are reached when the “no-emotion” threshold is set to 0.98, and when
the “emotion” threshold is set to 0.22. In other words, we only very rarely block an
instance from receiving emotion labels based on the predictions of the “no-emotion”
classifier, and we already assign a specific emotion label when its probability crosses
22%.
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Figure 4.2: micro-averaged F-scores as a function of the thresholds set on the probability of
a document not containing any emotion (no-emotion) and on the probability of an emotion
being present (emotion).

Results on independent test data

We now have three systems that were fully calibrated on training data. In a second
phase, we evaluate these systems on unseen test data. Table 4.5 shows the perfor-
mance of the systems and compares them to a baseline which naively assigns all
labels to each document, to the results we achieved in Luyckx et al. (2012), and to
the results of the top-performing system in the 2011 Medical NLP Challenge (Yang
et al., 2012). Note that since the systems that participated in the 2011 Medical NLP
Challenge were evaluated on micro-averaged F-scores, we cannot report on macro-
averaged F-scores in all cases.
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system macro-avg. F1 micro-avg. F1

naïve baseline 0.014 0.017
complex labels 0.208 0.436
OVA (single threshold) 0.235 0.538
OVA (dual threshold) 0.240 0.540
system from Luyckx et al. (2012) (single threshold) 0.473
system from Luyckx et al. (2012) (dual threshold) 0.502
system by Yang et al. (2012) (best performer) 0.614

Table 4.5: Results on test data. Macro-averaged (where available) and micro-averaged
F1-scores.

4.6 Analysis

We first look at what our three systems (the complex-label system, the single-
threshold one vs. all system, and the dual-threshold one vs. all system) have in
common before focusing on to how they are different.
It is might not be surprising that all three systems perform best using the same types
of features. After all, the features carry all the information on which the classifiers
base their decision. The exact setup of the classifier ensemble only helps in better
leveraging this information to determine the correct labels for the test documents,
it will not be able to create information where none exists. What is remarkable,
however, is that the best-performing features are not the more commonly used bag-
of-words features (which we also used in our systems in Luyckx et al. (2012)), but
that character n-grams consistently take the crown. The exact size of these n-grams
appears to matter less, as windows of 4, 5 or 6 characters all seem to be viable.
Table 4.6 shows the training set’s top character n-grams of different sizes according
to information gain.

Whether they are represented in the form of 4-, 5- or 6-grams, the top features
appear to capture the same information, which explains why model’s performance
remains largely unaffected. The top features capture words and phrases that can
immediately be connected to the emotion classification task at hand. As “love” is
one of the possible labels, it is little surprising to see n-grams containing parts of the
word “love” or the phrase “I love you” being weighted as strong predictors. The same
can be said for the relation between “forgive” and the forgiveness label, for instance.
These top features also show us some of the advantages of using character n-grams
as opposed to bag-of-words features: the fact that character n-grams can cross word
boundaries means we can capture highly informative phrases in a single, compact
feature. Character n-grams also provide some robustness against spelling errors and
alternative spellings, which would be harder to capture using token n-grams. ”love
you” and the alternative, more colloquial ”love ya” would for instance be mapped to
the same character 6-gram ”love_y”, whereas it would have to be represented by two
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top char. 4-grams top char. 5-grams top char. 6-grams
love _love _love_
_lov love_ i_love
ove_ _you_ love_y
_you i_lov ove_yo
you_ ove_y ve_you
i_lo ve_yo e_you_
ve_y e_you _i_lov
e_yo _i_lo please
_to_ ease_ lease_
_for lease forgiv
_my_ _john sorry_
ase_ pleas orgive
_the _for_ _forgi
_joh _the_ _jane_
plea thank rgive_
ease _and_ a_n’t_
_i_l forgi _sorry
and_ orgiv ca_n’t
the_ sorry _pleas
john rgive _ca_n’

Table 4.6: Top character tetra-, penta-, and hexagrams according to information gain
weighting.

different features when using word bigrams. All these factors contribute to giving
character n-grams a slight edge over other feature types.

While our three systems prefer similar feature types, there are still important per-
formance differences. The complex-label system and the two one vs. all ensembles
especially perform significantly differently. For reference, Table 4.7 repeats the per-
formance of our three systems.

system macro-avg. F1 micro-avg. F1

complex labels 0.208 0.436
OVA (single threshold) 0.235 0.538
OVA (dual threshold) 0.240 0.540

Table 4.7: Results on test data (repeated from Table 4.5). Macro-averaged and micro-
averaged F1-scores.

The complex label system, which was effectively trained as if every combination of
emotion labels was a single emotion label, performs significantly worse5 than the
one vs. all systems. Table 4.8 shows precision, recall and F-score for each of the 15
possible emotions.

5The statistical significance of the difference between the systems was measured using approxi-
mate randomization testing (Noreen, 1989; Yeh, 2000). (p < 0.05)
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class precision recall F1

abuse 0.000 0.000 0.000
anger 0.077 0.038 0.051
blame 0.107 0.067 0.082
fear 0.000 0.000 0.000
forgiveness 0.000 0.000 0.000
guilt 0.383 0.265 0.313
happiness/peacefulness 0.500 0.062 0.111
hopefulness 0.182 0.053 0.082
hopelessness 0.523 0.454 0.486
information 0.384 0.269 0.316
instructions 0.617 0.476 0.538
love 0.630 0.483 0.546
pride 0.000 0.000 0.000
sorrow 0.143 0.029 0.049
thankfulness 0.543 0.556 0.549

Table 4.8: Results on test data for the complex-label system. Precision, recall and F1-
scores per class.

There are quite a few classes for which the classifier fails to produce any useful pre-
dictions. “abuse”, “fear”, “forgiveness” and “pride” all remain empty, while “anger”,
“blame”, “hopefulness” and “sorrow” also do not manage to cross the 0.10 F-score
barrier. This behavior, however, is not entirely unexpected, as these are all classes
for which we have very little data (we refer to Table 4.1 for the distribution of docu-
ments across emotions). The training for “abuse”, “fear”, “forgiveness” and “pride”
all make up less than 0.50% of the training data, while “anger” (1.38%), “blame”
(2.15%), “hopefulness” (0.94%) and “sorrow” (1.02%) are also strongly underrepre-
sented.

The one vs. all classifiers do not perform any better in this respect, as can be seen in
Tables 4.9 and 4.10. It is on the more strongly represented classes that the differences
become obvious.

Indeed, “hopelessness”, “information”, “instructions”, “love”, and “thankfulness” all
get a strong boost when we use a one vs. all ensemble instead of a non-multi-label
classifier. These are the best represented labels in the training set, which points to a
confirmation of our hypothesis that performance on a given emotion class is strongly
linked to its presence in the training set. The complex-label system evaluated in
Table 4.8 exacerbates the data sparseness problem, since documents that belong to
more than one class will be considered part of a new, combined class, and removed
from the pool of training instances for each of the component emotions. Whereas
a sentence labeled with “anger+blame” will be part of the training set for both the
“anger” and “blame” classes in a one vs. all setup, it will only serve as training
material for the (very rare) “anger+blame” class in the complex-label system. Given
the sparse nature of the 2011 Medical NLP Challenge dataset, using a one vs. all
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class precision recall F1

abuse +0.000 +0.000 +0.000
anger +0.256 +0.000 +0.018
blame +0.004 −0.045 −0.045
fear +0.000 +0.000 +0.000
forgiveness +0.000 +0.000 +0.000
guilt +0.151 +0.000 +0.041
happiness/peacefulness +0.500 +0.000 +0.007
hopefulness +0.151 −0.027 −0.033
hopelessness +0.031 +0.127 +0.081
information −0.015 +0.193 +0.094
instructions −0.025 +0.254 +0.116
love +0.142 +0.139 +0.143
pride +0.000 +0.000 +0.000
sorrow −0.143 −0.029 −0.049
thankfulness +0.061 +0.155 +0.104

Table 4.9: Results on test data for the single-threshold system. Differences in precision,
recall and F1-scores per class compared to the complex-label results.

ensemble for multi-label classification is clearly the better option.

The differences between the single-threshold ensemble and the dual-threshold one
are minimal, and we suggest that given a properly calibrated ensemble with a single
probability threshold, separately classifying and assigning a “no-emotion” label may
not be very useful. This is also apparent from the probability thresholds found for
the dual-threshold system. The threshold for any emotion probability was extremely
close to the threshold found for the single-threshold system (0.23 vs. 0.22), and the
certainty with which the “no-emotion” classifier had to predict the “no-emotion” label
before the instance would be prohibited from gaining any emotion labels was very
high (0.98). The number of instances affected by this second threshold is therefore
minimal.

4.7 Conclusions

In conclusion, we have re-affirmed the power of character n-grams as features for
emotion classification (as character n-grams also appeared to be useful in the previ-
ous shared task, see Chapter 3). We have also shown that it is possible to recognize
emotions in suicide notes with respectable accuracy, on the condition that there is
enough training data available for the given emotion. As soon as an emotion gets too
specific and too rare in the training set, it is almost impossible for an SVM classifier
to pick up on it. Finally, we have demonstrated that for this multi-label classification
task, it is better to build an ensemble of classifiers that are specialized in a single emo-
tion, as opposed to a multi-class classifier which considers combinations of more than
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class precision recall F1

abuse +0.000 +0.000 +0.000
anger +0.173 +0.000 +0.016
blame −0.007 −0.045 −0.046
fear +0.000 +0.000 +0.000
forgiveness +0.000 +0.000 +0.000
guilt +0.125 +0.009 +0.043
happiness/peacefulness +0.500 +0.000 +0.007
hopefulness +0.068 −0.027 −0.034
hopelessness +0.013 +0.136 +0.075
information −0.023 +0.193 +0.089
instructions −0.034 +0.262 +0.113
love +0.138 +0.144 +0.144
pride +0.000 +0.000 +0.000
sorrow −0.143 −0.029 −0.049
thankfulness +0.068 +0.177 +0.118

Table 4.10: Results on test data for the dual-threshold system. Differences in precision,
recall and F1-scores per class compared to the complex-label results.

one emotion as a single class label. A relatively straightforward way of building this
ensemble is to use a single calibrated probability threshold which determines whether
an emotion is probable enough to be included in the set of predicted labels. Adding
an extra threshold for non-emotional sentences shows very little benefit.
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Chapter 5

Model Portability

In Chapters 3 and 4 we examined two very different emotion datasets and showed that
with the right techniques and the right features, it is possible to build classifiers that,
at the very least, achieve significantly higher than baseline performance. We wouldn’t
go so far as to call their performance convincing, and we would only integrate them
in the most undemanding of applications, but it is undeniable that, given enough
training data, a classifier can learn to discriminate between the emotions contained
in text.

A lingering question, however, is to what extent a model that was trained on a given
dataset can be properly termed “an emotion classifier”, with the implication that
it can be applied to emotional text from any source. While evaluating the models
trained on the datasets from deLearyous (Chapter 3) and from the Medical NLP
Challenge (Chapter 4), we took great care not to overfit the models (and consequently,
not to overestimate their performance) either by using a completely separate test set,
or by cross-validating across the dataset, and by keeping the instances originating
from a single document contained within either the training or test partition. We are
confident that the reported scores are good reflections of the real-life performance
of the classifiers, on the condition that the sentences to be classified are from the
same domain as the sentences the classifier was trained on. What happens, however,
if we try to classify a sentence that originates from, for instance, a blog corpus,
with the classifier we trained on suicide notes? Will a classifier be able to generalize
across different domains, or will performance plummet, indicating it is only sensible
to apply a classifier to data from its own domain? Might it be possible to improve
performance by training on data from a different domain when the available data
from the target domain is especially skewed or noisy?
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There has been significant research into cross-domain classification, and various tech-
niques have been proposed to adapt models trained on their source domain to better
fit a target domain. Domain adaptation is a known and much-studied subject in nat-
ural language processing (Blitzer et al., 2006; Daumé III & Marcu, 2006; McClosky,
2010), and while it is not our ambition to improve upon the state of the art, we will
apply some existing domain adaptation techniques to see to what extent our emotion
classifiers hold up when applied to data from different domains.

Our experiments will be limited to two English-language datasets1, which will be
described in Section 5.1. Section 5.2 will outline the different experiments and
form hypotheses as to the expected outcome. Section 5.3 will list the results of
the experiments. We will wrap up this chapter on cross-domain classification in
Section 5.4, where we will analyze the experimental data in some detail, and draw
conclusions.

5.1 Data description

To evaluate the generalizing power of our emotion classifiers and the portability of
features for emotion classification across domains, we need two datasets originating
from different sources. One of the datasets we will experiment on is the 2011 Medical
NLP Challenge dataset, which formed the focus of our investigations in Chapter 4.
As we described in greater detail in Section 4.1, this dataset contains written and
transcribed suicide notes, which are labeled on the sentence level following a frame-
work of 15 emotions.

To represent a different domain, we chose Aman & Szpakowicz’s dataset of emotion-
labeled blog posts (Aman & Szpakowicz, 2007). This dataset contains blog posts
which were also annotated on the sentence level, using Ekman’s six “basic” emotions
(Ekman, 1971). The blog posts were collected by querying the web for posts contain-
ing one or more keywords from a set of seed words (a limited number of these seed
words were selected per emotion. For happiness, for instance, the seed words were
“happy”, “enjoy”, and “pleased”). Four annotators participated in the annotation of
the resulting dataset. The data was annotated at the sentence level, and annotators
were asked to assign one of the six Ekman emotion to the sentence (or, if no emotion
was present, the no emotion label), and to mark those words that contributed to
this decision. The possibility that a sentence contains more than one emotion was
also taken into account, and such sentences were assigned the “mixed emotion” tag.
Every sentence was annotated by two different annotators.
We chose to use only the so-called “gold-standard” subset of this dataset. This

1No Dutch experiments were carried out, since cross-domain classification requires two datasets
labeled according to the same or comparable frameworks. To our knowledge, no second Dutch
dataset that uses a framework comparable to Leary’s Rose is publicly available.
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gold standard dataset contains only the sentences on which all annotators agreed.
Table 5.1 shows the distribution of sentences within this dataset.

label count (percentage)
anger 179 (4%)
disgust 172 (4%)
fear 115 (3%)
happiness 536 (13%)
sadness 173 (4%)
surprise 115 (3%)
no emotion 2800 (68%)

Table 5.1: Distribution of sentences across the possible emotion labels in the gold standard
subset of the blog dataset by Aman & Szpakowicz (2007).

