
A Comparison of Two Different Approaches
to Morphological Analysis of Dutch

Guy De Pauw1, Tom Laureys2, Walter Daelemans1, Hugo Van hamme2

1 University of Antwerp 2 K.U.Leuven
CNTS - Language Technology Group ESAT
Universiteitsplein 1 Kasteelpark Arenberg 10
2610 Antwerpen (Belgium) 3001 Leuven (Belgium)
firstname.lastname@ua.ac.be firstname.lastname@esat.kuleuven.ac.be

Abstract

This paper compares two systems for computa-
tional morphological analysis of Dutch. Both
systems have been independently designed as
separate modules in the context of the FLa-
VoR project, which aims to develop a modular
architecture for automatic speech recognition.
The systems are trained and tested on the same
Dutch morphological database (CELEX), and
can thus be objectively compared as morpho-
logical analyzers in their own right.

1 Introduction

For many NLP and speech processing tasks, an
extensive and rich lexical database is essential.
Even a simple word list can often constitute
an invaluable information source. One of the
most challenging problems with lexicons is the
issue of out-of-vocabulary words. Especially for
languages that have a richer morphology such
as German and Dutch, it is often unfeasible to
build a lexicon that covers a sufficient number
of items. We can however go a long way into
resolving this issue by accounting for novel pro-
ductions through the use of a limited lexicon
and a morphological system.

This paper describes two systems for morpho-
logical analysis of Dutch. They are conceived as
part of a morpho-syntactic language model for
inclusion in a modular speech recognition engine
being developed in the context of the FLaVoR
project (Demuynck et al., 2003). The FLaVoR
project investigates the feasibility of using pow-
erful linguistic information in the recognition
process. It is generally acknowledged that more
accurate linguistic knowledge sources improve
on speech recognition accuracy, but are only
rarely incorporated into the recognition process
(Rosenfeld, 2000). This is due to the fact that
the architecture of most current speech recog-
nition systems requires all knowledge sources to
be compiled into the recognition process at run

time, making it virtually impossible to include
extensive language models into the process.

The FLaVoR project tries to overcome this
restriction by using a more flexible architec-
ture in which the search engine is split into
two layers: an acoustic-phonemic decoding layer
and a word decoding layer. The reduction in
data flow performed by the first layer allows for
more complex linguistic information in the word
decoding layer. Both morpho-phonological
and morpho-syntactic modules function in the
word decoding process. Here we focus on the
morpho-syntactic model which, apart from as-
signing a probability to word strings, provides
(scored) morphological analyses of word can-
didates. This morphological analysis can help
overcome the previously mentioned problem of
out-of-vocabulary words, as well as enhance the
granularity of the speech recognizer’s language
model.

Successful experiments on introducing mor-
phology into a speech recognition system have
recently been reported for the morphologically
rich languages of Finnish (Siivola et al., 2003)
and Hungarian (Szarvas and Furui, 2003), so
that significant advances can be expected for
FLaVoR’s target language Dutch as well. But
as the modular nature of the FLaVoR architec-
ture requires the modules to function as stand-
alone systems, we are also able to evaluate and
compare the modules more generally as mor-
phological analyzers in their own right, which
can be used in a wide range of natural lan-
guage applications such as information retrieval
or spell checking.

In this paper, we describe and evaluate these
two independently developed systems for mor-
phological analysis: one system uses a machine
learning approach for morphological analysis,
while the other system employs finite state tech-
niques. After looking at some of the issues when
dealing with Dutch morphology in section 2, we
discuss the architecture of the machine learn-



ing approach in section 3, followed by the finite
state method in section 4. We discuss and com-
pare the results in section 5, after which we draw
conclusions.

2 Dutch Morphology: Issues and
Resources

Dutch can be situated between English and Ger-
man if we define a scale of morphological rich-
ness in Germanic languages. It lacks certain
aspects of the rich inflectional system of Ger-
man, but features a more extensive inflection,
conjugation and derivation system than En-
glish. Contrary to English, Dutch for instance
includes a set of diminutive suffixes: e.g. ap-
pel+tje (little apple) and has a larger set of suf-
fixes to handle conjugation.

Compounding in Dutch can occur in dif-
ferent ways: words can simply be concate-
nated (e.g. plaats+bewijs (seat ticket)), they
can be conjoined using the ‘s’ infix (e.g. toe-
gang+s+bewijs (entrance ticket)) or the ‘e(n)’
infix (e.g. fles+en+mand (bottle basket)). In
Dutch affixes are used to produce derivations:
e.g. aanvaard+ing (accept-ance).

