
KATHOLIEKE UNIVERSITEIT LEUVEN 
DEPARTEMENT LINGUISTIEK 

S T U D I E S IN L A N G U A G E T E C H N O L O G Y 
An Object-Oriented Computer Model of 

Morphophonological Aspects 
of Dutch 

WALTER DAELEMANS 

Proefschrift aangeboden ter verkrijging 
van de graad van doctor in de Letteren 
en de Wijsbegeerte 
Promotor: Prof. Dr. F. G. Droste 
Co-promotor: Prof. Dr. G. A. M. Kempen 

Leuven, 3 april 1987 



SAMENVATTING 

Het menselijke taalgedrag kan worden opgevat als een op kennis gebaseerde 
probleemoplossende activiteit. Wanneer een mens de relatie legt tussen betekenis en 
klank en vice versa, dan voert hij een aantal, meestal onbewuste, redeneerprocessen 
op een aantal kennisbronnen uit. We kunnen deze vaardigheid simuleren (of imiteren) 
door computermodellen te bouwen waarbij de nodige kennis door datastructuren 
wordt gerepresenteerd, en processen door programma's die van deze datastructuren 
gebruik maken. Voordelen van deze aanpak zijn aan de ene kant consistentie en 
volledigheid (voor de theoretische taalkunde), en aan de andere kant nuttige 
applicaties (voor de toegepaste taalkunde). In deze dissertatie proberen we enkele 
aspecten van het menselijke taalgedrag op deze computationele manier te benaderen. 
We gaan uit van een kort overzicht van verschillende disciplines die op een of andere 
manier een relatie leggen tussen de studie van de taal en de computerwetenschap. We 
richten ons daarbij vooral op de doelstellingen en de methodologie van de 
taaltechnologie, het deel van de computerlinguistiek dat zich bezig houdt met 
toepassingen. We proberen aan te tonen dat het paradigma van het objectgericht 
programmeren uitstekend geschikt is om linguistische kennis en processen te 
representeren. Alle programmeerparadigma's zijn equivalent omdat de programma's 
die zij genereren uiteindelijk allemaal Turing-machine berekenbaar zijn, maar voor de 
programmeur (en dus ook voor de programmerende taalkundige) zijn ze 
verschillend omdat ze verschillende metaforen suggereren om het probleemdomein te 
conceptualiseren. In een objectgerichte programmeerstijl worden alle concepten, 
entiteiten en gebeurtenissen in een domein als computationele objecten voorgesteld. 
Alle kennis, zowel declaratief als procedureel wordt opgeslagen in het object waar ze 
betrekking op heeft, en is uitsluitend via dat object bereikbaar. We geven een aantal 
computationele en linguistische argumenten ten voordele van objectgericht 
programmeren, en stellen een geavanceerd objectgericht kennisrepresentatiesysteem 
voor. 



We passen de objectgerichte filosofie toe op enkele aspecten van de Nederlandse 
fonologie en morfologie. We hebben onze aandacht beperkt tot de synthese van 
werkwoordsvormen, de analyse van samenstellingen, de detectie van interne 
woordgrenzen en lettergreepgrenzen, en fonematiseringsalgoritmen. De nadruk in 
deze beschrijving ligt vooral op de interactie tussen morfologische, fonologische en 
lexicale representaties en op de mogelijkheid tot uitbreiding van de ontwikkelde 
kennisbank. We geven ook een aantal beschouwingen weer over het ontwerp van 
een lexicale databank voor taaltechnologische toepassingen. 