The blog and suicide note datasets represent a similar task realized in strongly dif-
ferent domains. The highly emotionally charged suicide notes from the Medical NLP
Challenge are very different from the more casual, often less intense blog posts.

To evaluate the performance of an emotion classifier across the two domains rep-
resented by these datasets, it is essential that the annotation scheme used in the
datasets be the same, or at least equivalent. However, the 2011 Medical NLP Chal-
lenge dataset is annotated with 15 emotions, which do not entirely overlap with
Ekman’s “big six” emotions. We therefore make a selection of only those emotions
that do overlap, or that have an equivalent in both annotation frameworks. Ta-
ble 5.2 illustrates this procedure. The emotions we will consider in the experiments
are written in bold.

Medical NLP labels “big six” (blog data)
abuse –
anger anger
blame –
– disgust
fear fear
forgiveness –
guilt –
happiness/peacefulness happiness
hopefulness –
hopelessness –
information –
instructions –
love –
pride –
sorrow sadness
– surprise
thankfulness –

Table 5.2: Comparison between the annotation schemes for the 2011 Medical NLP Chal-
lenge and the six “basic” emotions (Ekman, 1971). Overlapping emotions are bolded.
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emotion label suicide notes blog posts
anger 69 (1.5%) 179 (4%)
fear 25 (0.5%) 115 (3%)
happiness 25 (0.5%) 536 (13%)
sadness 51 (1.1%) 173 (4%)
“other” 2012 (42.8%) 287 (7%)
no emotion 2513 (53.5%) 2806 (69%)

Table 5.3: Distribution of sentences across the 4 overlapping emotion labels in both
datasets.

The end result of this matching procedure is illustrated in Table 5.3. We now have
two datasets from different domains, structured for the same emotion classification
task.

The fact that we are dealing with extremely skewed datasets in favor of sentences
that have not been assigned an emotion, is even more obvious when we restrict
the number of emotion classes to the four classes the datasets have in common. For
both datasets, the no emotion sentences are in the majority. The “other” class, which
contains all instances containing one of the emotions we do not consider for our cross-
domain experiments, also makes up a sizable portion of the suicide notes dataset.
The four emotion classes, which for our intents and purposes are the most relevant,
have relatively few instances, which we expect will complicate the classification task
significantly.

5.2 Experimental setup

To investigate the effect of out-of-domain sentences on our SVM-based emotion clas-
sifiers, we carry out four distinct types of experiments. The first type of experiment
does no cross-domain testing whatsoever, simply training a classifier on a single do-
main, and testing it on sentences from the same domain. These experiment will
provide us with a baseline we can use to estimate how much of a drop in perfor-
mance accepting sentences from a different domain results in. We will use the same
6-fold cross-validation setup for the 2011 Medical NLP Challenge dataset as we did
in Chapter 4 (with the important difference that we only consider the 4 emotions
mentioned in Section 5.1), and the blog dataset will also be split into 6 randomized
folds.

In a second set of experiments, we train a classifier on sentences from a source domain,
and test on sentences from a different target domain. This means that in effect, we
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report on the performance of a single classifier that was trained on the entirety of
the source dataset, and tested on the entirety of the target dataset.

The third set of experiments evaluates the effect of adding a small sample of target-
domain sentences to the training data. Just like in the previous experiment, we use
the full source dataset to train the classifier, but we augment this data with one fold
from the target dataset. Each of these augmented classifiers is thus trained on the
entirety of the source domain, plus one fold from the target domain, and tested on
the remaining 5 folds from the target domain.

In the final experiments, we apply a simple domain adaptation technique devised by
Daume III (2007). This domain adaptation technique is easily understood, and starts
from the principle that an instance which works well in the source domain may be a
bad predictor in the target domain, and vice versa. Every feature in the feature space
is tripled: one version of the feature will serve as a general cross-domain version, the
second will denote the presence of the feature in the source domain, and the third
will symbolize the presence in the target domain. The idea is that a classifier will be
able to weight the same feature differently depending on their origins, reflecting its
differing usage in different domains.

To illustrate this approach, imagine that we would like to build an emotion classifier
that can handle data from different internet forums, including a forum on weight
loss, and another on gaming. Consider, then, the problematic role of a verb like
“to lose”. It is clear that this feature will have a very different distribution across
emotions in both forums. Losing a game is generally considered a negative, while
losing weight is more a cause for joy. Of course, the exact interplay between the word
and the author’s emotion is strongly dependent on the context, but in general terms,
we would not expect this feature to be given the same weight in both datasets.

The technique adopted by Daume III is to augment the feature space with domain-
specific versions of each feature. The “general”, original version of the feature will be
realized in instances from both domains, but a “source” version will only be assigned
a value for instances in the source domain, while a “target” version will only receive
a value for instances from the target domain.

Imagine that our feature space contains only “lose”, then the augmented feature
space would contain:

lose, losesource, losetarget

And this is how sentences from the weight loss domain (the “source”) will be trans-
formed into instances:

“I managed to lose weight.”
lose: 1, losesource: 1, losetarget: 0
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while sentences from the gaming forum (the “target” domain) will be constructed as
follows:

”I always lose at the very last level.”
lose: 1, losesource: 0, losetarget: 1

The general version of the feature will allow the classifier to generalize over the two
domains, but the presence of the domain-specific versions also allows a classifier to
assign more importance to a given feature in a specific domain.

Note that this approach presupposes two things: 1) a part of the target data was
annotated and included while training, and 2) it is known which domain each test
sentence originates from.

In the context of our experiments, we apply this technique by training a classifier on
the augmented instances from the full source dataset in addition to instances from
a single fold from the target dataset, and we test on the augmented instances from
the remaining 5 folds of the target dataset.

We will limit ourselves to three types of features, namely bag-of-words features,
character n-grams and emotion lexicon entries —specifically, the NRC word-emotion
association lexicon (Mohammad, 2012b) and the “Affect” category in the LIWC
lexicon (Pennebaker et al., 2001).

5.3 Results

5.3.1 In-domain classification

We first list the results for the in-domain experiments. Table 5.4 shows the results
for the 2011 Medical NLP dataset (Pestian et al., 2012), while Table 5.5 shows the
results for the blog dataset (Aman & Szpakowicz, 2007). Note that the former results
will not match the results from Chapter 4, for the simple reason that we are only
taking 4 out of the possible 15 emotions into account (as we described above, we
restrict our experiments to the emotions that overlap across datasets). We show
only the top performing (in terms of macro-averaged F-scores) settings and feature
representation for each feature type.

Performance on blog data is very respectable (Table 5.5), with character n-grams and
especially LIWC lexicon features being the top performing feature types. Note that
given the way the dataset was compiled (documents were queried using a limited set of
seed keywords and subsequently annotated), it is possible that this high performance
is in part due to the presence of some unnaturally predictive features. We will
investigate this thoroughly in Section 5.4. A glance at Table 5.4 tells us that the
in-domain performance on the Medical NLP dataset using this limited subset of
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feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (rel. freq.) 0.128 (±0.011) 0.620 (±0.011) 0.668 (±0.015)
character 5-grams (rel. freq.) 0.132 (±0.012) 0.641 (±0.017) 0.693 (±0.016)
LIWC 1-grams (rel. freq.) 0.135 (±0.027) 0.558 (±0.028) 0.479 (±0.028)
NRC 1-grams (tf-idf) 0.127 (±0.032) 0.545 (±0.032) 0.501 (±0.031)

Table 5.4: Results for the in-domain experiments on the suicide notes dataset. Macro-
averaged and micro-averaged F1-scores and their standard deviations for the top scoring
feature representations only.

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (binary) 0.490 (±0.027) 0.545 (±0.011) 0.778 (±0.008)
character 4-grams (tf-idf) 0.509 (±0.049) 0.561 (±0.040) 0.789 (±0.016)
LIWC 1-grams (tf-idf) 0.538 (±0.052) 0.565 (±0.039) 0.797 (±0.013)
NRC 1-grams (rel. freq.) 0.401 (±0.045) 0.456 (±0.035) 0.750 (±0.015)

Table 5.5: Results for the in-domain experiments on blog data. Macro-averaged and micro-
averaged F1-scores and their standard deviations for the top scoring feature representations
only.

classes is less convincing. The negative (no-emotion) and “other” sentences are in
the overwhelming majority, which accounts for the high accuracy and micro-averaged
F-scores (many ‘no emotion and “other” guesses are indeed correct). The low macro-
averaged F-scores show that the classifiers struggle to correctly identify instances in
the smaller classes, which, unfortunately, are the classes we’re most interested in.
Character 5-grams and LIWC lexemes perform best, but in general the emotions we
want to identify are much too sparse in the 2011 Medical NLP Challenge dataset,
and we cannot expect a classifier to learn much useful information from it without
some form of balancing.

5.3.2 Cross-domain classification

We will apply several techniques to improve the quality of the dataset, or to lessen
the impact of the problems inherent in the dataset, in the next chapter (Chapter 6).
However, for now, the low in-domain performance for this dataset makes for an
interesting subject of study. In-domain performance is extremely low because of the
sparse nature of the dataset, but what would happen if we attempted to classify the
sentences in this 2011 Medical NLP Challenge dataset using a model trained on a
less sparse dataset, like the blog data by Aman & Szpakowicz (2007)?

Table 5.6 shows the results of exactly this experiment. The blog data was used as
training data, and the resulting model was applied to the suicide notes. No domain
adaptation techniques were applied.

Even training a classifier on the more stable blog dataset does not help us classify
the emotional instances in the suicide notes dataset. In fact, performance is worse
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feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (abs. freq.) 0.076 (±0.043) 0.044 (±0.008) 0.467 (±0.027)
character 6-grams (binary) 0.084 (±0.059) 0.028 (±0.010) 0.498 (±0.026)
LIWC 1-grams (tf-idf) 0.072 (±0.065) 0.039 (±0.017) 0.479 (±0.026)
NRC 1-grams (tf-idf) 0.054 (±0.031) 0.047 (±0.010) 0.453 (±0.022)

Table 5.6: Results for the cross-domain experiments with classifiers trained on the blog
dataset and tested on the suicide note dataset. Macro-averaged and micro-averaged F1-
scores and their standard deviations for the top scoring feature representations only.

than when doing in-domain classification on the 2011 Medical NLP Challenge data
directly. Performance on the four emotion classes only drops slightly, but most of
the instances now find themselves put in the no-emotion class, resulting in a drop in
micro-averaged F-scores and accuracy.

For completeness, we also show the results for the inverse experiment, where the
classifier is trained on the suicide notes data, and applied to the blog data (Ta-
ble 5.7).

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (tf-idf) 0.033 (±0.012) 0.056 (±0.027) 0.510 (±0.014)
character 3-grams (absolute frequency) 0.046 (±0.007) 0.102 (±0.009) 0.207 (±0.013)
LIWC 1-grams (binary) 0.080 (±0.026) 0.010 (±0.009) 0.213 (±0.016)
NRC 1-grams (absolute frequency) 0.057 (±0.016) 0.085 (±0.014) 0.320 (±0.015)

Table 5.7: Results for the cross-domain experiments with classifiers trained on the suicide
note dataset and tested on the blog dataset. Macro-averaged and micro-averaged F1-scores
and their standard deviations for the top scoring feature representations only.

As expected, cross-domain performance using the suicide dataset as source data is
nowhere near the performance of the in-domain experiments. Simply building a
model on a source domain and expecting it to work on a different domain without
modification is clearly too optimistic. The next set of experiments will therefore
slightly adapt the model to the target data before attempting to classify target in-
stances.

5.3.3 Cross-domain classification with partial target train-
ing data

The previous two experiments assumed a single annotated dataset from the source
domain, and no annotated data from the target domain. But it is not unrealistic
that someone who wanted to adapt an emotion classifier to a different domain would
have some time to spend on annotating part of the target dataset. This is what is
being simulated in the experiments summarized in Tables 5.8 and 5.9. The former
table shows the performance of a classifier trained on the blog data with a single fold
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of the suicide note data, and tested on the rest of the suicide data. The latter shows
the performance of classifiers trained on the suicide note data supplemented with a
fold of blog data, applied to the rest of the blog data.

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (abs. freq.) 0.160 (±0.010) 0.407 (±0.023) 0.567 (±0.005)
character 5-grams (binary) 0.180 (±0.008) 0.465 (±0.020) 0.612 (±0.009)
LIWC 1-grams (binary) 0.113 (±0.013) 0.226 (±0.026) 0.518 (±0.009)
NRC 1-grams (binary) 0.105 (±0.011) 0.246 (±0.022) 0.513 (±0.007)

Table 5.8: Results for the cross-domain experiments with classifiers trained on the blog
data supplemented with a single fold of the suicide note data, and tested on the remainder
of the suicide notes. Macro-averaged and micro-averaged F1-scores and their standard
deviations for the top scoring feature representations only.

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (tf-idf) 0.130 (±0.008) 0.157 (±0.009) 0.611 (±0.006)
character 5-grams (tf-idf) 0.108 (±0.025) 0.142 (±0.025) 0.651 (±0.015)
LIWC 1-grams (tf-idf) 0.213 (±0.015) 0.171 (±0.007) 0.299 (±0.016)
NRC 1-grams (tf-idf) 0.127 (±0.006) 0.129 (±0.007) 0.375 (±0.005)

Table 5.9: Results for the cross-domain experiments with classifiers trained on the suicide
note data supplemented by a single fold of blog data, and tested on the remainder of the
blog dataset. Macro-averaged and micro-averaged F1-scores and their standard deviations
for the top scoring feature representations only.