Morphological processes in Dutch account for
a wide range of spelling alternations. For in-
stance: a syllable containing a long vowel is
written with two vowels in a closed syllable (e.g.
poot (paw)) or with one vowel in an open syl-
lable (e.g. poten (paws)). Consonants in the
coda of a syllable can become voiced (e.g. huis -
huizen (house(s)) or doubled (e.g. kip - kippen
(chicken(s))). These and other types of spelling
alternations make morphological segmentation
of Dutch word forms a challenging task. It
is therefore not surprising to find that only a
handful of research efforts have been attempted.
(Heemskerk, 1993; Dehaspe et al., 1995; Van
den Bosch et al., 1996; Van den Bosch and
Daelemans, 1999; Laureys et al., 2002). This
limited number may to some extent also be due
to the limited amount of Dutch morphological
resources available.

The Morphological Database of CELEX

Currently, CELEX is the only extensive and
publicly available morphological database for
Dutch (Baayen et al., 1995). Unfortunately,
this database is not readily applicable as an in-
formation source in a practical system due to
both a considerable amount of annotation er-
rors and a number of practical considerations.
Since both of the systems described in this pa-

per are data-driven in nature, we decided to
semi-automatically make some adjustments to
allow for more streamlined processing. A full
overview of these adjustments can be found in
(Laureys et al., 2004) but we point out some of
the major problems that were rectified:

• Annotation of diminutive suffix and unan-
alyzed plurals and participles was added
(e.g. appel+tje).

• Inconsistent treatment of several suffixes
was resolved (e.g. acrobaat+isch (acro-
bat+ic) vs. agnostisch (agnostic)).

• Truncation operations were removed
(e.g. filosoof+(isch+)ie (philosophy)).

The Task: Morphological Segmentation

The morphological database of CELEX con-
tains hierarchically structured and fully tagged
morphological analyses, such as the following
analysis for the word ‘arbeidsfilosofie’ (labor
philosophy):

N

�
�

�
�

�
�
�

H
H

H
H

H
H

H

N

arbeid

N←N.N

s

N

�
��

H
HH

N

filosoof

N←N.

ie

The systems described in this paper deal with
the most important subtask of morphological
analysis: segmentation, i.e. breaking up a word
into its respective morphemes. This type of
analysis typically also requires the modeling of
the previously mentioned spelling changes, ex-
emplified in the above example (arbeidsfilosofie
→ arbeid+s+filosoof+ie). In the next 2 sec-
tions, we will describe two different approaches
to the segmentation/alternation task: one us-
ing a machine-learning method, the other using
finite state techniques. Both systems however
were trained and tested on the same data, i.e.
the Dutch morphological database of CELEX.

3 A Machine Learning Approach

One of the most notable research efforts model-
ing Dutch morphology can be found in Van den
Bosch and Daelemans (1999). Van den Bosch
and Daelemans (1999) define morphological
analysis as a classification task that can be
learned from labeled data. This is accomplished



at the level of the grapheme by recording a local
context of five letters before and after the focus
letter and associating this context with a mor-
phological classification which not only predicts
a segmentation decision, but also a graphemic
(alternation) and hierarchical mapping.

The system described in Van den Bosch
and Daelemans (1999) employs the ib1-ig

memory-based learning algorithm, which uses
information-gain to attribute weighting to the
features. Using this method, the system is able
to achieve an accuracy of 64.6% of correctly an-
alyzed word forms. On the segmentation task
alone, the system achieves a 90.7% accuracy of
correctly segmented words. On the morpheme
level, a 94.5% F-score is observed.

Towards a Cascaded Alternative

The machine learning approach to morpholog-
ical analysis described in this paper is inspired
by the method outlined in Van den Bosch and
Daelemans (1999), but with some notable differ-
ences. The first difference is the data set used:
rather than using the extended morphological
database, we concentrated on the database ex-
cluding inflections and conjugated forms. These
morphological processes are to a great extent
regular in Dutch. As derivation and compound-
ing pose the most challenging task when mod-
eling Dutch morphology, we have opted to con-
centrate on those processes first. This allows us
to evaluate the systems with a clearer insight
into the quality of the morphological analyzers
with respect to the hardest tasks.