De resulterende morfo-fonologische kennisbank kan op veel manieren gebruikt 
worden in toepassingen. We bespreken het concept van een auteursomgeving 
waarmee we een verzameling interagerende programma's bedoelen die het leven van 
de gebruiker van tekstverwerkers aangenamer maken. Twee van de modules in zo'n 
auteursomgeving: automatische woordafbreking en automatische detectie en correctie 
van spel- en typefouten worden in detail behandeld. We stellen programma's voor die 
een oplossing bieden voor de problemen die voortkomen uit de manier waarop in het 
Nederlands samenstellingen worden gevormd. Wanneer onvolledigheden in de 
kennisbank een volledige oplossing voor sommige sub-problemen onmogelijk maken 
suggereren we heuristieken. Heuristieken worden trouwens ook gebruikt om de 
efficiëntie van de ontwikkelde programma's te verhogen. 
Een domein in de Kunstmatige Intelligentie dat vlug aan belang wint is het intelligent 
computergesteund onderwijs. Een intelligent systeem voor computergesteund 
onderwijs bevat naast kennis over de leerstof die moet worden onderwezen ook een 
model van de leerling, heuristieken voor de diagnose van de fouten van de leerling, 
een module die gemaakte fouten uitlegt, en educatieve strategieën. We hebben een 
prototype van zo een systeem gebouwd voor het aanleren van een bepaald aspect van 
de Nederlandse spelling (de spelling van de werkwoordsvormen). 
Systemen om regels te testen bieden een fundamenteel nieuwe manier om taalkunde te 
bedrijven. Ze versnellen de ontwikkeling van regelsystemen en theorieën en voorzien 
de taalkundige van krachtige methodes om complexe interacties en neveneffecten van 
regels te controleren. We beschrijven het prototype van een dergelijk systeem voor 
het testen van fonologische regels. We geven eveneens een voorbeeld van hoe de 
linguistische algoritmen die we hebben ontwikkeld toegepast kunnen worden in de 
lexicografie. We schetsen een experimentele omgeving waarin de lexicograaf op een 
gemakkelijke manier lexicale databanken kan creëren, uitbreiden en veranderen. We 



schenken ook aandacht aan de manieren waarop ons morfo-fonologisch model zou 
kunnen worden gebruikt als module in meer uitgebreide systemen. Een morfologische 
component is onontbeerlijk in systemen voor automatische vertaling en in 
dialoogsystemen als deel van de syntactische analyse- en syntheseprogramma's. Een 
fonologische module is essentieel in elk systeem dat taal wil verwerken met 
spraaksignalen als input of output. De transportabiliteit en de modulariteit van 
objectgericht geprogrammeerde systemen maakt hen uiterst geschikt voor integratie in 
grotere systemen. We bespreken meer bepaald de mogelijke rol van ons 
fonematiseringsalgoritme in een spraaksynthesesysteem. 



ABSTRACT 
This dissertation presents a computer model of aspects of Dutch morphology and 
phonology. After a concise introduction to language technology as a part of Artificial 
Intelligence, it is argued that the object-oriented programming paradigm is ideally 
suited to represent linguistic knowledge and processes. An object-oriented implemen-
tation of aspects of Dutch morphology (word form synthesis and recognition) and 
phonology (syllabification, phonemisation, phonological rules) is presented to support 
this opinion. It is shown how this morphophonological module can be used to pro-
vide a principled solution to some problems in word level language technology (not-
ably automatic hyphenation and spelling/typing error correction) for which only a 
defective solution can be given using traditional (engineering) approaches. The utility 
of the module in the development of other applications is discussed. Among those, 
prototypes of the following were implemented: an Intelligent Tutoring System for 
some aspects of Dutch spelling, an environment for the creation and testing of com-
plex systems of linguistic rules and a lexicographic tool for the creation, updating and 
extending of lexical databases. 



TABLE OF CONTENTS 

Preface 1 

PART I: METHODOLOGY 
Chapter 1 Language Technology 

1.1 The Artificial Intelligence Approach 7 
1.2 Applications 12 

1.2.1 An Overview of Application Types 14 
1.2.2 Linguistic Research Tools 15 

1.3 Conclusion 17 

Chapter 2 The Object-Oriented Programming Paradigm 

2.1 Principles of Object-Oriented Programming 18 
2.2 An Overview of Object-Oriented Systems 25 
2.3 Syntax and Semantics of the KRS Concept System 27 
2.4 Object-Oriented Computational Linguistics 31 

PART H: LINGUISTIC KNOWLEDGE REPRESENTATION AND PROCESSING 
Chapter 3 Aspects of Dutch Morphology 

3.1 Morphological Synthesis 37 
3.1.1 Objects in the Domain of Synthesis 38 
3.1.2 Regular Inflection 42 
3.1.3 The Spelling Filter 45 
3.1.4 Interaction with Phonology and Error Diagnosis 49 
3.1.5 Irregular Inflection 50 