For cross-domain classification, adding part of the suicide note data to the blog data
appears to lead to an improvement compared to using only blog data for training.
This is not unexpected, as the classifier gains information about the target dataset.
More interesting, however, is the fact that the classifiers based on token unigrams and
character n-grams outperform all in-domain classifiers on the suicide note dataset.
In other words, a model trained on blog data and a small part of the suicide note
data performs better on suicide note data than a model that was trained exclusively
on suicide note data. This is a surprising finding, in that it goes against the intuition
that training a classifier on data from the same domain as the test data, will make for
a better performing system. What we see in our experiments seems to be an exception
to this rule. In order to create a “general-purpose” emotion classifier (should such a
thing be possible), one is better off training a model on a general and better-balanced
dataset (even if this data originates from a different domain) and to supplement it
with a part of the target data, than to simply train a classifier on a target dataset
that is noisy and imbalanced.
When we look at the inverse experiment, we see that adding part of the blog posts
to the suicide note data does improve on the pure cross-domain results, but we
are nowhere near in-domain performance for the blog dataset. The 2011 Medical
NLP Challenge data (at least for the classification task we’re attempting to solve) is
clearly not an ideal dataset on which to build a general purpose emotion classifier, as

69



5.3. RESULTS

it appears to be very difficult to learn from, and any information a classifier extracts
from the dataset will be too noisy to be of use.

5.3.4 Cross-domain classification with domain adaptation

The final pair of experiments mirrors the previous pair (we also supplement the
source dataset with a fold from the target dataset before classifying the rest of the
target data), but with the important difference that we modify the feature vectors
to facilitate domain adaptation. As we explained in Section 5.1, we create source-
specific and target-specific versions of each feature, so the classifier can weight each
version individually. Table 5.10 shows the results where the suicide notes are our
target data, whereas Table 5.11 shows the results of a classifier adapted to handle
the blog data.

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (tf-idf) 0.134 (±0.009) 0.550 (±0.012) 0.592 (±0.012)
character 4-grams (tf-idf) 0.138 (±0.011) 0.567 (±0.015) 0.600 (±0.011)
LIWC 1-grams (binary) 0.146 (±0.005) 0.401 (±0.039) 0.580 (±0.017)
NRC 1-grams (binary) 0.159 (±0.032) 0.440 (±0.059) 0.592 (±0.007)

Table 5.10: Results for the cross-domain experiments applying the domain adaptation
technique proposed in Daume III (2007). Classifiers are trained on the blog dataset sup-
plemented with a single fold of the suicide notes data, and tested on the remainder of the
suicide notes. Macro-averaged and micro-averaged F1-scores and their standard deviations
for the top scoring feature representations only.

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (tf-idf) 0.160 (±0.020) 0.226 (±0.018) 0.703 (±0.004)
character 4-grams (binary) 0.216 (±0.025) 0.284 (±0.014) 0.698 (±0.007)
LIWC 1-grams (tf-idf) 0.369 (±0.019) 0.403 (±0.020) 0.697 (±0.007)
NRC 1-grams (abs. freq.) 0.208 (±0.021) 0.256 (±0.031) 0.717 (±0.010)

Table 5.11: Results for the cross-domain experiments applying the domain adaptation
technique proposed in Daume III (2007). Classifiers are trained on all suicide notes sup-
plemented by a single fold of blog data, and tested on the remainder of the blog dataset.
Macro-averaged and micro-averaged F1-scores and their standard deviations for the top
scoring feature representations only.

When comparing the results above (Tables 5.10 and 5.11) to the cross-domain ex-
periments in Tables 5.8 and 5.9, we see a significant improvement in almost all cases
(the token unigrams and character n-grams in Table 5.10 seem to be the exceptions).
The most striking improvements are to be found when we use the blog data as target
data. This makes sense intuitively, since in-domain performance on the blog dataset
was high, indicating that the dataset contains strongly predictive features. Creating
source and target-specific versions of every feature allows our cross-domain classifiers

70



CHAPTER 5. MODEL PORTABILITY

to put more emphasis on these salient keywords from the blog dataset, thus boost-
ing cross-domain performance. We will look at how exactly the SVMs weights the
domain-specific feature realizations in Section 5.4.2.

5.4 Analysis

5.4.1 Examining the unmodified feature space

anger fear happiness sadness
mad scared fun miss
angry nervous hahah sad
bitch afraid lol hurt
annoyed mistake laughing awful
annoying dangerous lovely guilty
shut scares haha longing
hell worry exciting missed
frickin terror happy cried
yelling worried enjoy depression
fuck shudder proud sorry

Table 5.12: Highest-weighted features per class in the blog data (Aman & Szpakowicz,
2007)

The first result that needs to be looked into is the sharp contrast between the high
in-domain scores for the blog dataset and the low in-domain scores for the suicide
note dataset. The former scores show the classifiers performing admirably, with
macro- and micro-averaged F-scores sitting comfortably around the 50% mark2. Ta-
ble 5.12 shows the most heavily weighted token unigram features as determined by
the classifier.

The selected features seem eminently sensible for the corresponding emotion. So
sensible, even, that we have to wonder if these features being rated so highly isn’t a
result of the data collection process followed by Aman & Szpakowicz (2007). Indeed,
and we quote, they “(...) took words commonly used in the context of a particular
emotion. Thus, [they] chose “happy”, “enjoy”, “pleased” as seed words for the hap-
piness category, “afraid”, “scared”, “panic” for the fear category, and so on. Next,
using the seed words for each category, [they] retrieved blog posts containing one or
more of those words.” While there will not be an exact match between the retrieved

2We reiterate here that the averaged f-scores do not take the no-emotion class into account. (See
also Appendix A.2) Since our focus is on accurately identifying the emotional sentences, we believe
that this method of calculating the scores is best suited to the task at hand.

71



5.4. ANALYSIS

blog posts and the annotated emotions, the heavily weighted features in Table 5.12
may very well be these seed words. This means the results are overestimating the
performance of the classifier on real-life data, which will of course not always contain
these seed terms. Regardless of this problem, we have seen that the blog dataset
tends to make for classifiers that generalize better in cross-domain experiments than
the suicide note dataset. The strongest features do tend to be very general and
representative of the corresponding emotion, irrespective of the domain.

anger fear happiness sadness
single treatments pleasure thieves
sucker scared loveliest punished
haunts ashame handkerchiefs stinker
bitterly craze rich needy
neglect severe loveliness numbetal
truthful afraid dwelling perfection
lousy determinated finer succeed
thrilled happend mourn failure
easier arguments peaceful sadness
badge terror contentment wone

Table 5.13: Highest-weighted features per class in the 2011 Medical NLP Challenge dataset
(Pestian et al., 2012)

Table 5.13 shows the top LIWC features (the best performing feature type for the
task) in the 2011 Medical NLP Challenge dataset3. The link between the features
and the emotions is much less obvious than it was for the blog data. We see that quite
a few top features seem very domain-specific, such as “treatments” which is highly
associated with fear. This association seems plausible considering the fact that many
of the authors of the suicide notes in the dataset were afflicted with incurable diseases,
where going through treatment is a thoroughly unpleasant experience. However, this
strong link with fear is much less plausible in any other context. Phenomena like
this go a long way towards explaining why the suicide dataset is not of much help in
cross-domain experiments. The data sparseness problem (remember that less than
4% of the sentences are associated with one of the four selected emotion labels) is
exacerbated by the fact that those features that do help identifying the few emotional
instances in the dataset, are themselves very domain-specific. Any model trained on
the 2011 Medical NLP Challenge dataset will thus not generalize well over data from
other domains.

3Note that even though the features in this experiment originate from a fixed lexicon, it is possible
for them to contain errors and typos, as is apparent in the features “ashame”, “determinated”, or
“happend”. The reason for this is that the LIWC lexicon contains word patterns and not just fully
realized words. The pattern “determin*” will thus match “determined” or “determining”, but it will
also match the grammatically incorrect “determinated”.
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5.4.2 Examining domain-specific features in the modified
feature space

We will now turn to the feature sets that were supplemented using the domain adap-
tation technique proposed in Daume III (2007). As we explained in Section 5.2, each
feature is tripled, meaning that the feature space contains one general version of each
feature, one version for the source domain, and one version for the target domain.
This allows our SVM classifier to weight each version differently, thus accentuating
or downplaying the importance of a given feature in each domain.

Tables 5.14 and 5.15 focus on the domain adaptation task where the blog posts are
used as source data, and the suicide notes are seen as the target dataset. They show
the NRC features (the top performing feature type for this task, see Table 5.10) for
which the weights for the source and target versions were most different. This means
that the classifier determined that these features should have a very different effect
depending on the domain the instance originates from.
Tables 5.16 and 5.17, then, show the most divergent LIWC features (the top perform-
ing feature type, see Table 5.11) in a classifier trained on a source corpus of suicide
notes, and supplemented with a part of the target blog data.

anger fear
feature gen wgt src wgt tgt wgt feature gen wgt src wgt tgt wgt
mad 2.281 2.563 -0.283 nervous 2.511 2.928 -0.417
worse 1.136 1.716 -0.580 afraid 2.071 2.635 -0.564
feelings 0.772 -0.740 1.512 fear 1.292 1.889 -0.597
found -1.789 -1.789 0.000 worried 1.916 2.072 -0.155
show 0.556 -0.555 1.111 children -1.789 -1.789 0.000
miserable 0.332 -0.615 0.946 child -1.789 -1.789 0.000
children 0.554 1.047 -0.493 subject -1.232 -1.232 0.000
clean -1.512 -1.512 0.000 fire 0.688 0.885 -0.197
fall -1.494 -1.494 0.000 faith 0.662 0.870 -0.208
rule 0.768 -0.301 1.070 hospital 0.596 0.755 -0.159

Table 5.14: Features with the highest difference in weight between their general, source,
and target version in the “anger” and “fear” classes. The source is the blog dataset, the
target is the suicide notes dataset.

Extending the feature set with source- and target-specific features had a significant
positive effect when the blog dataset was the source and the suicide notes were the
target. The features in Tables 5.14 and 5.15 correspond to this experiment. We see
the classifier attempting to attribute different weights to features used in the target
dataset, but it is hard to make sense of some of these changes. The term “mad”,
which at first glance is a good predictor of the anger class, originally has a relatively
high weight, which is downplayed considerably for the target realization. The “mad”
feature in the target domain thus acquires a negative weight for the anger class,
which seems to make little sense. When we look at the presence of the word in
both datasets, though, we see that the classifier is effectively capturing some oddities
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happiness sadness
feature gen wgt src wgt tgt wgt feature gen wgt src wgt tgt wgt
love 1.233 2.885 -1.652 cry 1.958 2.905 -0.947
enjoy 1.475 2.835 -1.360 guilty 1.499 2.267 -0.768
loving 1.518 2.847 -1.329 hurt 1.627 2.142 -0.515
wonderful 1.452 2.790 -1.338 awful 2.134 2.393 -0.259
happy 2.092 3.061 -0.969 upset 0.650 1.628 -0.978
glad 1.364 2.608 -1.244 longing 1.692 2.076 -0.384
proud 1.124 2.459 -1.335 depression 1.726 2.042 -0.316
loved 1.137 2.447 -1.310 crying 2.090 2.090 0.000
happiness 1.156 2.431 -1.275 pain 1.239 1.634 -0.396
loves 1.443 2.439 -0.996 hurts 0.562 1.267 -0.706

Table 5.15: Features with the highest difference in weight between their general, source,
and target version in the “happiness” and “sadness” classes. The source is the blog dataset,
the target is the suicide notes dataset.

inherent to the data. In the blog dataset, all 5 sentences that contain the word “mad”
have been assigned the anger label. Strangely, this includes an instance where the
word is not used in its most common sense of “angry”, and where we believe the
anger label has been assigned erroneously:

“But I, with my mad Photoshop skills, was able to convert it to the corect color
space while faithfully maintaining the appearence and detail of the image, including

the gradations.”

More of such examples can be found throughout the feature set. The word “happi-
ness”, which gets a high rating in the blog data but which is significantly downgraded
in the suicide note dataset, is similarly over-associated with the happiness label in
the blog dataset. In the 2011 Medical NLP Challenge dataset, the presence of the
word “happiness” is not nearly as strongly correlated with the happiness class, as
it is often used while wishing happiness to other people, or to express gratitude for
happiness caused by others:

“Mary Smith has never let me down I love them all and wish them happiness and
joy .”

These examples show that using source and target-specific versions of each feature
does successfully help adapt the classifier to the target dataset. The adaptations
may not always be intuitive, but they do capture the quirks of the datasets very
well.

Tables 5.16 and 5.17 show the most ambiguous features for the experiment where
the suicide data is the source, and where the blog data is the target. This specific
experiment was highly successful, as we saw a big boost in performance compared
to a cross-domain classifier where the domain adaptation technique was not applied.
We see the classifier “rectifying” feature weights to better fit the target dataset, and
the target scores do seem more in-line with our intuition than the source scores.
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anger fear
feature gen wgt src wgt tgt wgt feature gen wgt src wgt tgt wgt
well -0.385 -1.852 1.682 have -4.692 -4.572 -0.667
love -3.816 -3.616 -0.514 hate -0.401 -1.478 1.757
mad 0.897 -0.976 2.080 love -3.722 -3.520 -0.515
fucking 1.566 -0.696 2.200 good -2.764 -2.681 -0.265
played 0.212 1.558 -1.209 afraid 1.084 -0.223 1.705
worse 0.148 -1.180 1.565 care -2.233 -2.050 -0.364
like -1.881 -2.282 0.325 best -2.063 -1.932 -0.277
blame -0.992 -1.566 0.843 nervous 2.814 0.786 2.419
lost -0.665 -1.382 0.919 made -1.869 -1.785 -0.206
innocent 0.984 -0.523 1.774 funeral -1.616 -1.603 -0.037

Table 5.16: Features with the highest difference in weight between their general, source,
and target version in the “anger” and “fear” classes. The source is the suicide notes dataset,
the target is the blog dataset.

happiness sadness
feature gen wgt src wgt tgt wgt feature gen wgt src wgt tgt wgt
love -2.323 -3.971 3.642 good -1.973 -3.193 1.957
good -1.363 -3.170 2.970 bad -0.759 -1.842 1.603
loved -0.829 -2.145 2.181 pain -0.128 -1.457 1.891
loves 0.418 -1.598 2.622 lost -0.267 -1.566 1.698
nice -0.011 -1.853 2.278 worry -0.163 -1.311 1.675
have -3.983 -4.005 -0.283 hand -0.481 -1.471 1.298
had -1.888 -2.726 0.944 grand 0.642 -0.839 1.845
wonderful -0.515 -1.605 1.801 lose 0.174 -1.108 1.533
like -1.778 -2.564 0.830 nervous 0.921 1.713 -0.770
better -1.126 -2.033 1.320 best -2.562 -2.476 -0.214

Table 5.17: Features with the highest difference in weight between their general, source,
and target version in the “happiness” and “sadness” classes. The source is the suicide notes
dataset, the target is the blog dataset.

