

AuCoPro Automatic Compound Processing

http://www.tinyurl.com/aucopro

Classification of Noun-Noun Compound Semantics in Dutch and Afrikaans

Ben Verhoeven¹, Walter Daelemans¹ & Gerhard van Huyssteen²

¹ CLiPS – CLG, University of Antwerp, Belgium {Ben.Verhoeven; Walter. Daelemans} @ua.ac.be

² CTexT, NWU, Potchefstroom, South Africa Gerhard. VanHuyssteen@nwu.ac.za

Presented at CLIN 2013 Enschede, The Netherlands

Introduction

- Productivity of a language to create new words
 - Obstacle for computational language understanding
- Meaning of compound is often not clear on its own (ambiguity)
- Implicit semantic relation between constituents
 - e.g. donut seat
 - 'donut-shaped seat'
 - 'seat with a donut nearby'
 - 'seat made of donuts'?

Applications

- Natural language understanding
 - Machine translation
 - Paraphrase may be needed
 - e.g. Antwerp hostel (Eng) -> Auberge à Anvers (Fr)
 - Information retrieval
 - Information extraction
 - Question answering

Related Research (1)

- Focus on
 - English
 - Noun-noun compounds
- Supervised machine learning problem
- Predefined inventory of classes of semantic relations between constituents of compound

Related Research (2) Classification

- Two kinds of classification schemes
 - Paraphrasing preposition
 - E.g. *autodeur* = deur VAN auto
 - Predicate-based classes
 - Class AGENT: 'X is performed by Y'
 - E.g. *studentenprotest* = protest performed by students

Related Research (4) Features

- Taxonomy-based methods
 - Semantic network similarity
 - Word's location in hierarchy of terms
 - E.g. Hyponomy in WordNet
 - E.g. cola < frisdrank < drank < vloeistof
- Corpus-based methods

Related Research (5) Features

- Taxonomy-based methods
- Corpus-based methods
 - Co-occurrence information of constituents in corpus
 - Distributional hypothesis (Harris)
 - Set of contexts in which a word occurs is an implicit representation of its semantics

Annotation (1)

- Semantic information on compounds needed for machine learning
- Explicit description by manual annotation
- Constraints on compound selection
 - Not in dictionary
 - Otherwise, gloss already present
 - Train classifier on systematics of newly produced compounds
 - Constituents in dictionary
 - Semantically relating of unknown words seems pointless

Annotation (2) Scheme and Guidelines

- Adopted from Ó Séaghdha (2008), adapted for Afrikaans and Dutch
- 11 classes of compounds that describe relation between constituents
- Of which 6 semantically specific

-	BE	e.g.	zanger-muzikant	skrywer-boer
-	HAVE		autodeur	blomsteel
-	IN		tuinfeest	nagaktiwiteite
-	ACTOR		studentenprotest	beerjagter
-	INST		hamerslag	tapytborsel
-	ABOUT		postzegelverzameling	kategismusvrae

Annotation (3) Process

Dutch

- Compound list from e-Lex
 1500 noun-noun
- 1802 noun-noun compounds
- Second annotator: 500
- IAA = 60.2 % (Kappa = 0.60)

Afrikaans

- 1500 noun-noun compounds manually selected from Ckarma
- 3 annotators
- IAA = 53.4% (Kappa = 0.53)

Experiment (1)

- Ó Séaghdha (2008) as inspiration
- Lexical similarity
 - Compounds are semantically similar when their respective constituents are semantically similar
 - E.g. mieliesak 'corn bag' and graanblik 'can of grain'

Experiment (2) Vector Creation

- Co-occurrence context for every compound constituent
 - For each instance of constituent, *n* surrounding words were held in memory
 - Size of context: 3 & 5 left and right (Dutch also 1,2 & 4)
 - Relative frequencies of context words stored in vector
- Twente News Corpus (Dutch): 340 million words
- Taalkommisiekorpus (Afrikaans): 60 million words

Experiment (3) Vector Creation

- Instance vectors are concatenation of constituent data
- Relative frequencies for the 1000 most frequent words per constituent (2000 per compound)
- Experiment only on compounds in semantically specific classes
 - BE, HAVE, ABOUT, IN, ACTOR, INST

Principal Component Analysis (PCA)

- Size of vectors: 2000 attributes
- Computationally expensive
- PCA mathematically reduces dimensionality while optimising variance in data
- Correlated attributes are fused into principal components (PCs)
- For now: restriction to 50 PCs

Baseline

- First research for these languages
- Majority baseline, thus:
 - For Dutch: 29.5% (428/1447 class IN)
 - For Afrikaans: 28.2% (407/1439 class ABOUT)

Initial Results

DUTCH	P	R	F
BOW 3	47.1	47.9	47.3
BOW 5	46.7	47.8	47.1
PCA 3	43.7	47.3	43.7
PCA 5	42.9	48.0	43.2
Baseline		29.5	

AFR	P	R	F
BOW 3	50.8	51.6	51.1
BOW 5	50.3	50.8	50.5
PCA 5	49.3	51.3	48.5
PCA 3	47.7	50.5	47.5
Baseline		28.2	

Results of SVM on Dutch and Afrikaans compound semantics, using 10-fold cross-validation

- BOW and PCA[50]
- Size of context: 3 & 5

Initial Discussion

- Both languages show significant improvement over majority baseline
- BOW seems to do better than PCA
- Better results for Afrikaans
 - Possibly due to annotated list being a combination of semantic annotations of 3 persons
 - Most agreed upon class for each compound
- Dutch: just one annotator