Further, the systems described in this paper
use the adjusted version of CELEX described in
section 2, instead of the original dataset. The
main reason for this can be situated in the con-
text of the FLaVoR project: since our mor-
phological analyzer needs to operate within a
speech recognition engine, it is paramount that
our analyzers do not have to deal with truncated
forms, as it would require us to hypothesize
unrealized forms in the acoustic input stream.
Even though using the modified dataset does
not affect the general applicability of the mor-
phological analyzer itself, it does entail that a
direct comparison with the results in Van den
Bosch and Daelemans (1999) is not possible.

The overall design of our memory-based sys-
tem for morphological analysis differs from the
one described in Van den Bosch and Daelemans
(1999) as our approach takes a more traditional
stance with respect to classification. Rather

than encoding different types of classification
in conglomerate classes, we have set up a cas-
caded approach in which each classification task
(spelling alternation, segmentation) is handled
separately. This allows us to identify problems
at each point in the task and enables us to op-
timize each classification step accordingly. To
avoid percolation of bad classification decisions
at one point throughout the entire classifica-
tion cascade, we ensure that all solutions are re-
tained throughout the entire process, effectively
turning later classification steps into re-ranking
mechanisms.

Alternation

The input of the morphological analyzer is a
word form such as ‘arbeidsfilosofie’. As a first
step to arrive at the desired segmented output
‘arbeid+s+filosoof+ie’, we need to account for
the spelling alternation. This is done as a pre-
cursor to the segmentation task, since prelimi-
nary experiments showed that segmentation on
a word form like ‘arbeidsfilosoofie’ is easier to
model accurately than segmentation on the ini-
tial word form.

First, we record all possible alternations on
the training set. These range from general al-
ternations like doubling the vowel of the last
syllable (e.g. arbeidsfilosoof) to very detailed,
almost word-specific alternations (e.g. Europa
→ euro). Next, these alternations in the train-
ing set are annotated and an instance base is ex-
tracted. Table 1 shows an example of instances
for the word ‘aanbidder’ (admirer). In this ex-
ample we see that alternation number 3 is asso-
ciated with the double ‘d’, denoting a deletion
of that particular letter.

Precision Recall F-score

MBL 80.37% 88.12% 84.07%

Table 2: Results for alternation experiments

These instances were used to train the
memory-based learner TiMBL (Daelemans et
al., 2003). Table 2 displays the results for the
alternation task on the test set. Even though
these appear quite modest, the only restriction
we face with respect to consecutive processing
steps lies in the recall value. The results show
that 255 out of 2,146 alternations in the test set
were not retrieved. This means that we will not
be able to correctly analyze 2.27% of the test
set (which contains 11,256 items).



Left Context Focus Right Context Combined Class

- - - - - a a n b i d –a -aa aan 0
- - - - a a n b i d d -aa aan anb 0
- - - a a n b i d d e aan anb nbi 0
- - a a n b i d d e r anb nbi bid 0
- a a n b i d d e r - nbi bid idd 0
a a n b i d d e r - - bid idd dde 0
a n b i d d e r - - - idd dde der 3
n b i d d e r - - - - dde der er- 0
b i d d e r - - - - - der er- r– 0

Table 1: Alternation instances for ‘aanbidder’

Segmentation

A memory-based learner trained on an instance
base extracted from the training set constitutes
the segmentation system. An initial feature set
was extracted using a windowing approach sim-
ilar to the one described in Van den Bosch and
Daelemans (1999). Preliminary experiments
were however unable to replicate the high seg-
mentation accuracy of said method, so that ex-
tra features needed to be added. Table 3 shows
an example of instances extracted for the word
‘rijksontvanger’ (state collector). Experiments
on a held-out validation set confirmed both left
and right context sizes determined in Van den
Bosch and Daelemans (1999)1 . The last two
features are combined features from the left and
right context and were shown to be beneficial
on the validation set. They denote a group con-
taining the focus letter and the two consecutive
letters and a group containing the focus letter
and the three previous letters respectively.

A numerical feature (‘Dist’ in Table 3) was
added that expresses the distance to the previ-
ous morpheme boundary. This numerical fea-
ture avoids overeager segmentation, i.e. a small
value for the distance feature has to be compen-
sated by other strong indicators for a morpheme
boundary. We also consider the morpheme that
was compiled since the last morpheme boundary
(features in the column ‘Current Morpheme’).
A binary feature indicates whether or not this
morpheme can be found in the lexicon extracted
from the training set. The next two features
consider the morpheme formed by adding the
next letter in line.