This can be seen as a reflection of the fact that the blog dataset contains more
representative data, and that the emotion categories are less sparse, but it is also in
part a consequence of the fact that it was compiled based on a number of emotion
keywords which turn out to be both intuitively pleasing and highly predictive.

5.5 Conclusions

What can we conclude from these results? For one, that building a classifier that
identifies “emotion” in general, domain-independently, is extremely difficult. Good
in-domain performance for an emotion classifier is probably due to properties of the
data which will likely not exist in a dataset from a different domain. In our case, the
solid performance on the blog data by Aman & Szpakowicz (2007) was due to the
way the data was gathered. The classifiers seemed to pick up on the keywords that
were used to query blogs for suitable posts. When applying our model to a different
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dataset, the performance dropped dramatically, since these cues were not present in
the data from the target domain.

Secondly, there seems to be no “killer” feature type that assures good performance
across different domains. Lexicon-based features seem to fare relatively well, but this
may in part be a consequence of the aforementioned use of emotion keywords during
data construction. LIWC features specifically seemed to hold their own, despite the
fact that the “affect” portion of the LIWC lexicon is relatively small. The NRC
lexicon is much larger, and should theoretically capture more of the sentences, but
the results are less convincing. The small, finely-honed set of emotional keywords
from the LIWC lexicon ensures that the model trained on one domain will generalize
to some extent to the target domain.

Perhaps the most interesting result originating from the series of experiments carried
out in this chapter, is that it is possible to build a cross-domain classifier that out-
performs an in-domain classifier built on target data. These findings are in line with
the research described in Mohammad (2012a), who used a classifier trained on their
Twitter Emotion Corpus to —after applying the same domain adaptation technique
described in Daume III (2007)— improve the classification performance of documents
from a different domain. When a dataset from one domain is excessively sparse or
skewed, it may be better to train a classifier on a better-balanced and more general
and representative dataset. The blog dataset was a good example of this. The fact
that it was constructed based on a few emotion keywords (which in in-domain exper-
iments favors overfitting) might actually work in its favor when we use it as training
data for cross-domain experiments. The documents contained in the dataset are very
typical of the emotions they are labeled with, which makes it easier for a classifier
trained with these documents to generalize over other domains.

Applying domain adaptation techniques such as the technique proposed by Daume III
(2007) can serve two purposes. First, it improves cross-domain classification perfor-
mance by allowing the classifier to set source and target-specific weights for each
feature, which makes it possible for the model to preempt the specificities of the tar-
get data. Secondly, examining the features for which the source and target weights
diverge the most is also an excellent way to discover quirks and oddities in either of
the datasets. In our case, highly diverging feature weights appeared to not always be
a consequence of the different use of certain terms depending on their contexts (med-
ical “treatments” being a source of fear in the suicide note dataset, while there was
no such association in the blog data), but they sometimes unveiled inconsistencies in
the annotation of the data.

To sum up, if one sets out to build an emotion classifier that will “work” on a
wide range of data, it is recommended to use source data that is as prototypical as
possible, and features that can capture prototypical emotion features. While this
may not always be possible, it is recommended to add a set of documents from the
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target dataset to the training set, as this will significantly improve cross-domain
classification performance. It is also recommended to apply domain adaptation prior
to classification, as this procedure (which can be relatively simple) will have a positive
impact in most cases.
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Chapter 6

Noise Reduction

In Chapter 5, we concluded that building a general-purpose “emotion classifier” is
extremely difficult, as a classifier that is built to function in a given domain, on a
specific dataset, is likely to perform poorly on data from a different domain or dataset.
We argued that the generalizing power of an emotion classification model is likely
to improve when the documents are represented using general, domain-independent
features —in our case, the affective keywords included in the LIWC lexicon. We also
saw better performance when the source dataset itself was more stable and contained
less noise.

It is this latter factor —the interplay between noise in the dataset and classifier
performance— that we are concerned with in this chapter. We attempt to filter out
noise from the training dataset prior to model construction, in the hope of building
more stable and reliable classifiers.

6.1 Problem description

The 2011 Medical NLP Challenge dataset (Pestian et al., 2012) is an especially
difficult dataset to work with, certainly when we only consider those four emotions
which overlap with the “Big Six” (Ekman, 1971), as we did in Chapter 5. Its class
distribution is highly skewed, with the unlabeled sentences making up 50% of the
dataset. Even then, only a small part of the remaining sentences (3.6% of the dataset)
belong to retained emotion classes (“anger”, “fear”, “happiness”, and “sadness”),
with the other being relegated to a catch-all “other” class for the purposes of our
experiments (Table 6.1). To compound the problem, the majority set of unlabeled
instances cannot be said to belong to a single “no emotion” class, as it also contains
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sentences on which annotators failed to agree. These unlabeled and “other” instances
seem like they might be a source of confusion for the classifiers, as even intuitively,
the “no emotion” and “other” classes are not clearly delineated, and instead form a
cloud of mostly emotionally unrelated text fragments.

anger 69 (1.5%)
fear 25 (0.5%)
happiness 25 (0.5%)
sadness 51 (1.1%)
other 2012 (42.8%)
no label 2513 (53.4%)

Table 6.1: Distribution of sentences in the 2011 Medical NLP dataset (Pestian et al.,
2012).

The blog dataset by Aman & Szpakowicz (2007) (Table 6.2) also has quite a few
unlabeled instances, but the problem is less acute. The four emotion classes are
better represented (taking up a quarter of the instances), and the “no-emotion” class
is clearly agreed upon. However, the subjective nature of an emotion classification
task makes noise virtually unavoidable, and we might see some improvement using
noise-reduction techniques on this dataset as well.

anger 179 (4%)
fear 115 (3%)
happiness 536 (13%)
sadness 173 (4%)
other 287 (7%)
no-emotion 2800 (69%)

Table 6.2: Distribution of sentences in the blog dataset by Aman & Szpakowicz (2007).

In the next section (Section 6.2), we will try several approaches to minimize the
influence of noise on the classifiers, or to minimize the amount of noise in the dataset
prior to classification.

6.2 Experiments

We will compare three different techniques to automatically reduce the (effect of)
noise in the training dataset, hopefully yielding more stable, generalizable models.
The first technique (Section 6.2.1) is the least invasive approach, as it does not alter
the training data in any way. Instead, it simply weights up or down individual classes,
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boosting the small emotion classes, and downplaying the large, noisy classes. The
second technique (Section 6.2.2) is to apply hierarchical classification. A first binary
classifier determines which instances contain emotion, and a second one —trained on
only the emotion-labeled instances— determines the exact emotion of the instances
that were flagged by the binary classifier. The third approach (Section 6.2.3) makes
a selection of training instances prior to model construction, keeping only those
instances that are highly typical of their class, thereby eliminating instances that are
not representative and –so we hypothesize– only add noise.

6.2.1 Class weighting

Before we start complicating matters by building classifier ensembles or resampling
training instances, we resort to the options that are available to us without further
modification. The package we use for instance creation, LibShortText (Yu et al.,
2012) (which we modified slightly, as described in Appendix A.1), is built around the
LibLinear package for classification (Fan et al., 2008). It is thus possible to use most
of LibLinear’s options, one of which is to modify the cost parameter for individual
classes. The cost parameter C determines the “hardness” of the boundary between
classes. A lower value of C will make for a softer separation between instances
of opposing classes, even if this means misclassifying more training instances. A
higher C will attempt to classify more training items correctly, resulting in a harder
separation between items of differing class.
LibLinear’s default behavior is to use the same value for the cost parameter C,
irrespective of class, but for unbalanced data it may be interesting to increase the
value of the C parameter for underrepresented classes. This will force the classifier to
try and fit the model to classify more minority instances correctly, which in the case
of a highly skewed data distribution increases the likelihood of those smaller classes
being predicted.

Experimental setup

Unfortunately, there is no ready-made answer to the question how strongly one should
weight up the minority classes. We therefore incorporate a rough search for accept-
able class weights in an optimization step. We (somewhat arbitrarily) weight the C
values of the minority classes with exponents of 10, i.e. 10, 100, 10001. Instead of
simply doing a grid search for an acceptable value of C that will apply to every class,
we thus additionally search for a weight factor to apply to the cost parameter of the
smaller emotion classes.

1Note that since we already have results for unmodified C values, the default weight is 1 was not
included in our search space.
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Results and analysis

Tables 6.3 and 6.4 show the classification results after applying extra weight to the
four emotion classes. Note that these results are entirely comparable to the in-domain
results in Chapter 5 (Tables 5.4 and 5.5), as we use the same data and investigate
the same feature types and feature representations. For convenience, we compare the
weighted results to the unweighted results in Figures 6.1 and 6.2.
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Figure 6.1: Results for in-domain experiments on the suicide note dataset, with and
without class weighting.

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (rel. freq.) 0.143 (±0.016) 0.571 (±0.011) 0.632 (±0.019)
character 5-grams (rel. freq.) 0.146 (±0.020) 0.622 (±0.016) 0.684 (±0.021)
LIWC 1-grams (rel. freq.) 0.153 (±0.025) 0.542 (±0.022) 0.463 (±0.023)
NRC 1-grams (tf-idf) 0.167 (±0.024) 0.538 (±0.030) 0.495 (±0.031)

Table 6.3: Results for the in-domain experiments on the suicide notes dataset after apply-
ing higher weights to the emotion classes.
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Figure 6.2: Results for in-domain experiments on the blog data, with and without class
weighting.

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (binary) 0.494 (±0.027) 0.550 (±0.019) 0.783 (±0.007)
character 4-grams (tf-idf) 0.504 (±0.050) 0.558 (±0.038) 0.792 (±0.016)
LIWC 1-grams (tf-idf) 0.515 (±0.049) 0.550 (±0.030) 0.778 (±0.014)
NRC 1-grams (rel. freq.) 0.403 (±0.035) 0.440 (±0.033) 0.715 (±0.008)

Table 6.4: Results for the in-domain experiments on blog data after applying higher
weights to the emotion classes.
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The difference in performance is hardly convincing, on either dataset. We see some
improvement where the class imbalance is the greatest (on the 2011 Medical NLP
Challenge Dataset), but the difference is not significant. On the blog data, where the
class imbalance is less severe, the scales sometimes even tilt towards the negative.
Fitting the model too tightly on training data results —not unexpectedly— in lower
performance on the test data.

More interesting for us is to see in what way adapting misclassification costs per
class can influence the generalizing power of a classifier. Tables 6.5 and 6.6 show how
the cross-domain classifiers from Chapter 5 (Tables 5.6 and 5.7) fare when we apply
individual class weights. Their performance are compared to the unweighted results
in Figures 6.3 and 6.4.

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (abs. freq.) 0.072 (±0.047) 0.044 (±0.012) 0.448 (±0.022)
character 6-grams (binary) 0.078 (±0.060) 0.013 (±0.005) 0.497 (±0.025)
LIWC 1-grams (tf-idf) 0.057 (±0.039) 0.037 (±0.014) 0.440 (±0.032)
NRC 1-grams (tf-idf) 0.047 (±0.035) 0.028 (±0.010) 0.415 (±0.021)

Table 6.5: Results for cross-domain experiments trained on blog data and tested on suicide
notes after applying higher weights to the emotion classes.
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Figure 6.3: Results for cross-domain experiments trained on blog data and tested on
suicide notes, with and without class weighting.

For the cross-domain experiments, we see a similar pattern emerge. Setting individual
class weights does not benefit classifiers trained on the blog data, but there is a slight
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feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (tf-idf) 0.092 (±0.015) 0.089 (±0.017) 0.475 (±0.018)
character 3-grams (abs. freq.) 0.066 (±0.022) 0.066 (±0.020) 0.557 (±0.021)
LIWC 1-grams (binary) 0.080 (±0.027) 0.093 (±0.008) 0.217 (±0.016)
NRC 1-grams (abs. freq.) 0.057 (±0.016) 0.085 (±0.014) 0.320 (±0.015)

Table 6.6: Results for cross-domain experiments trained on suicide notes and tested on
blog data after applying higher weights to the emotion classes.
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Figure 6.4: Results for cross-domain experiments trained on suicide notes and tested on
blog data, with and without class weighting.

improvement (and in the case of token unigrams, a significant improvement) when
we apply higher weights to the underrepresented classes in the suicide notes corpus.
Class weighting is clearly not a surefire way of improving the generalizing power
of a classifier. This is not entirely unexpected, as what works best on the source
dataset (increasing the weights of the underrepresented classes) inevitably results in
harder class boundaries, and thus in a more tightly fitted model. This model, while
it might work well on similar data, is less likely to work on a dataset with different
properties.
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6.2.2 Hierarchical classification

Conceptually speaking, identifying the emotions as represented in discrete emotion
models such as Ekman’s (1971) is a two-step process. Not every utterance contains
an emotion2, so the first step is to determine if an utterance is emotional, after which
we try to determine which emotion is reflected in the utterance.

This conceptual hierarchy is however not reflected in the way we build our classifiers:
the task for the classifier is simply to assign an instance to one of several classes, either
to one of the emotions, or to one of the larger and more loosely defined “other” or “no-
emotion”-classes. As we described in Section 6.2.1, this often results in these larger
classes soaking up instances from the underrepresented classes. Another approach
to avoiding this problem is to follow the conceptual idea of a hierarchical classifier,
and to determine the class of a document in two steps: a top-level classifier will
determine whether the document contains an emotion, and the bottom-level classifier
will determine which emotion is present in the document. Figure 6.5 gives a schematic
representation of this setup.

No emotion

Emotion

anger

fear

happiness

sadness

other

Figure 6.5: Structure of the the hierarchical classifier ensemble.

Since “hierarchical classification” is a term that has many interpretations, and be-
cause even given a single interpretation, there are many possible implementations
(see Silla & Freitas (2011) for a survey of hierarchical classification across different
application domains), we feel it is necessary to explicitly describe what it is we do
when we say we build a “hierarchical classifier”.