3.2 Morphological Analysis 54 
3.2.1 The Storage versus Processing Controversy 55 
3.2.2 The Algorithm 57 

3.3 Organisation of a Lexical Database 64 
3.3.1 Design Choices and Problems 64 
3.3.2 A Flexible Dictionary System 69 



3.3.3 The Top-10,000 70 
3.3.4 Conclusion 72 

3.4 Related Research 73 
3.4.1 Finite State Morphology 73 
3.4.2 Oracle 75 
3.4.3 Lexicrunch 76 
3.4.4 Other Object-Oriented Approaches 77 
3.4.5 Psycholinguistic Research 78 
3.4.6 Conclusion 80 

Chapter 4 Aspects Of Dutch Phonology 

4.1 A Syllabification Algorithm 82 
4.1.1 The Syllable as a Phonological Unit 82 
4.1.2 A Computational Approach to Syllabification 85 

4.1.2.1 Monomorphematic Words 87 
4.1.2.2 Polymorphematic Words 93 
4.1.3 Implementation of the Algorithm 95 

4.2 A Phonemisation Algorithm 95 
4.2.1 Overview of the Algorithm 96 
4.2.2 Representation of Phonological Data 98 
4.2.3 Syllabification and Word Stress Assignment 103 
4.2.4 Processing Syllable Strings 106 
4.2.5 Transliteration Rules 108 
4.2.6 Phonological Rules 108 
4.2.7 Evaluation of the Program 110 

4.3 Conclusion 112 

PART III: APPLICATIONS 
Chapter 5 Automatic Hyphenation in an Author Environment 

5.1 The Author Environment 115 
5.2 Automatic Hyphenation 117 

5.2.1 Background 118 
5.2.2 Adapting the Syllabification Algorithm 118 
5.2.3 Phonotactic Restrictions 120 



5.2.3.1 CHYP, a Cautious Hyphenation Program 122 
5.2.3.2 Optimising the Interaction with Analysis 127 
5.2.3.3 CHYP as an Autonomous System 128 

5.2.4 Other Approaches to Dutch Hyphenation 134 
5.2.4.1 Brandt Corstius 134 
5.2.4.2 Boot 135 

5.2.5 Some Residual Problems 139 
5.3 Conclusion 140 

Chapter 6 Automatic Detection and Correction of Errors 

6.1 Background 142 
6.2 Detection 144 

6.2.1 DSPELL: Verification with an Unlimited Vocabulary 146 
6.2.2 Evaluation of the Program 149 

6.3 Correction 152 
6.3.1 The Error Grammar Model 153 
6.3.2 The Similarity Measure Model 156 
6.3.3 The Phonemisation Model 158 
6.3.4 New Hardware 160 
6.3.5 A Note on the Correction of Spelling Errors in Compounds 161 
6.3.6 Performance 163 

6.4 Conclusion 164 

Chapter 7 Intelligent Tutoring Systems 

7.1 Introduction 166 
7.2 CAI versus ITS 167 
7.3 TDTDT: An ITS for Dutch Conjugation 168 

7.3.1 The Problem 168 
7.3.2 The Domain Expert 169 
7.3.3 Presentation of Domain Knowledge 169 
7.3.4 Testing and Diagnosis 171 
7.3.5 User Interface 174 

7.4 Conclusion 174 



Chapter 8 Miscellaneous Applications 

8.1 Rule Testing Devices 176 
8.1.1 Background 176 
8.1.2 GRAFON 177 

8.2 Automatic Dictionary Construction 181 
8.2.1 Background 181 
8.2.2 The Flexible Dictionary System 181 
8.2.3 Construction of a Rhyme Dictionary 184 
8.2.4 Related Research 185 
8.2.5 Conclusion 186 

8.3 More Applications 187 
8.4 Conclusion 190 

General Conclusion 191 
Appendices 194 
References 237 



PREFACE 

Language technology can be situated at the intersection of linguistics, psychology and 
computer science. It concerns itself with the development of computer programs 
which produce, understand and manipulate natural language. As a technology, it 
should produce artificial translators, artificial dialogue partners, artificial editors and 
artificial language teachers. As a science, it should provide an instrument to construct 
and evaluate linguistic and psycholinguistic theories about language structure and 
language use. Figure 1 shows the different modules which play a role in a natural 
language processing system. 