Note however that the introduction of these
features makes it impossible to precompile the
instance base for the test set, since for instance

1Context size was restricted to four graphemes for
reasons of space in Table 3.

the distance to the previous morpheme bound-
ary can obviously not be known before actual
segmentation takes place. We therefore set up
a server application and generated instances on
the fly.

1,141,588 instances were extracted from the
training set and were used to power a TiMBL
server. The optimal algorithmic parameters
were determined with cross-validation on the
training set2. A client application extracted
instances from the test set and sent them to
the server on the fly, using the previous out-
put of the server to determine the value of the
above-mentioned features. We also adjusted the
verbosity level of the output so that confidence
scores were added to the classifier’s decision.

A post-processing step generated all possible
segmentations for all possible alternations. The
possible segmentations for the word ‘apotheker’
(pharmacist) for example constituted the fol-
lowing set: {(apotheek)(er), (apotheker),
(apotheeker), (apothek)(er)}. Next, the confi-
dence scores of the classifier’s output were mul-
tiplied for each possible segmentation to ex-
press the overall confidence score for the mor-
pheme sequence. Also, a lexicon extracted from
the training set with associated probabilities
was used to compute the overall probability of
the morpheme sequence (using a Laplace-type
smoothing process to account for unseen mor-
phemes). Finally, a bigram model computed the
probability of the possible morpheme sequences
as well.

Table 4 describes the results at different
stages of processing and expresses the number of
words that were correctly segmented. Only us-
ing the confidence scores output by the memory-
based learner (equivalent to using a non-ranking

2
ib1-ig was used with Jeffrey divergence as distance

metric, no weighting, considering 11 nearest neighbors
using inverse linear weighting.



Left Right Current Next

Context Focus Context Dist Morpheme Morpheme Combined Class

- - - - r i j k s 0 r 1 ri 0 rij —r 0
- - - r i j k s o 1 ri 0 rij 1 ijk –ri 0
- - r i j k s o n 2 rij 1 rijk 1 jks -rij 0
- r i j k s o n t 3 rijk 1 rijks 0 kso rijk 1
r i j k s o n t v 0 s 1 so 0 son ijks 1
i j k s o n t v a 0 o 0 on 1 ont jkso 0
j k s o n t v a n 1 on 1 ont 1 ntv kson 0
k s o n t v a n g 2 ont 1 ontv 0 tva sont 0
s o n t v a n g e 3 ontv 0 ontva 0 van ontv 0
o n t v a n g e r 4 ontva 0 ontvan 0 ang ntva 0
n t v a n g e r - 5 ontvan 0 ontvang 1 nge tvan 0
t v a n g e r - - 6 ontvang 1 ontvange 0 ger vang 1
v a n g e r - - - 0 e 1 er 1 er- ange 0
a n g e r - - - - 1 er 1 er- 0 r– nger 1

Table 3: Instances for Segmentation Task for the word ‘rijksontvanger’.

Ranking Method Full Word Score

MBL 81.36%
Lexical 84.56%
Bigram 82.44%
MBL+Lexical 86.37%
MBL+Bigram 85.79%
MBL+Lexical+Bigram 87.57%

Table 4: Results at different stages of post-
processing for segmentation task

approach) achieves a low score of 81.36%. Us-
ing only the lexical probabilities yields a better
score, but the combination of the two achieves
a satisfying 86.37% accuracy. Adding bigram
probabilities to the product further improves ac-
curacy to 87.57%. In Section 5 we will look at
the results of the memory-based morphological
analyzer in more detail.

4 A Finite State Approach

Since the invention of the two-level formalism by
Kimmo Koskenniemi (Koskenniemi, 1983) finite
state technology has been the dominant frame-
work for computational morphological analysis.
In the FLaVoR project a finite state morpholog-
ical analyzer for Dutch is being developed. We
have several motivations for this. First, until
now no finite state implementation for Dutch
morphology was freely available. In addition,
finite state morphological analysis can be con-
sidered a kind of reference for the evaluation
of other analysis techniques. In the current
project, however, most important is the inher-
ent bidirectionality of finite state morphologi-

cal processing. This bidirectionality should al-
low for a flexible integration of the morphologi-
cal model in the speech recognition engine as it
leaves open a double option: either the morpho-
logical system acts in analysis mode on word hy-
potheses offered by the recognizer’s search algo-
rithm, or the system works in generation mode
on morpheme hypotheses. Only future practi-
cal implementation of the complete recognition
system will reveal which option is preferable.