Our system consists of two classifiers, one for each level in the hierarchy. The first
classifier is a binary one, and is trained to separate emotional from non-emotional sen-
tences. This “top-level” classifier is trained using the entirety of the training set, but
the four emotion classes and the “other” class are collapsed into one large “emotion”

2Note that this cannot be said when adopting a dimensional model such as Leary’s Interpersonal
Circumplex (Leary, 1957), since following these models, no utterances are truly ever emotion-free.
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category. The second classifier is a multi-class classifier3, and it is trained on part of
the training set, as the instances that were left unlabeled (the “no-emotion” instances)
are not included. The training set for this “bottom-level” classifier thus only con-
tains instances that were annotated as belonging to the “anger”, “fear”, “happiness”,
“sadness”, or “other” classes. Both classifiers are trained independently.

During the test phase, an instance is first classified using the top-level classifier,
which determines if the sentence is emotional. Instances that are classified as being
non-emotional do not get assigned a label, and it is only when this first classifier
predicts “emotion” that we run the sentence through the bottom-level classifier to
determine the final emotional label.

Experimental setup

There are several ways of calibrating our hierarchical classifiers. In the first classifica-
tion step, we can either focus on the precision or on the recall for the “emotion” class.
If we build a high-precision binary classifier for the top level, the advantage is that we
can be reasonably confident that the sentences that get sent to the bottom-level clas-
sifier are indeed emotional. The downside of this approach is that we might discard
quite a few emotional instances in the first step, which can never be retrieved by the
bottom-level classifier. If we instead build a high-recall top-level classifier, we might
label too many documents as emotional, which will result in the over-generation
of emotion labels in the second step. In the following section (Section 6.2.2), we
experiment with both of these options.

Results and analysis

Table 6.7 shows the performance of the top-level binary classifiers (“emotion” vs.
“no-emotion”) that were optimized for precision on the “emotion” class4. Table 6.8
shows the performance of the bottom-level classifier, which determines whether the
emotion a sentence contains is one of “anger”, “fear”, “happiness”, or “sadness”, or if
it belongs to the catchall “other” class. This classifier is tuned for recall on the four
emotion classes5, as the predictions from the top-level classifier should serve as an
adequate initial filter for emotional instances. For this classifier, on the 2011 Medical
NLP Challenge dataset, we were forced to apply the class weighting techniques as
outlined in Section 6.2.1, since without these cost corrections, all instances would be

3Note that internally, libLinear builds n one vs. all classifiers for a n-way multi-class problem.
A test instance is classified by every binary classifier, and the label that has the highest likelihood
is returned.

4The classifier was calibrated to have a high F0.5 score for the “emotion” class, which favors
precision while still taking recall into account.

5High macro-averaged F2 score for the four emotion classes.
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attributed to the “other” class, which is by far the most common category. The results
in Table 6.9 show the performance of the full hierarchical setup: only the instances
that were classified as belonging to the “emotion” class by the top-level classifier are
run through the bottom-level classifier to determine their exact emotion.

suicide notes blog posts
feature type (representation) character 5-grams (binary) character 3-grams (tfidf)
“emotion” precision 0.704 0.791
“emotion” recall 0.575 0.526
“emotion” F0.5 0.674 0.719

Table 6.7: High-precision results for the top-level classifier on both datasets.

suicide notes blog posts
feature type (representation) character 3-grams (rel. freq.) token 1-grams (tfidf)
“anger” precision 0.025 0.181
“anger” recall 0.085 0.531
“anger” F2 0.043 0.383
“fear” precision 0.000 0.276
“fear” recall 0.000 0.513
“fear” F2 0.000 0.438
“happiness” precision 0.000 0.245
“happiness” recall 0.000 0.909
“happiness” F2 0.000 0.589
“sadness” precision 0.051 0.221
“sadness” recall 0.125 0.509
“sadness” F2 0.073 0.404
“other” precision 0.442 0.169
“other” recall 0.959 0.571
“other” F2 0.653 0.387

Table 6.8: High-recall results for the bottom-level classifier on both datasets.

suicide notes blog posts
“anger” precision 0.000 0.494
“anger” recall 0.000 0.229
“anger” F1 0.000 0.313
“fear” precision 0.000 0.809
“fear” recall 0.000 0.330
“fear” F1 0.000 0.469
“happiness” precision 0.000 0.669
“happiness” recall 0.000 0.595
“happiness” F1 0.000 0.630
“sadness” precision 0.125 0.624
“sadness” recall 0.094 0.335
“sadness” F1 0.107 0.436
“other” precision 0.687 0.541
“other” recall 0.576 0.296
“other” F1 0.626 0.383
micro-avg. F1 (±stdev.) 0.600 (±0.010) 0.504 (±0.026)

macro-avg. F1 (±stdev.) 0.147 (±0.021) 0.446 (±0.046)

Table 6.9: Results for hierarchical classifier ensembles with a high-precision top-level clas-
sifier, and a high-recall bottom-level classifier.
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The performance of top-level classifiers optimized for emotion recall6 is shown in
Table 6.10. The bottom-level classifiers in Table 6.11 focus on precision for the four
emotion classes7, to compensate for the non-emotional sentences that will inevitably
slip through the mazes of the top-level classifier. The results of combining both levels
can be seen in Table 6.12.

suicide notes blog posts
feature type (representation) character 5-grams (tf-idf) character 3-grams (abs. freq.)
“emotion” precision 0.654 0.703
“emotion” recall 0.665 0.623
“emotion” F2 0.663 0.638

Table 6.10: High-recall results for the top-level classifier on both datasets.

suicide notes blog posts
feature type (representation) character 3-grams (binary) character 4-grams (rel. freq.)
“anger” precision 0.043 0.306
“anger” recall 0.043 0.207
“anger” F0.5 0.043 0.279
“fear” precision 0.000 0.667
“fear” recall 0.000 0.157
“fear” F0.5 0.000 0.404
“happiness” precision 0.059 0.157
“happiness” recall 0.045 0.974
“happiness” F0.5 0.050 0.189
“sadness” precision 0.000 0.317
“sadness” recall 0.000 0.225
“sadness” F0.5 0.000 0.293
“other” precision 0.438 0.242
“other” recall 0.985 0.411
“other” F0.5 0.492 0.263

Table 6.11: High-precision results for the bottom-level classifier on both datasets.

Analysis

Table 6.13 compares the averaged scores of the hierarchical classifiers to the best
“flat” classifiers described in Chapter 5.

The results of the hierarchical classification experiments are interesting in that they
amplify the phenomenon we observed when we used class weighting. The suicide note
dataset seems to benefit from the hierarchical setup, while the classifiers trained on
blog data take a significant hit. The explanation for this is again to be found in class
imbalance and data sparseness. The suicide dataset has few examples from the four
considered emotion categories, and the “flat” classifier would assign fewer emotion

6Based on F2 scores for the “emotion” class.
7Classifiers were ranked on the basis of macro-averaged F0.5 scores on the four basic emotion

classes.
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suicide notes blog posts
“anger” precision 0.062 0.651
“anger” recall 0.021 0.156
“anger” F1 0.032 0.252
“fear” precision 0.000 1.000
“fear” recall 0.000 0.148
“fear” F1 0.000 0.258
“happiness” precision 0.200 0.407
“happiness” recall 0.045 0.688
“happiness” F1 0.074 0.512
“sadness” precision 0.000 0.686
“sadness” recall 0.000 0.139
“sadness” F1 0.000 0.231
“other” precision 0.638 0.573
“other” recall 0.675 0.286
“other” F1 0.656 0.381
micro-avg. F1 (±stdev.) 0.633 (±0.018) 0.427 (±0.030)

macro-avg. F1 (±stdev.) 0.152 (±0.029) 0.327 (±0.041)

Table 6.12: Results for hierarchical classifier ensembles with a high-recall top-level classi-
fier, and a high-precision bottom-level classifier.

suicide notes blog posts
macro-avg. F1 micro-avg. F1 macro-avg. F1 micro-avg. F1

“flat” classifier 0.143 0.558 0.538 0.565
hierarchy (high rec. top-level) 0.152 0.633 0.327 0.427
hierarchy (high prec. top-level) 0.147 0.600 0.446 0.504

Table 6.13: In-domain performance of the hierarchical classifiers compared to the top-
scoring flat in-domain classifier.

labels still. By forcing the bottom-level classifier to assign labels to all instances that
make it through the top-level classifier, this problem is somewhat mitigated. Sadly,
most of the correctly classified instances are from the “other” emotion class, which is
of lesser interest to us, and the classifier still scores badly on the four emotion classes.
The blog data, however, does not benefit from the hierarchical classification setup.
“Flat” performance was respectable, and no improvement is to be gained from clas-
sifying instances in two steps. Our results are therefore somewhat contradicting
findings by Ghazi et al. (2010), who did find a significant improvement when using a
hierarchical classification setup on the blog dataset. Results are however not entirely
comparable, as we use a subset of 4 emotions of the classes present in the data.

We also apply the above hierarchical classifier ensembles to cross-domain data. The
results are summarized in Table 6.14.

As expected, cross-domain results are quite a bit lower than the in-domain results.
Hierarchical classification results are also not better than flat classification results.
When using the blog data as target data, the micro-averaged F-scores are higher,
while macro-averaged F-scores are significantly lower. This would indicate that our
hierarchical classifier assigns more instances to the “other” class, which is the largest
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target dataset suicide notes blog posts
macro-avg. F1 micro-avg. F1 macro-avg. F1 micro-avg. F1

best “flat” classifier 0.084 0.028 0.080 0.010
hierarchy (high rec. top-level) 0.043 0.021 0.013 0.021
hierarchy (high prec. top-level) 0.074 0.028 0.017 0.032

Table 6.14: Cross-domain performance of the hierarchical classifiers compared to the top-
scoring “flat” cross-domain classifier.

class in our dataset (the “no-emotion” category, containing instances without labels,
is not technically a class label, and is also not considered in the score calculations).
As the instances in the “other” class are less interesting in the context of emotion
classification (we would, ideally, get as many of the sentences belonging to four basic
emotions correct as possible), we have to rule out hierarchical classification as a
solution for cross-domain classification. It does however seem to be a valid approach
for in-domain classification, when skewed data results in a flat classifier performing
badly and assigning too few emotion labels.

6.2.3 Typicality-based resampling

In a final attempt to limit the influence of noise on our emotion classifiers, we turn to
the idea of typicality. Simply put, the typicality of an instance is a measure of how
representative the instance is for its class. By filtering out the training instances that
are not “typical” for their emotion, we hope to obtain a dataset that is less noisy,
and that will result in a more stable model.

Instance typicality is most commonly used in conjunction with lazy learners, such
as memory-based learners (Daelemans & van den Bosch, 2005), and other classifiers
based on the nearest-neighbors algorithm (Brighton & Mellish, 2002). Unlike “eager”
learners (which include SVMs), these classifiers do not abstract away from the set
of training instances, but instead keep all items in memory. A k-Nearest Neighbors
classifier for instance, will determine the class of an incoming test instance by com-
paring it to the training instances that are located nearest in the vector space. Of
course, to do this, all training instances have to be present in memory. Instance
typicality is most commonly used in conjunction with lazy learners, such as memory-
based learners (Daelemans & van den Bosch, 2005), and other classifiers based on
the nearest-neighbors algorithm (Brighton & Mellish, 2002). Unlike “eager” learners
(which include SVMs), these classifiers do not abstract away from the set of training
instances, but instead keep all items in memory. A k-Nearest Neighbors classifier for
instance, will determine the class of an incoming test instance by comparing it to the
training instances that are located nearest in the vector space. Of course, to do this,
all training instances have to be present in memory.
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The disadvantage of using lazy learners, is that memory requirements quickly spiral
out of control. As the number of training instances (and the number of features)
increases, so too does the size of the model, and for very large datasets keeping all
training instances in memory may be out of the question. Secondly, whereas an SVM
classifier simply draws a boundary between instances belonging to different classes
—which may be minimally affected by a few instances lying on the “wrong side” of
the instance space—, a k-Nearest Neighbors classifier will determine the class of an
instance by looking in the instance’s immediate vicinity. If the incoming instance’s
neighbors happen to be outliers, the predicted label is likely to be incorrect. This
is where typicality comes in. First of all, limiting the number of training instances
will reduce the size of the lazy learner’s model. Secondly, it will first filter out the
outliers, which will avoid problems related to noise.

While typicality-based filtering of the training set has been investigated (with varying
results) for lazy learners (Daelemans et al., 1999; Brighton & Mellish, 2002), its
efficacy in combination with eager learners (and with SVMs specifically) is uncertain.
While limiting the presence of atypical instances might indeed result in a more general
SVM model, it is possible that for smaller datasets, reducing the number of training
instances will only serve to further destabilize the classifier.

Experimental setup

The idea behind typicality measures for feature vectors is relatively straightforward:
if an instance of a given class is more similar to instances from other classes than it
is to other instances from the same class, then its typicality can be said to be low.
Conversely, if an instance is more similar to other instances carrying the same label
than it is to instances carrying different labels, then its typicality score will be higher.
It is also possible to put typicality in terms of distances: a highly typical point in the
instance space will, on average, be closer to points of its own class than it will be to
points in other classes, whereas an atypical instance will be located further from its
own classmates than from points in other classes.

Formally, we define typicality as follows:

Typ(x) = Intra(x)
Inter(x)

with

Intra(x) = 1
|same(x)|

|same(x)|∑
i=1

sim(x, same(x)i)

and

Inter(x) = 1
|diff(x)|

|diff(x)|∑
i=1

sim(x, diff(x)i)
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There are many metrics that can be used to calculate the similarity (or the distance)
between instances. For the purposes of our experiments, however, we choose to keep it
simple. Since we’re working with vectors of numeric values, we simply use Euclidean
distances to evaluate how closely pairs of instances are related.

A typicality score of 1.0 would imply that the instance is just as close to other
instances in the same class as it is to instances in other classes. The instance is
neither typical nor atypical. An atypical instance would have a typicality score in
the range of [0.0, 1.0), with lower scores indicating that the instance is more like
instances from different classes than it is like instances from its own class. Typical
instances have scores in the range of (1.0,+∞).