More experiments for Dutch

- Selection of context words considered
 - All words (BOW)
 - Only content words (verbs, nouns, adjectives and adverbs) (VNA)
 - Only function words (determiners, prepositions, conjugations, pronouns) (Func)
- PCA: calculation of more PCs

Averages Dutch

F-Score	
46.50	
46.24	
45.70	
44.58	
45.57	
45.87	
45.72	
45.87	
43.64	
45.18	
45.86	
29.50	

Discussion

- Hardly any difference using VNA or Func
- BOW maintains best results

But:

- PCA using 150 PCs approaches BOW results
 - Significant improvement over 50 PCs
- Context size:
 - 1 seems not enough
 - No real differences among the rest

Per-class performance

Dutch BOW 3

Category	F-Score
IN	60.1
ABOUT	52.9
HAVE	36.3
INST	40.6
BE	17.0
ACTOR	42.9
Average	47.3

IN is best performing category

BE does significantly worse than others

Per-class performance

Dutch BOW 3

۸ د. .:	lanna		2
ATTI	kaans	B()VV	3

Category	F-Score	Distribution
IN	60.1	29.5 %
ABOUT	52.9	26.6 %
HAVE	36.3	16.1 %
INST	40.6	16.2 %
BE	17.0	7.3 %
ACTOR	42.9	4.3 %
Average	47.3	

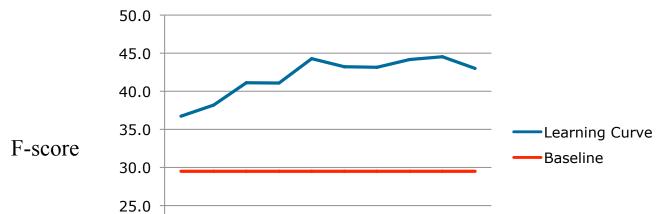
Category	F-Score	Distribution
IN	51.8	20.8 %
ABOUT	61.3	28.2 %
HAVE	23.9	9.7 %
INST	13.6	7.5 %
BE	56.9	25.0 %
ACTOR	62.2	8.8 %
Average	51.1	

Classes with fewer instances seem harder to learn Easily learnable class: ACTOR

Universiteit Antwerpen

Influence of constituent

Dutch PCA[150] 3


	Precision	Recall	F-score
Const 1	40.9	46.3	41.6
Const 2	39.3	42.7	38.7
Compound	45.2	48.4	45.6
Baseline		29.5	

- Larger influence of first constituent on the semantics of the compound (modifier)
- Similar to findings in psycholinguistics where first constituent has more influence on the selection of the linking element (Krott, Schreuder & Baayen, 2002)

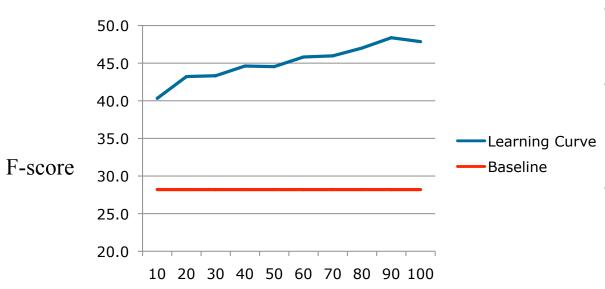
20.0

Learning curves (1) Dutch BOW 3

- Seems to quickly reach a ceiling
- Better than baseline

Percentage of data used

50 60 70 80


90 100

20 30 40

Learning curves (2)

Afrikaans BOW 3

Percentage of data used

- Seems somewhat more promising
- Yet, curve already starts high
- Either more systematicity in annotation
- Or slightly better corpus for this purpose

Discussion

- Is accuracy of 50% relevant?
 - Compare with human judgement: IAA of 50-60%.
 - Not all mistakes are stupid
 - Sometimes incorrect annotation and correct classification
 - E.g. *parochiestelsel* 'parish system'
 - » Annotation: IN
 - » Classification: ABOUT
 - Sometimes both annotation and classification are correct
 - E.g. badkuur 'bath treatment'
 - » Annotation: IN
 - » Classification: INST

Conclusion

- Promising initial results for both languages
- Highest F-scores
 - Afrikaans 51.1% (vs. 28.2%)
 - Dutch 47.3% (vs. 29.5%)
- Indication: Compares favourably with English research with similar methods
 - Ó Séaghdha 58.8%
- More influence of modifier (first constituent) than head
- Learning curve shows need for more semantic information of compounds

Further Research

- Attempt to improve IAA by providing sample sentences during annotation and better educating the annotators (ongoing)
- Investigate taxonomy-based methods
 - Use Cornetto for Dutch
 - Afrikaans also has a small-scale WordNet
- XN compound semantics (ongoing)

AuCoPro Automatic Compound Processing

http://www.tinyurl.com/aucopro

Acknowledgement

Research sponsored by:

- Nederlandse Taalunie (Dutch Language Union)
- Departement of Arts and Culture (DAC) of South Africa
- National Research Foundation (NRF) of South Africa

AuCoPro Automatic Compound Processing

http://www.tinyurl.com/aucopro

Thank you!

For suggestions and/or questions:

Ben Verhoeven

CLiPS – Computational Linguistics Group

University of Antwerp

ben.verhoeven@ua.ac.be
http://www.clips.ua.ac.be/~ben