DOMAIN ADAPTATION OF SIMULATED DATA FOR CYBERBULLYING RESEARCH

16 October, 2015

Chris Emmery, Ben Verhoeven, Guy De Pauw, Walter Daelemans

- Cyberbullying detection & AMiCA.
- Public data is scarce.
- Social application; contents are sensitive.

CYBERBULLYING

- Increase of access and mobility amongst youngsters.
- More intrusive, bigger platform.
- Classic scenario, novel forms.

DYNAMICS

Figure: Bullying Role Graph.

Three categories:

- Binary: is this bullying Y/N?
- Fine-grained: role labels, different types of messages.
- Macro: meta-data (profile), network, and image information.

PREVIOUS DATA

nan	ne	platform		pos	neg
CAV	N 2.0	Kongregat	e	42	4802
CAV	N 2.0	Slashdot		60	4303
CAV	N 2.0	Myspace		65	1946
DiY	Т	YouTube		2277	4500
Sar	iTwi	Twitter		300	160
XuT	REC	Twitter		684	1762
KFo	rm	Formsprin	g	369	3915
Dad	lvt	Myspace		311	8938
Dad	Yvt	YouTube		449	4177
Bre	tΤ	Twitter		220	5162
Bre	tTS	Twitter		194	2599

Table: Available cyberbullying datasets.

PREVIOUS PERFORMANCE

paper	data	scores
Yin2000	CAW 2.0	F = .442
Ptaszynski2010	OPJSSS	F = .882
Dinakar2011	Diyt	Acc = .667
Reynolds2011	KForm	Acc = .674
Sanchez2011	SanTwi	Acc = .673
Xu2012	XuTREC	F = .770
Kontostathis2013	KForm	F = .570
Dadvar2013	Dadvl	F = .350
Nahar2013	CAW 2.0	F = .920
Dadvar2013	DavY	F = .640
Bretschneider2014	BretT	F = .726
VanHee2015	AMica	F = .554

Table: Overview of scores per publication.

- Ask.fm Q&A only, anonymity.
- Simulated role-play on SocialEngine by 200 adolescents (14-18).

ANNOTATION

 Detection and Fine-Grained Classification of Cyberbullying Events - Van Hee, Lefever, Verhoeven, Mennes, Desmet, De Pauw, Daelemans & Hoste (2015).

ANNOTATION II

- Types: Threat/blackmail, insult, curse/exclusion, defamation, sexual talk, defense, encouragements.
- Roles: harasser, victim, bystander-defender, bystander-assistant.

name	platform	pos	neg
AMiCA	Ask.fm	3988	88276
AMiCA	Simulated	1180	4612

DOMAIN ADAPTATION

- Compare simulated and real data.
- Not necessarily focussed on classifier performance for *testing* on different domains.
- Identify performance across different *training* sets.

RESEARCH QUESTIONS

- How does human-generated, simulated data relate to real-life instances of cyberbullying in terms of both content and classification performance?
- To what degree does simulated data offer a plausible alternative for real-life data and therefore solve the need for sensitive data?
- How can simulated data help the classification of cyberbullying content through enriching existing data?

LABEL INFORMATION

Text Category	Average Positive Ask.fm Simulated		
insult	/0.13	/0.01	
	49.10	40.01	
curse_exclusion	12.80	10.06	
defense	25.64	29.69	
sexual_post	5.70	0.27	
threat_blackmail	2.35	2.86	
defamation	1.87	2.36	
encouragment	0.48	2.77	
sarcasm	2.03	2.09	
other	0.00	0.00	

Table: Percentage (%) of categorical labels for each AMiCAcorpus platform respectively.

EXPERIMENTAL SET-UP

- X = Ask.fm
- $X_s = Simulated$

	$\mid X$	X_s	$X + X_s$
X	CV	tt	Х
X_s	tt	CV	Х
$X + X_s$	X	Х	CV

- test with equal instances
- test with different POS/NEG ratios (1:1, 1:3, 1:10)

		POS	NEG	NB	SVM
full full	$X \\ X_s$	4000 1000	88000 4000	$.195 \\ .367$.621 .396
$1:10 \\ 1:10$	$X X_s$	1000 400	10000 4000	.364 .093	.613 .213
1:3 1:3	$X X_s$	4000 1000	12000 3000	.560 .417	.756 .449
1:1 1:1	$X X_s$	4000 1000	4000 1000	.739 .702	.834 .673

full	$X \to X_s$.276	.139
1:10	$X \to X_s$.115	.168
1:3	$X \to X_s$.341	.341
1:1	$X \to X_s$.530	.593

full	$X_s \to X$.148	.115
1:10	$X_s \to X$.076	.132
1:3	$X_s \to X$.448	.319
1:1	$X_s \to X$.697	.694

full	$X + X_s$.224	.526
1:10	$X + X_s$.252	.358
1:3	$X + X_s$.490	.579
1:1	$X + X_s$.697	.736

RESULTS: EQUAL FREQUENCIES ACROSS SETS

$1:10 \\ 1:10$	X	1000	1000	.364	.550
	X_s	1000	1000	.093	.213
1:3	X	1000	1000	.539	.698
1:3	X_s	1000	1000	.417	.438
1:1	X	1000	1000	.739	.786
1:1	X_s	1000	1000	.701	.681

PRELIMINARY CONCLUSION

- Results are overall not that surprising!
- $X_s < X + X_s < X$.
- Some hints of over and under-fitting.

1:1	X_s	.673
1:1	$X_s \to X$.694

- Try to use $X + X_s$ to predict X and X_s respectively.
- Balance the fit across sets.
- Qualitative analysis of errors, differences in data.