The resulting typicality scores can be used in several ways to trim the set of training
instances. One way is to set a hard threshold on the typicality scores, only allowing
those instances which have a score of more than 1.0. The rationale behind this
approach is that instances with a typicality of 1.0 or below are atypical, and that
they will only serve to confuse the classifier. The disadvantage of this approach is
that for very noisy classes, not many instances will score above the threshold, leaving
the class with very few training instances. Given the fact that we are already dealing
with small datasets, with some very sparse classes, this may be a problem.

A second approach is to set a threshold on the number of instances per class based
on the typicality scores. Only the n most typical instances per class will get included.
Since this technique does not set a lower bound to the typicality score of an instance,
it is still possible that the training data will contain atypical instances. Conversely,
it is also possible for typical instances to get filtered out of the training set.
For our experiments, we need to be very careful where we set our n. In the suicide
notes especially, emotional sentences are rare, so limiting the training instances per
class to a number that is too high will not trim any potential noise from these smaller
classes. On the flipside, setting our n lower than the number of instances in the
smallest class, will severely limit the size of the training corpus. We therefore choose
to uniformly filter out 50% of the data. For each class, half of the instances —the
most atypical ones— are eliminated. Some classes contain a large amount of atypical
instances, and 50% seems to be a reasonable compromise between eliminating atypical
instances and retaining typical ones without upsetting the class balance.

Results and analysis

Tables 6.15 and 6.16 show how well our classifiers work when trained with only those
instances that have a typicality score greater than 1.0, on the 2011 Medical NLP Chal-
lenge data an on the blog dataset respectively. We again work with the same feature
types and feature representations as those used in Chapter 5, Section 5.3.
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feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (rel. freq.) 0.000 (±0.000) 0.000 (±0.000) 0.542 (±0.021)
character 5-grams (rel. freq.) 0.000 (±0.000) 0.000 (±0.000) 0.542 (±0.021)
LIWC 1-grams (rel. freq.) 0.000 (±0.000) 0.000 (±0.000) 0.542 (±0.021)
NRC 1-grams (tf-idf) 0.000 (±0.000) 0.000 (±0.000) 0.542 (±0.021)

Table 6.15: Results for the in-domain typicality experiments on the suicide notes dataset,
using only strictly typical instances.

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (binary) 0.134 (±0.021) 0.331 (±0.040) 0.729 (±0.017)
character 4-grams (tf-idf) 0.000 (±0.000) 0.000 (±0.000) 0.685 (±0.018)
LIWC 1-grams (tf-idf) 0.000 (±0.000) 0.000 (±0.000) 0.685 (±0.018)
NRC 1-grams (rel. freq.) 0.015 (±0.008) 0.048 (±0.031) 0.414 (±0.265)

Table 6.16: Results for the in-domain typicality experiments on blog data, using only
strictly typical instances.

It is hardly necessary to draw up a table comparing the typicality results with the
original in-domain results using the full training set. Filtering out all training in-
stances that are atypical has a dramatic effect on classification performance, as the
classifier based on the suicide notes dataset fails to identify even a single emotional
instance. The classifier trained on the blog data doesn’t fare much better, with only
the token unigram classifier and the classifier based on the NRC lexicon picking up
a few emotional sentences.

blog data suicide notes
anger 1 18
fear 4 16
happiness 478 8
sadness 34 22
other 7 33
no-emotion 2799 2495

Table 6.17: Distribution of strictly typical token unigram instances in both datasets.

When we look at the distribution of typical instances in each dataset (Table 6.17),
this behavior hardly seems surprising. It would seem both datasets are very noisy,
with instances of the same class forming disparate clouds rather than clear clusters.
As a result, if we set the typicality threshold to 1.0, some classes are left with very few
training instances. This of course amplifies the sparseness problem presented by our
already very small datasets. This distribution does shed light on the quality of our
training corpus, however. The “other” class especially has many atypical instances,
which intuitively makes sense, since this class is a grouping of instances with many
different possible labels. Surprisingly, maybe, is that the no-emotion class is relatively
stable. For the suicide notes especially, one would have expected the no-emotion class
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to contain many atypical examples, since this class also contains instances which were
emotional, but on which the annotators could not reach an agreement. However, the
instances in this class seem to be relatively well clustered. Another remarkable fact
is that the “happiness” class in the blog dataset holds its own. The vast majority of
the “happy” instances are typical for their class.

Despite the insights this distribution of typical instances gives us, it is clear that
using only strictly typical instances as training material is not workable –at least for
our datasets. We therefore turn to an alternative approach, which is to use 50% of
the instances in each class, keeping only those with the highest typicality scores. The
distribution of instances across classes thus stays the same, with the only difference
being that each class only contains half the instances. We settled on half of the
instances, since the distribution of typical instances shows that some classes may
contain as few as a single typical instance, while others almost contain nothing but
typical examples. Table 6.18 shows this new distribution, and Tables 6.19 and 6.20
show the classification results.8

8Additional tables have been left out for clarity, but the interested reader can find them in
Appendix A.3.
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emotion label suicide notes blog posts
anger 34 89
fear 12 57
happiness 12 268
sadness 25 86
“other” 1006 143
no emotion 1256 1403

Table 6.18: Distribution of instances across classes in both datasets after eliminating the
50% least typical instances per class.

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (rel. freq.) 0.115 (±0.045) 0.564 (±0.223) 0.457 (±0.051)
character 5-grams (rel. freq.) 0.115 (±0.045) 0.564 (±0.223) 0.457 (±0.051)
LIWC 1-grams (rel. freq.) 0.134 (±0.004) 0.509 (±0.162) 0.452 (±0.055)
NRC 1-grams (tf-idf) 0.153 (±0.023) 0.548 (±0.151) 0.448 (±0.053)

Table 6.19: Results for the in-domain typicality experiments on the suicide notes dataset
using the 50% most typical instances per class.

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (binary) 0.270 (±0.049) 0.303 (±0.045) 0.643 (±0.016)
character 4-grams (tf-idf) 0.000 (±0.000) 0.000 (±0.000) 0.685 (±0.018)
LIWC 1-grams (tf-idf) 0.000 (±0.000) 0.000 (±0.000) 0.685 (±0.018)
NRC 1-grams (rel. freq.) 0.022 (±0.010) 0.024 (±0.010) 0.653 (±0.019)

Table 6.20: Results for the in-domain typicality experiments on blog data using the 50%
most typical instances per class.
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The loss of performance on the blog data is dramatic, as is clearly visible in Figure 6.6.
Character n-grams and LIWC-based unigrams lose their full capacity (indicating that
the resulting classifier systematically put instances in the no-emotion bin), whereas
token unigrams and NRC-based unigrams see a very significant drop in performance.
Figure 6.7 shows the effect of typicality-based resampling on the 2011 Medical NLP
Challenge data. There’s a slight improvement in performance when using NRC-based
unigrams, but even considering this, it seems obvious that keeping all instances in
training is the best option for in-domain classification.
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Figure 6.6: Results for in-domain experiments on blog data, with and without typicality-
based resampling.
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Figure 6.7: Results for in-domain experiments on suicide note data, with and without
typicality-based resampling.
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The interesting point, of course, is whether or not distilling the most typical training
instances makes for a better generalizing model. Tables 6.21 and 6.22 show the
cross-domain results for the approach based on a fixed score threshold.

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (binary) 0.028 (±0.016) 0.030 (±0.017) 0.624 (±0.021)
character 3-grams (abs. freq.) 0.023 (±0.020) 0.020 (±0.017) 0.657 (±0.019)
LIWC 1-grams (binary) 0.036 (±0.018) 0.019 (±0.010) 0.680 (±0.019)
NRC 1-grams (abs. freq.) 0.010 (±0.010) 0.003 (±0.004) 0.677 (±0.019)

Table 6.21: Results for cross-domain typicality experiments trained on suicide notes and
tested on blog data, using only strictly typical instances.

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (abs. freq.) 0.007 (±0.005) 0.044 (±0.008) 0.504 (±0.024)
character 6-grams (binary) 0.002 (±0.002) 0.028 (±0.010) 0.303 (±0.018)
LIWC 1-grams (tf-idf) 0.000 (±0.000) 0.000 (±0.000) 0.542 (±0.021)
NRC 1-grams (tf-idf) 0.003 (±0.002) 0.010 (±0.005) 0.099 (±0.011)

Table 6.22: Results for cross-domain typicality experiments on trained on the blog dataset
and tested on the suicide notes dataset, using only strictly typical instances.

Tables 6.23 and 6.24 show the results for cross-domain experiments using the training
sets comprising of the 50% most typical instances per class.

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (binary) 0.024 (±0.007) 0.066 (±0.019) 0.462 (±0.013)
character 3-grams (abs. freq.) 0.024 (±0.007) 0.069 (±0.016) 0.428 (±0.010)
LIWC 1-grams (binary) 0.027 (±0.007) 0.080 (±0.011) 0.283 (±0.016)
NRC 1-grams (abs. freq.) 0.025 (±0.005) 0.078 (±0.011) 0.408 (±0.018)

Table 6.23: Results for cross-domain typicality experiments trained on suicide notes and
tested on blog data, using only the 50% most typical instances per class.

feature type (representation) macro-avg. F1 (±stdev.) micro-avg. F1 (±stdev.) accuracy (±stdev.)
token 1-grams (abs. freq.) 0.056 (±0.040) 0.069 (±0.014) 0.417 (±0.021)
character 6-grams (binary) 0.001 (±0.008) 0.025 (±0.011) 0.371 (±0.022)
LIWC 1-grams (tf-idf) 0.057 (±0.069) 0.010 (±0.012) 0.525 (±0.024)
NRC 1-grams (tf-idf) 0.036 (±0.037) 0.039 (±0.021) 0.517 (±0.023)

Table 6.24: Results for cross-domain typicality experiments on trained on the blog dataset
and tested on the suicide notes dataset, using only the 50% most typical instances per class.
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Figures 6.8 and 6.9 graphically summarize the performance of typicalilty-based re-
sampling techniques in cross-domain experiments. Unfortunately, the classifiers
trained with typical instances (either using only strictly typical instances or using the
50% most typical instances per class) all perform worse in a cross-domain setup than
classifiers where no such instance selection was performed. The datasets we work
with are small, and filtering out a large part of the instances is far more destructive
to the classification model than the noise that is naturally present in the data. The
experiments we performed so far do not allow us to state whether or not instance
selection based on typicality is always harmful when using SVM classifiers. However,
our results do seem conform to previous research showing that forgetting atypical
examples may do more harm than good in automated language learning (Daelemans
et al., 1999).
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Figure 6.8: Results for cross-domain experiments trained on suicide notes and tested on
blog data, with and without typicality-based resampling.
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Figure 6.9: Results for cross-domain experiments trained on blog data and tested on
suicide note data, with and without typicality-based resampling.

100



CHAPTER 6. NOISE REDUCTION

6.3 Conclusions

We have attempted to limit the influence of noise in the training data using three
very different approaches. We have evaluated whether these approaches improved in-
domain classification performance, but we have also evaluated cross-domain perfor-
mance in the hope that these techniques make for better generalizing models.

We first attempted to limit the influence of noise in the majority classes (the unlabeled
instances and the “other” class) by strengthening the influence of smaller classes by
weighting up their misclassification cost parameter. This approach proves successful
when the class distribution is highly skewed. If a classifier using unmodified class
weights classifies most instances as belonging to the majority class (as was the case
on the 2011 Medical NLP Challenge data), then boosting the cost parameter for
the smaller classes forces the classifier to predict more minority labels, which has a
positive impact on performance. The difference is small, however, and when the class
imbalance is less problematic (as it was for the blog dataset), then weighting up the
minority classes might result in overfitting.
That overfitting is a problem, is immediately obvious when we look at cross-domain
results. Modifying the misclassification cost for the smaller classes has a negative
effect on cross-domain classification. This is logical, since the model is fitted more
tightly on the source data, which makes it less likely that it will be adequate for data
from a different domain.

Our second approach was to build a hierarchical classifier ensemble. A top-level clas-
sifier determines if an instance contains an emotion –any emotion–, and only if an
emotion is detected, does the bottom-level classifier determine the exact nature of
the emotion. As was the case for the previous technique, this approach is helpful to
make sure enough emotion labels are predicted when a flat classifier mostly predicts
the majority class. The approach is not effective on the blog dataset, and neither
does it work on the cross-domain classification tasks. Instead of mitigating misclassi-
fications, the hierarchical setup multiplies the classification errors. An instance that
is erroneously classified as not containing any emotions by the top-level classifier,
simply cannot be retrieved by the bottom-level classifier.

The third and final attempt at reducing the noise in the training data, was to filter
out atypical training instances. We tried eliminating all atypical instances from the
training set, but this results in an accentuation of the data sparseness problem, since
some classes contain a large majority of atypical instances. This means that the in-
stances in these classes are not positioned in a cluster, but that they are positioned in
a disparate cloud, which explains why separating instances into classes is so difficult.
Using only typical instances as training material is detrimental to the classification
performance. We also attempted to eliminate atypical instances in a stratified way:
we eliminated the least typical 50% of instances in each class. This way a large part
of the atypical instances were filtered out, but the class balance was not disturbed.
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This approach also proved fruitless both on in-domain and on cross-domain exper-
iments, leaving us with a solid first indication that it is not beneficial to eliminate
atypical training instances when dealing with eager learners.
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Chapter 7

Conclusions

“What if your computer could understand how you feel?” We started this thesis by
placing the thought of a perfect, practically workable emotion classifier firmly in the
realm of science-fiction. After having researched the problem of automatic emotion
categorization in detail, we do not feel tempted to change our views in this respect.
However, we have become more aware of what exactly holds emotion classification
back, and we have offered some pointers on how to work around —or at the very
least with— the task’s difficulties.

The largest hurdle for automatic emotion classification is simply the subjective nature
of the task. Other problems —noisy datasets, the small size of existing annotated
corpora— are a natural consequence of this primary difficulty. Emotions are subjec-
tive, and this makes it problematic to determine gold standard datasets on which to
base supervised classification systems. Smaller, low-agreement datasets are more the
norm than the exception in emotion classification, and we saw how this influenced
classification performance in two different case studies.