After evaluation of several finite state imple-
mentations it was decided to implement the cur-
rent system in the framework of the Xerox finite
state tools, which are well described and allow
for time and space efficient processing (Beesley
and Karttunen, 2003). The output of the fi-
nite state morphological analyzer is further pro-
cessed by a filter and a probabilistic score func-
tion, as will be detailed later.

Morphotactics and Orthographic

Alternation

The morphological system design is a composi-
tion of finite state machines modeling morpho-
tactics and orthographic alternations. For mor-
photactics a lexicon of 29,890 items was gen-
erated from the training set (118 prefixes, 189
suffixes, 3 infixes and 29,581 roots). The items
were divided in 23 lexicon classes, each of which
could function as an item’s continuation class.
The resulting finite state network has 24,858
states and 61,275 arcs.

The Xerox finite state tools allow for a speci-
fication of orthographical alternation by means
of (conditional) replace rules. Each replace



rule compiles into a single finite state trans-
ducer. These transducers can be put in cas-
cade or in parallel. In the case at hand, all
transducers were put in cascade. The result-
ing finite state transducer contains 3,360 states
and 81,523 arcs. The final transducer (a com-
position of the lexical network and the ortho-
graphical transducer) contains 29,234 states and
106,105 arcs.

Dealing with Overgeneration

As the finite state machine has no memory
stack3, the use of continuation classes only
allows for rather crude morphotactic model-
ing. For example, in ‘on-ont-vlam-baar’ (un-in-
flame-able) the noun ‘vlam’ first combines with
the prefix ‘ont’ to form a verb. Next, the suffix
‘baar’ is attached and an adjective is built. Fi-
nally, the prefix ‘on’ negates the adjective. This
example shows that continuation classes cannot
be strictly defined: the suffix ‘baar’ combines
with a verb but immediately follows a noun
root, while the prefix ‘on’ requires an adjective
but is immediately followed by another prefix.
Obviously, such a model leads to overgenera-
tion. In practice, the average number of anal-
yses per test set item is 7.65. The maximum
number of analyses is 1,890 for the word ‘be-
lastingadministratie’ (tax administration).

In section 3 the numerical feature ‘Dist’ was
used to avoid overeager segmentation. We apply
a similar kind of filter to the segmentations gen-
erated by the morphological finite state trans-
ducer. A penalty function for short morphemes
is defined: 1- and 2-character morphemes re-
ceive penalty 3, 3-character morphemes penalty
1. Both an absolute and relative4 penalty
threshold are set. Optimal threshold values (11
and 2.5 respectively) were determined on the
basis of the training set. Analyses exceeding
one of both thresholds are removed. This filter
proves quite effective as it reduces the average
number of analyses per item with 36.6% to 4.85.

Finally, all remaining segmentation hypothe-
ses are scored and ranked using an N-gram mor-
pheme model. We applied a bigram and trigram
model, both using Katz back-off and modified
Kneser-Ney smoothing. The bigram slightly

3Actually, the Xerox finite state tools do allow for a
limited amount of ‘memory’ by a restricted set of uni-
fication operations termed flag diacritics. Yet, they are
insufficient for modeling long distance dependencies with
hierarchical structure.

4Relative to the number of morphemes.

outperformed the trigram model, showing that
the training data is rather sparse. Tables 5, 6
and 7 all show results obtained with the bigram
model.

Monomorphemic Items

The biggest remaining problem at this stage of
development is the scoring of monomorphemic
test items which are not included as word
roots in the lexical finite state network. Some-
times these items do not receive any analysis
at all, in which case we correctly consider them
monomorphemic. Mostly however, monomor-
phemes are wrongly analyzed as morphologi-
cally complex. Scoring all test items as poten-
tially monomorphemic does not offer any solu-
tion, as the items at hand were not in the train-
ing data and thus receive just the score for un-
known items. This problem of spurious analyses
accounts for 57.23% of all segmentation errors
made by the finite state system.