The deLearyous task (Chapter 3) involved detecting the emotional stance of par-
ticipants in a conversation. This “stance” was defined in terms of positions on the
Interpersonal Circumplex, a dimensional emotion framework defined by affinity and
dominance dimensions. Although the conversations in our dataset originated from a
controlled environment, and although they were concerned with a single, well-defined
conversational topic, we noticed that the ways one can express an emotion are numer-
ous and diverse, and that finding the defining features that point to a given emotion
is no simple matter. Classification performance on the task was modest, and while
we learned which features were most useful given the task, we were far from reaching
a level of performance that was high enough to be of practical use.
We also remarked that given the low agreement of human annotators on the same
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emotion classification task, it was perhaps unrealistic to expect an automated sys-
tem to do much better. The interpretation of the emotional charge of an utterance
is highly dependent on extra-textual context, body language, intonation..., which is
information we do not have access to when we classify text.

Our second case study, the 2011 Medical NLP Challenge (Chapter 4), showed another
facet of emotion classification. The challenge dataset contained documents from a
very different domain compared to the aforementioned business conversations. The
goal of the challenge was to classify sentences originating from suicide notes into 11
discrete classes, with the extra difficulty that classes were not mutually exclusive.
Performance on this multi-label classification task was acceptable given our pure
machine learning approach, but it became obvious that classification accuracy on a
given emotion was highly dependent on the emotion’s presence in the training set,
which underlined the importance of a dataset where all emotions are sufficiently
represented.

Despite the fact that the case studies concerned very different domains and emotion
frameworks, we did see some common patterns emerge. In both cases, we saw that,
given a restricted and well-defined domain, character n-grams are a good choice of
feature. At their “worst”, they perform just as well as the more common bag-of-words
features. At their best, however, they are capable of capturing phenomena which are
beyond the grasp of the standard word tokens. The way we implemented them, char-
acters n-grams can cross word boundaries. This means that they can capture salient
word sequences, whereas bag-of-words features end at the word boundary. They
also give us a way to handle spelling errors, since they are able to capture correctly
spelled parts of a word, while wrongly spelled n-grams can safely be discarded. Fi-
nally, since semantically related words (or variants of the same word) often share the
same root, character n-grams can group related words under a single feature by cap-
turing only this common root. Character n-grams are low-level features that are easy
to implement, but they are really quite powerful in a machine learning setup.

A second point that rose from both case studies was —again— that a good dataset
is of primordial importance. Both datasets were relatively small, and we clearly saw
that performance suffered when a class was not adequately represented. Similarly,
while the nature of the task makes a reliable gold standard (in terms of data with high
inter-annotator agreement) a difficult concept, it is clear that a classifier will never
meaningfully perform better than the humans who annotated the data. However,
given the difficult and time-consuming nature of constructing a large, reliable eomtion
dataset, it is unrealistic to expect to have a good, task-specific gold-standard available
for every possible emotion classification task.

This is why we suggested an alternative solution: if the dataset for the task at hand is
too small or does not contain enough information to be able to construct an accurate
classification model, it may be best to make use of a different dataset which is larger

104



CHAPTER 7. CONCLUSIONS

and less difficult to learn. Even if this larger dataset is from a different domain. As
a general rule, one is usually better served by a model trained on a smaller set of
in-domain documents, but we hypothesized that a model built on a larger dataset
from a different domain would generalize better than one built on a small in-domain
dataset, resulting in better predictions.

Through a variety of in-domain and cross-domain experiments (Chapter 5), we at-
tempted to construct a model that would generalize well across emotion classification
datasets. We showed that it is too optimistic to want to construct a true general-
purpose emotion classifier, but that if optimizing the generalizing power of a model
is one’s goal, that the use of emotion lexicons is recommended. We showed that it
may be more interesting to use a smaller, well-constructed lexicon, than it is to use
a bigger lexicon with more coverage, but with potentially more noise.
We also confirmed our previous hypothesis by showing that when a target-domain
dataset is especially small or skewed, it may be beneficial to train a classifier on
a larger, better balanced dataset from a different domain. This is especially true
if it is possible to integrate a small part of target data while training, and if one
can apply some simple domain adaptation techniques, which will significantly boost
cross-domain classification performance.

Finally, we attempted to boost our emotion classifiers’ performance —in both in-
domain and cross-domain setups— by applying a variety of techniques to limit (the
influence of) noise or skewed distributions (Chapter 6). We saw that for in-domain
classification, and in the case of a highly skewed data distribution, it may be beneficial
to boost the minority classes’ misclassification costs in the SVM training algorithm.
In all other cases, however, this had a negative effect on performance. This is es-
pecially true in cross-domain experiments, as the tighter fitting of the model on the
source-domain data will be problematic on target-domain instances.
We have shown —in contrast to previous research by Ghazi et al. (2010)— that per-
forming hierarchical classification is not always beneficial. Similarly, we have shown
that there is no gain to be had from filtering unrepresentative instances from the
training set. Filtering away all strictly atypical instances was destructive for our
datasets, as instances of a single class are not always well-clustered in the instance
space, meaning the majority of the instances were considered “atypical” and thus
filtered away. As a consequence of the drastically reduced number of training in-
stances for these “diffuse” classes, the resulting classifiers performed very badly. But
even filtering away just a part of the atypical instances proved not to be effective,
which corroborates previous research on the topic by Daelemans & van den Bosch
(2005). We concluded that it is better to keep all training instances, as even the bad
examples can be useful to the classifier.

In summary, we have illustrated the challenges involved in the classification of text
according to its author’s emotions. The challenge starts with data collection and
manual annotation, which is always difficult and often problematic. As a result,
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many tasks have very little annotated data available, which makes it very difficult
to train an accurate emotion model. We have suggested ways to improve training
datasets, either by drawing from data from other domains, or by filtering noise from
the training data.

If we turn to the future, the logical recommendation would be to strive to build one
large, reliable corpus of emotion-annotated texts. We have shown that one large,
reliable dataset’s information can be of great use, even in tasks concerning different
domains. We believe a good candidate for an emotion-annotated text corpus would
be a collection of movie subtitles. Movies contain emotionally charged dialogue in
a variety of registers and contexts, which would make the resulting dataset very
versatile. Using movie subtitles also has the added advantage that the audio and
video material can be used in the case of annotator disagreement, which should
make deciding on a gold standard somewhat easier.

However, we cannot help but ask ourselves if, for highly subjective tasks such as
emotion classification, perhaps we should abandon —or at the very least rethink—
the concept of a “gold standard” annotation entirely, and if instead we should not
simply consider each annotator’s output as potentially valid. The way we interpret
an emotion is dependent on our personality, our life experiences, our mood, etc.,
and in this sense, there may not always be a true correct emotion class for a given
emotional document. A classifier output would then no longer be seen as correct or
incorrect, but it would be placed on a scale of acceptability.

This would of course have major implications for the rest of the classification and
evaluation process1, since there may be no single gold standard emotion label for
a given text fragment. We do not expect that the concept of a gold standard for
supervised categorization will disappear anytime soon, and we would rather expect
to see a future where emotion classification has been “solved” through a multi-modal
approach. Our facial expressions, the intonation in our voice, our body language,
our pulse... They all provide information about how we feel. While raw text in itself
may not always contain enough information to determine the emotion of its author,
we are confident that by combining text with other sources of information, we will
eventually reach a point where emotion classification will work, and where it will
work reliably enough to change our lives.

1We refer to the works by Reidsma (Reidsma, 2008; Reidsma & Carletta, 2008; Reidsma & op
den Akker, 2008; Reidsma et al., 2009) for thought-provoking research on the topic of subjective
annotations and their impact on classification tasks.
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Appendix A

Background information

A.1 Modifications to LibShortText 1.0

Libshorttext is a Python package that was designed especially for short text classi-
fication, and it is built around liblinear (Fan et al., 2008), a package for linear SVM
classification. Libshorttext makes some assumptions about instance generation in
its implementation, and while these assumptions are not likely to cause any large
difference in the produced models and their accuracies, we have chosen to modify the
software slightly where we disagreed with them. For transparency, the following is a
list of modifications made on LibShortText 1.0:

• LibShortText only allows the construction of unigrams or bigrams. We have
extended this functionality up to 6-grams.

• LibShortText assumes n-grams to start at the document boundary, i.e. the
first element of the first n-gram of a document will be the first word (or char-
acter, or part of speech tag, depending on the feature type in the source files)
of the document. We instead chose to allow n-grams start before the document
boundary, i.e. a document-initial token trigram would start with two placehold-
ers (because the trigram starts out-of-bounds) followed by the first token in the
document. This allows us to capture these document-initial and document-final
n-grams, whereas without these out-of-bounds placeholders, this is information
the learner would simply not have access to.

• We have replaced LibShortText’s tokenizer with a very simple “pass-through”
tokenizer of our own. LibShortText’s tokenizer strips all non ASCII characters
from the input, which may be appropriate for most English texts, but which
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is less interesting for other languages. Since in the deLearyous dataset, all
tokenizing was done using Frog, we can safely bypass the internal tokenizer.

Fundamentally, Libshorttext’s learner functionality remains untouched, and our mod-
ifications apply only to the instance generation stage.

A.2 Considerations on averaged precision, recall,

and F-scores

Evaluating precision, recall and F-score of classifier predictions on a given class is
relatively straightforward. We refer to the Glossary for more information on the
calculations involved. Calculating the average of one of these measures across mul-
tiple classes is also relatively straightforward, though one will have to make a choice
between micro-averaged F-scores and macro-averaged F-scores. The former option
will give larger classes more weight in the calculation of the average, while the latter
option will consider all classes equally important. Both metrics have their merits and
disadvantages, which is why we report on both where appropriate.

Complications arise when one tries to calculate these same measure for multi-labeled
classification tasks such as those we carried out in Chapter 4. The problematic
element in the evaluation of multi-label classification does not so much arise when
we predict more than one class for a document, but when we predict no class at
all. In the threshold-based approaches we outlined in the case study, it was quite
common that a sentence would not get assigned any emotions, because none of the
emotions were probable enough to exceed the emotion threshold. The question, then,
is whether or not we should consider the absence of a label as a noteworthy result in
itself. More concretely, we could see the absence of a prediction as the presence of a
special “None” label which excludes all other possible labels.

Whether or not we consider such a phantom label in our calculations has important
repercussions for both the results and their interpretation. When calculating average
scores, including the “None” label increases the number of classes to be considered
by one, which in turn significantly alters the scores. In favor of including the “None”
label, one could argue that a classifier should be rewarded for abstaining from assign-
ing a class label when no labels are required. On the other hand, this information
is implicit in the false positives of the other classes. The “None” label also does not
behave like other labels (as it excludes any other predictions), which makes it hard
to justify considering it a regular label in our calculations.

Given these considerations, we have decided to evaluate all multi-label classification
tasks without taking the fictitious empty label into account. Our main argument
is that we want to see how well emotion labels are predicted, and that the neutral
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sentences are of lesser importance. Additionally, the scores on the non-empty labels
give us enough data to infer further information from. Another argument is consis-
tency: the empty label was not considered during the shared task in Chapter 4, and
it makes sense to follow the same pattern in all subsequent experiments.

A.3 Appendix to Chapter 6

This appendix contains tables which were withheld from Chapter 6 to improve read-
ability, and because they were not essential to understand the main points of the
experiments. The tables give detailed results (both in-domain and cross-domain) for
all class weighting experiments as well as for the experiments with typicality-based
resampling.

A.3.1 Extra data for Class weighting

feature type (representation) macro-avg. F1 (±stdev.) improvement using class weights
token 1-grams (rel. freq.) 0.128 (±0.011) +0.015
character 5-grams (rel. freq.) 0.132 (±0.012) +0.014
LIWC 1-grams (rel. freq.) 0.135 (±0.027) +0.018
NRC 1-grams (tf-idf) 0.127 (±0.032) +0.040

Table A.1: Results for the unweighted in-domain experiments on the suicide note data
and the gain (or loss) caused by using individual class weights. (Results repeated from
Table 5.4.)

feature type (representation) macro-avg. F1 (±stdev.) improvement using class weights
token 1-grams (binary) 0.490 (±0.027) +0.004
character 4-grams (tf-idf) 0.509 (±0.049) -0.005
LIWC 1-grams (tf-idf) 0.538 (±0.052) -0.023
NRC 1-grams (rel. freq.) 0.401 (±0.045) +0.002

Table A.2: Results for the unweighted in-domain experiments on blog data and the gain
(or loss) caused by using individual class weights. (Results repeated from Table 5.5.)

feature type (representation) macro-avg. F1 (±stdev.) improvement using class weights
token 1-grams (abs. freq.) 0.076 (±0.043) -0.004
character 6-grams (binary) 0.084 (±0.059) -0.006
LIWC 1-grams (tf-idf) 0.072 (±0.065) -0.015
NRC 1-grams (tf-idf) 0.054 (±0.031) -0.007

Table A.3: Results for the unweighted cross-domain experiments trained on blog data and
tested on suicide notes, and the gain (or loss) caused by using individual class weights.
(Results repeated from Table 5.6.)
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feature type (representation) macro-avg. F1 (±stdev.) improvement using class weights
token 1-grams (tf-idf) 0.033 (±0.012) +0.059
character 3-grams (abs. freq.) 0.046 (±0.007) +0.020
LIWC 1-grams (binary) 0.080 (±0.026) +0.000
NRC 1-grams (abs. freq.) 0.057 (±0.016) +0.000

Table A.4: Results for the unweighted cross-domain experiments trained on the suicide
note data and tested on blog data, and the gain (or loss) caused by using individual class
weights. (Results repeated from Table 5.7.)

A.3.2 Extra data for Typicality-based resampling

feature type (representation) macro-avg. F1 (±stdev.) improvement using typical data
token 1-grams (rel. freq.) 0.128 (±0.011) -0.013
character 5-grams (rel. freq.) 0.132 (±0.012) -0.017
LIWC 1-grams (rel. freq.) 0.135 (±0.027) -0.001
NRC 1-grams (tf-idf) 0.127 (±0.032) +0.026

Table A.5: Results for the regular in-domain experiments on suicide note data and the
gain (or loss) caused by using only the 50% most typical instances.

feature type (representation) macro-avg. F1 (±stdev.) improvement using typical data
token 1-grams (binary) 0.490 (±0.027) -0.220
character 4-grams (tf-idf) 0.509 (±0.049) -0.509
LIWC 1-grams (tf-idf) 0.538 (±0.052) -0.538
NRC 1-grams (rel. freq.) 0.401 (±0.045) -0.379

Table A.6: Results for the regular in-domain experiments on blog data and the gain (or
loss) caused by using only the 50% most typical instances.

feature type (representation) macro-avg. F1 (±stdev.) improvement using typical data
token 1-grams (tf-idf) 0.033 (±0.012) -0.005
character 3-grams (abs. freq.) 0.046 (±0.007) -0.023
LIWC 1-grams (binary) 0.080 (±0.026) -0.044
NRC 1-grams (abs. freq.) 0.057 (±0.016) -0.047

Table A.7: Results for the original cross-domain experiments trained on the suicide note
data and tested on blog data, and the gain (or loss) caused by using only strictly typical
instances.
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feature type (representation) macro-avg. F1 (±stdev.) improvement using typical data
token 1-grams (abs. freq.) 0.076 (±0.043) -0.069
character 6-grams (binary) 0.084 (±0.059) -0.082
LIWC 1-grams (tf-idf) 0.072 (±0.065) -0.072
NRC 1-grams (tf-idf) 0.054 (±0.031) -0.051

Table A.8: Results for the original cross-domain experiments trained on blog data and
tested on suicide notes, and the gain (or loss) caused by using only the 50% most typical
instances.

feature type (representation) macro-avg. F1 (±stdev.) improvement using typical data
token 1-grams (tf-idf) 0.033 (±0.012) -0.011
character 3-grams (abs. freq.) 0.046 (±0.007) -0.022
LIWC 1-grams (binary) 0.080 (±0.026) -0.053
NRC 1-grams (abs. freq.) 0.057 (±0.016) -0.032

Table A.9: Results for the original cross-domain experiments trained on the suicide note
data and tested on blog data, and the gain (or loss) caused by using only the 50% most
typical instances.

feature type (representation) macro-avg. F1 (±stdev.) improvement using typical data
token 1-grams (abs. freq.) 0.076 (±0.043) -0.020
character 6-grams (binary) 0.084 (±0.059) -0.083
LIWC 1-grams (tf-idf) 0.072 (±0.065) -0.015
NRC 1-grams (tf-idf) 0.054 (±0.031) -0.018

Table A.10: Results for the original cross-domain experiments trained on blog data and
tested on suicide notes, and the gain (or loss) caused by using only the 50% most typical
instances.
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Glossary

accuracy In text classification, accuracy refers to the ratio of documents that have been correctly
attributed to their class vs. the total number of documents.
Formally:

acc = correctly classified documents
all documents

or

acc = tp+tn
tp+fp+tn+fn

(where tp = true positives, tn = true negatives, fp = false positives, fn = false negatives).
19, 35

Amazon Mechanical Turk A web service which allows requesters to create human intelligence
tasks, which will then be solved by workers, for a fee. Within the field of computational
linguistics, the Mechanical Turk platform is mostly used for annotation, as it provides a
cost-efficient way to get data annotated by a large number of people (or indeed to get a lot
of data annotated quickly). Almost anyone can be a worker for a Mechanical Turk task,
and it is therefore essential for requesters to build in sanity checks to weed out random or
willfully incorrect input. Amazon also provides ratings for workers, so it is possible to limit
your workers to experienced and trusted individuals. 18

bag-of-words Bag-of-words is a popular approach to constructing feature vectors from text doc-
uments. An index (a “bag of words”) of all words occurring in the training set is compiled.
For each document, a feature vector is created by counting the number of times each word
occurs in the current document. 11, 21, 32, 34, 38, 39, 55, 66, 104

boosting Boosting is an ensemble method wherein the instances of smaller, hard to detect classes
are given higher weights so as to boost their classification performance. 11

chunk A chunk —in the context of linguistics— is a sequence of uninterrupted words that carry
similar syntactic function. Possible chunk types include noun phrase chunks, verb phrase
chunks, etc.
e.g. [NP The black cat] [VP drank] [NP all the milk]. 32

content word A content word is a word which carries lexical meaning, as opposed to function
words, which serve to indicate syntactic function. Content words are usually nouns, adjec-
tives, verbs, and adverbs. 20

cross-validation To better evaluate the performance of a classifier on a dataset, one can perform
n-fold cross-validation. Instead of using a single static training set to train the model and
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a single static test set to evaluate it, for n-fold cross-validation, the dataset is split into n
parts, and n experiments are carried out where a single part of the dataset is held out as the
test set. 50

eager learner An “eager learner” (as opposed to a “lazy learner”) is a learner which, given the
set of training instances, builds a model that abstracts away from the instances on which it
was trained. A Naïve Bayes classifier, for instance, will build a probability model which can
be used to classify new instances. The original training instances are no longer required. 92

F-score The F-score is the harmonic mean of precision and recall.
Formally:

Fβ = (1 + β²). precision.recall
(β².precision)+recall

or in terms of true positives (tp), false negatives (fn) and false positives (fp):

R = tp
tp+fn

(where tp = true positives, fn = false negatives) . 37–39, 54, 56, 66, 71, 108

hashtag On a variety of social networks, a hashtag is a keyword or a phrase (without spaces)
preceded by a hash (#) that serves to indicate the topic or another salient property of the
current post. A tweet can for instance be labeled with the hashtag #2014Olympics to indicate
that it is about the 2014 Olympics. #WhenIWasAKid may group tweets containing anecdotes
from users’ childhoods. Social networks rarely impose restrictions on hashtags, and they take
on many forms and serve many purposes. 22

homograph Homographs are words that have the same written form but have different mean-
ing. A popular example is the difference between “bank” (river bank) and “bank” (financial
institution). 18

information gain Information gain is a measure of how much a feature can contribute to deter-
mining the correct class label of an instance. Mathematically, it measures the difference
between the entropy of a system which has no knowledge from the feature and a system that
does. The larger this difference, the more information is said to be contained by the feature.
Formally:

IGi = H(C)−
∑

v∈Vi

P (v)xH(C|v)

where H(C) is the entropy of the class labels C (−
∑
c∈C

P (c)log2P (c)) and Vi is the set

of values for feature i.
See TiMBL Reference Guide: http://ilk.uvt.nl/timbl/ (Last accessed: July 3rd, 2014). 55

inter-annotator agreement The extent to which annotators agree with each other on the anno-
tation of a given dataset. Inter-annotator agreement is commonly expressed through κ scores
(Cohen’s or Fleiss’ κ), but alternative measures of agreement exist (Bennett, 1954; Scott,
1955). 30, 104

k-Nearest Neighbors classifier A k-NN classifier is a lazy learner which keeps all training in-
stances in memory, and which determines the label of a new instance by determining the
labels of the n training instances that are nearest to it (according to some distance metric).
91, 92
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Latent Semantic Analysis Latent Semantic Analysis is a technique used to model the meaning
of words by analyzing their occurrence in a representative collection of documents. A word
will be represented in function of its occurrence in every document (or, possibly, in every text
fragment) in the dataset. The dimensionality of this term-document matrix is then reduced
using Singular Value Decomposition, which results in a lower-dimensional matrix that retains
the semantic relationships between terms. This matrix can then be used to calculate semantic
similarity between terms, between documents and terms, and between documents. 8, 21

lazy learner A “lazy learner” (as opposed to an “eager learner”) is a learner which does not
attempt to build a generalizing model from the training data. The typical example of a lazy
learner is a k-NN classifier, which keeps all training instances, unchanged, in memory. When
a new instance comes in, its class is determined by comparing it with the training instances
in memory. 91, 92

lemma A lemma is a word in its canonical form. The words “manages”, “managing” and “man-
aged”, for instance, all have the same lemma, namely “manage”. 32

macro-averaged F-score F-scores are a measure of the classification performance for a given
class. To get a global view of the performance of a classifier on a multi-class task, one can
average F-scores. Macro-averaging is on possible technique to calculate the average of mul-
tiple scores. For macro-averaging, the F-score is calculated for each possible class, and the
average of these scores is taken. Formally:

Fmicro =

n∑
c=1

F (tpci ,fpci ,fnci
,tnci

)

n

where ci represents class i in the set of possible classes C = c1, c2...ci...cn with size n.
35, 49, 54, 67, 90, 108

Maximum Entropy A Maximum Entropy classifier builds a model given a set of training in-
stances. The model should satisfy the contraints of the training data, but should make no
decisions whatsoever about constraints that are not reflected in the data. In fact, a ME clas-
sifier attempts to keep uncertainty/entropy at its highest at all times, so the model will be
able to generalize over new data. A ME classifier does not presuppose independence between
features, as is the case for a Naïve Bayes classifier. 46

micro-averaged F-score F-scores are a measure of the classification performance for a given class.
To get a global view of the performance of a classifier on a multi-class task, one can aver-
age F-scores. Micro-averaging is one possible technique to calculate the average of multiple
scores. For micro-averaging, true positives, false positives, false negatives and true negatives
for each class are summed prior to the calculation of the F-score. Formally:

Fmicro = F (
n∑

i=1
tpci ,

n∑
i=1

fpci ,
n∑

i=1
fnci ,

n∑
i=1

tnci )

where ci represents class i in the set of possible classes C = c1, c2...ci...cn with size n.
35, 49, 52, 54, 67, 68, 90, 108

Naïve Bayes A Naïve Bayes classifier is a probabilistic classifier which uses conditional probability
to determine the most probable label of an instance given its (independent) features. 11, 21,
46, 47

n-gram In the context of feature extraction from text, an n-gram is a sequence of n adjacent
textual units. These units can be realized in many different ways. Common n-gram types are
token n-grams (n sequential word tokens) and character n-grams (n sequential characters),
but it is theoretically possible to construct n-grams from any type of sequential data. 21, 32,
35, 37–39, 42, 48, 55, 66, 67, 69, 70, 97, 104
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one vs. all A one vs. all classifier is a classifier which, given a multi-class dataset, pits the instances
of a single class against the instances from all other classes. The term “one vs. all classifier”
is often used to indicate an ensemble of multiple one vs. all classifiers –one for each class
in the dataset–, where the final label predictions are an aggregate of the individual classifier
predictions. 48, 50, 51, 55–57, 87

part of speech The part of speech of a word (also known as “word class”) is the word’s lexical
category based on its syntactic function. Parts of speech include noun, verb, etc. 5, 12, 32,
37, 38, 47, 107

Pearson correlation Formally known as the “Pearson product-moment correlation coefficient”
(PPMCC), the Pearson coefficient is a measure of correlation between two variables. The
coefficient can range between −1 and 1, with 0 indicating no correlation between the vari-
ables, −1 indicating perfect negative correlation (i.e. there is a linear relationship between
variables X and Y; as X goes up, Y goes down by a proportionate amount), and 1 perfect
positive correlation (as X goes up, Y goes up by a proportionate amount).
Formally, the Pearson coefficient is calculated as:

r =

n∑
i=1

(Xi−X̄)(Yi−Ȳ )√
n∑

i=1
(Xi−X̄)2

n∑
i=1

(Yi−Ȳ )2

with X and Y as the variables between which correlation is to be measured. 19, 20
Pointwise Mutual Information Pointwise Mutual Information is a measure of association be-

tween two terms. It weighs the probability of the two terms occurring together against the
probabilities of each term occurring separately:

PMI(x, y) = log
p(x,y)

p(x)p(y)
. 8, 20

precision In text classification, precision refers to the ratio of documents that have been correctly
attributed to a given class vs. the total number of documents attributed to that class.
Formally:

P = documents correctly classified as belonging to Ci
all documents classified as belonging to Ci

or

P = tp
tp+fp

(where tp = true positives, fp = false positives) . 19, 51, 56, 108

recall In text classification, recall refers to the ratio of documents that have been correctly at-
tributed to a given class vs. the total number of documents attributed to that class.
Formally:

R = documents correctly classified as belonging to Ci
all documents truly belonging to Ci

or

R = tp
tp+fn

(where tp = true positives, fn = false negatives) . 19, 51, 56, 108

Support Vector Machines Put simply, an SVM classifier is a binary classification algorithm
which places all training instances in a multidimensional space in such a way that there is a
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maximally large gap between the instances in the positive class and those in the negative class.
The hyperplane drawn in the middle of this gap serves as a boundary for future instances: if
a test instance falls on the positive side of the boundary, it will be labeled as positive, and
an instance mapped on the negative side will be labeled as negative. 11, 35

SVM Support Vector Machines. 10, 11, 21, 35, 40, 41, 46–49, 58, 70, 73, 91, 92, 99, 105, 107,
Glossary: Support Vector Machines

synset Words that are semantically related, i.e. a word and its synonyms. 8, 11

tf-idf The tf-idf score, or “term frequency–inverse document frequency” score, is a measure of
importance of word for a given document in a dataset. It takes into account the number
of times the word occurs in said document, but normalizes it for the frequency of the word
in the entire corpus. Words which occur often in the document, but which are otherwise
relatively rare in the dataset, will thus get a higher tf-idf score. 33, 34, 48

turn In the context of conversations, a turn is a sequence of utterances produced by the same
speaker without interruption by their interlocutor. Interjections and short interruptions by
the listener are not considered as separate turns. It is only when the interlocutor takes the
floor that we indicate a change of turn. 28

Wizard-of-Oz A Wizard-of-Oz experiment is an experiment in which parts of the tasks of a
software application are taken over by a human intelligence. In most cases, the subjects
interacting with the ”wizard” do not know they are in fact interacting with a human being.
In the case of the deLearyous-project, the virtual character was entirely replaced by a human
actor. Due to the nature of the interaction between the player and the virtual character
(the player can see and hear the AI), the player was aware that the AI had been replaced.
All other parameters within the experiment remained constant, however: players could only
talk to the actor using text, while they could see and hear the actor respond directly. The
actor, on the other hand, was transmitting audio and video, but had no access to any other
communication channels. 28, 34

WordNet WordNet is a large network of words which are clustered by meaning into synsets.
These synsets are connected among themselves by relations such as synonymy, hypernymy,
hyponymy... 8, 9, 18, 19, 47

word-sense disambiguation Word-sense disambiguation is concerned with identifying the spe-
cific meaning of a word which may have several homographs. Classic examples include “tear”,
which, depending on the context, can refer to a hole (e.g. in a piece of clothing) or to a
“teardrop”. 6, 19
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