5 Comparing the Two Systems

System 1-best 2-best 3-best

Baseline 18.64
MBM 87.57 91.20 91.68
FSM 89.08 90.87 91.01

Table 5: Full Word Scores (%) on the segmen-
tation task

To evaluate both morphological systems, we
defined a training and test set. Of the 124,136
word forms in CELEX, 110,627 constitute the
training set. The test set is further split up into
words with only one possible analysis (11,256
word forms) and words with multiple analyses
(2,253). Since the latter set requires morpho-
logical processes beyond segmentation, we focus
our evaluation on the former set in this paper.
For the machine learning experiments, we also
defined a held-out validation set of 5,000 word
forms, which is used to perform parameter op-
timization and feature selection.

Tables 5, 6 and 7 show a comparison of the
results5. Table 5 describes the percentage of
words in the test set that have been segmented
correctly. We defined a baseline system which
considers all words in the test set as monomor-
phemic. Obviously this results in a very low

5
MBM: the memory-based morphological analyzer,

FSM: the finite state morphological analyzer



full word score (which shows us that 18.64% of
the words in the test set are actually monomor-
phemic). The finite state system seems to have
a slight edge over the memory-based analyzer
when we looking at the single best solution. Yet,
when we consider 2-best and 3-best scores, the
memory-based analyzer in turn beats the finite
state analyzer.

System Precision Recall Fβ=1

Baseline 18.64 07.94 11.14
MBM 91.63 90.52 91.07
FSM 89.60 94.00 91.75

Table 7: Precision and Recall Scores (%) (mor-
phemes) on the segmentation task

We also calculated Precision and Recall on
morpheme boundaries. The results are dis-
played in Table 6. This score expresses how
many of the morpheme boundaries have been
retrieved. We make a distinction between word-
internal morpheme boundaries and all mor-
pheme boundaries. The former does not in-
clude the morpheme boundaries at the end of
a word, while the latter does. We provide the
latter in reference to Van den Bosch and Daele-
mans (1999), but the focus lies on the results
for word-internal boundaries as these are non-
trivial. We notice that the memory-based sys-
tem outperforms the finite state system, but the
difference is once again small. However, when
we look at Table 7 in which we calculate the
amount of full morphemes that have been cor-
rectly retrieved (meaning that both the start
and end-boundary have been correctly placed),
we see that the finite state method has the ad-
vantage.

Slight differences in accuracy put aside, we
find that both systems achieve similar scores on
this dataset. When we look at the output, we do
notice that these systems are indeed performing
quite well. There are not many instances where
the morphological analyzer cannot be said to
have found a decent alternative analysis to the
gold standard one. In many cases, both systems
even come up with a more advanced morpholog-
ical analysis: e.g. ’gekwetst’ (hurt) is featured
in the database as a monomorphemic artefact.
Both systems described in this paper correctly
segment the word form as ‘ge+kwets+t’, even
though they have not yet specifically been de-
signed to handle this type of inflection.

When performing an error analysis of the out-

put, one does notice a difference in the way
the systems have tried to solve the erroneous
analyses. The finite state method often seems
to generate more morpheme boundaries than
necessary, while the reverse is the case for the
memory-based system, which seems too eager
to revert to monomorphemic analyses when in
doubt. This behavior might also explain the
reversed situation when comparing Table 6 to
Table 7. Also noteworthy is the fact that al-
most 60% of the errors is made on wordforms
that both systems were not able to analyze cor-
rectly. Work is currently also underway to im-
prove the performance by combining the rank-
ings of both systems, as there is a large degree
of complementarity between the two systems.
Each system is able to uniquely find the correct
segmentation for about 5% of the words in the
test set, yielding an upperbound performance of
98.75% on the full word score for an optimally
combined system.

6 Conclusion

Current work in the project focuses on further
developing the morphological analyzer by try-
ing to provide part-of-speech tags and hierar-
chical bracketing properties to the segmented
morpheme sequences in order to comply with
the type of analysis found in the morphologi-
cal database of CELEX. We will further try to
incorporate other machine learning algorithms
like maximum entropy and support vector ma-
chines to see if it is at all possible to overcome
the current accuracy threshold. Algorithmic
parameter ‘degradation’ will be attempted to
entice more greedy morpheme boundary place-
ment in the raw output, in the hope that the
post-processing mechanism will be able to prop-
erly rank the extra alternative segmentations.
Finally, we will experiment on the full CELEX
data set (including inflection) as featured in
Van den Bosch and Daelemans (1999).

In this paper we described two data-driven
systems for morphological analysis. Trained
and tested on the same data set, these systems
achieve a similar accuracy, but do exhibit quite
different processing properties. Even though
these systems were originally designed to func-
tion as language models in the context of a mod-
ular architecture for speech recognition, they
constitute accurate and elegant morphological
analyzers in their own right, which can be incor-
porated in other natural language applications
as well.



System Precision Recall Fβ=1

All Intern All Intern All Intern

Baseline 100 0 42.59 0 59.74 0
MBM 94.15 89.71 93.00 87.81 93.57 88.75
FSM 90.25 83.58 94.68 90.73 92.41 87.01

Table 6: Precision and Recall Scores (%) (morpheme boundaries) on the segmentation task

Acknowledgements

The research described in this paper was funded by

IWT in the GBOU programme, project FLaVoR:

Flexible Large Vocabulary Recognition: Incorporat-

ing Linguistic Knowledge Sources Through a Modu-

lar Recogniser Architecture. (Project number 020192).

http://www.esat.kuleuven.ac.be/spch/projects/FLaVoR.

References

R.H. Baayen, R. Piepenbrock, and L. Gulik-
ers. 1995. The Celex Lexical Database (Re-
lease2) [CD-ROM]. Linguistic Data Consor-
tium, University of Pennsylvania, Philadel-
phia, U.S.A.

K. R. Beesley and L. Karttunen, editors. 2003.
Finite State Morphology. CSLI Publications,
Stanford.

W. Daelemans, Jakub Zavrel, Ko van der
Sloot, and Antal van den Bosch. 2003.
TiMBL: Tilburg memory based learner, ver-
sion 5.0, reference guide. ILK Technical Re-
port 01-04, Tilburg University. Available
from http://ilk.kub.nl.

L. Dehaspe, H. Blockeel, and L. De Raedt.
1995. Induction, logic and natural language
processing. In Proceedings of the joint
ELSNET/COMPULOG-NET/EAGLES
Workshop on Computational Logic for
Natural Language Processing.

K. Demuynck, T. Laureys, D. Van Compernolle,
and H. Van hamme. 2003. Flavor: a flexi-
ble architecture for LVCSR. In Proceedings of
the 8th European Conference on Speech Com-
munication and Technology, pages 1973–1976,
Geneva, Switzerland, September.

J. Heemskerk. 1993. A probabilistic context-
free grammar for disambiguation in morpho-
logical parsing. Technical Report 44, itk,
Tilburg University.

K. Koskenniemi. 1983. Two-level morphology:
A general computational model for word-form
recognition and production. Ph.D. thesis, De-
partment of General Linguistics, University
of Helsinki.

T. Laureys, V. Vandeghinste, and J. Duchateau.
2002. A hybrid approach to compounds in
LVCSR. In Proceedings of the 7th Interna-
tional Conference on Spoken Language Pro-
cessing, volume I, pages 697–700, Denver,
U.S.A., September.

T. Laureys, G. De Pauw, H. Van hamme,
W. Daelemans, and D. Van Compernolle.
2004. Evaluation and adaptation of the
CELEX Dutch morphological database. In
Proceedings of the 4th International Confer-
ence on Language Resources and Evaluation,
Lisbon, Portugal, May.

R. Rosenfeld. 2000. Two decades of statisti-
cal language modeling: Where do we go from
here? Proceedings of the IEEE, 88(8):1270–
1278.

V. Siivola, T. Hirsimaki, M. Creutz, and M. Ku-
rimo. 2003. Unlimited vocabulary speech
recognition based on morphs discovered in
an unsupervised manner. In Proceedings of
the 8th European Conference on Speech Com-
munication and Technology, pages 2293–2296,
Geneva, Switzerland, September.

M. Szarvas and S. Furui. 2003. Finite-state
transducer based modeling of morphosyntax
with applications to Hungarian LVCSR. In
Proceedings of the International Conference
on Acoustics, Speech and Signal Processing,
pages 368–371, Hong Kong, China, May.

A. Van den Bosch and W. Daelemans. 1999.
Memory-based morphological analysis. In
Proceedings of the 37th Annual Meeting of
the Association for Computational Linguis-
tics, pages 285–292, New Brunswick, U.S.A.,
September.

A. Van den Bosch, W. Daelemans, and A. Wei-
jters. 1996. Morphological analysis as classi-
fication: an inductive-learning approach. In
K. Oflazer and H. Somers, editors, Proceed-
ings of the Second International Conference
on New Methods in Natural Language Pro-
cessing, NeMLaP-2, Ankara, Turkey, pages
79–89.