Input to a language processing system can be either spoken or written text. In 
the first case, acoustic signals must be transformed into a computer-readable 
representation. This process needs the concerted action of several linguistic com-
ponents (putting it in a single box as in the figure is a simplification). Input text is 
analysed at the word-level by a word parsing algorithm computing the internal struc-
ture of words, and at the sentence-level by a sentence parsing algorithm computing 
the syntactic structure of sentences. The semantic representation of an input text is 
computed using the syntactic and morphological representations, the lexical meaning 
of individual morphemes and additional information from domain knowledge and con-
textual knowledge. Advanced systems would also include a level of discourse 
analysis. In generating language from a semantic representation, syntactic and mor-
phological generation modules are used to produce written text. Additional intona-
tion, phonemisation (grapheme-to-phoneme transliteration), syllabification (computing 
syllable boundaries), and phonological rule components (summarised in a single box 
in the figure) are necessary to compute a phonetic representation detailed enough to 
be used by a speech synthesiser to produce natural-sounding speech. All analysis and 
generation components make extensive use of the lexical database containing the 
inventory of the morphemes of a language and their associated phonological, morpho-
logical, syntactic and semantic information. 

In this dissertation, I will be concerned only with those modules which are 
shaded in Figure 1: the linguistic levels at and beneath the word level. The text is 
divided into three parts and eight chapters. Part I is devoted to methodological 



considerations. In Chapter 1, a concise introduction to the field of language technol-
ogy is given. It is argued that language technology should adopt the methodological 
principles of computational linguistics proper, and not content itself with pure 
engineering, as is often the case. Solutions to problems should be theoretically 
motivated. This point of view was not dictated by a love of theoretical purity, but 
by a cool observation of the failure of an engineering approach. Chapter 2 describes 
the object-oriented programming paradigm and its benefits for programming in gen-
eral and for programming linguistic knowledge and processes in particular. The 



central claim in this chapter is that, although all programming paradigms are ulti-
mately equal in terms of Turing computability, they are very different in their ade-
quacy as notations for describing information and action in a particular domain. Part 
II is a description of our morphophonological module for Dutch. Different 
knowledge sources and processes in this domain are described in an object-oriented 
way. Algorithms to compute internal morphological boundaries, inflected forms of 
verbs, syllable boundaries, and a phoneme representation of spelling are described in 
Chapters 3 and 4. Part III describes a number of applications of the model in Part II: 
Automatic hyphenation, automatic spelling and typing error detection and correction, 
intelligent computer-assisted instruction, lexicographic tools, text-to-speech systems, 
linguistic rule-testing devices etc. 

The sequence in which the chapters of this dissertation are ordered is slightly 
misleading. It may suggest to the reader that I started from some methodological 
premises, selected a domain, constructed a computational model to account for some 
phenomena in this domain, and finally developed applications to investigate the use-
fulness of the model. In fact, the reported research started from two practical prob-
lems in the framework of word processing: automatic spelling error detection and 
automatic hyphenation for Dutch. It soon became clear that the solutions provided in 
the literature were adequate for English, but not for Dutch, due to the peculiar com-
pounding behaviour of Dutch morphemes. This led to the insight that a principled 
solution to the hyphenation and detection problem would involve a level of morpho-
logical analysis. However, the slowness of existing morphological analysis programs 
made them useless in practical word processing applications. One solution was to 
place part of the burden of analysis on the lexical database, which should contain 
wordforms, and not only morphemes. We could suffice then with a fast wordform 
parser to analyse compounds, provided we developed a morphological synthesis pro-
gram to construct and update the wordform dictionary automatically. From these con-
siderations, the usefulness of a modular, portable and complete model of at least 
parts of Dutch morphology became obvious. Interaction between morphology and 
phonology introduced new problems and new requirements for the model, for 
instance the fact that it should include a phonological level as well. After implement-
ing this level, more applications (such as grapheme-to-phoneme transliteration) 
became feasible, and so on. A lot of work remains to be done to obtain a complete 
model of all aspects of Dutch morphology and phonology, but we believe that the 
approach taken here, and the programs developed, make completion of such a model 
a matter of time rather than of invention. 



Implementation Note. Development of the programs began early 1984. Various ver-
sions exist, written in different languages and dialects (Franz Lisp, ZetaLisp, NIL 
Lisp, Orbit, Flavors and KRS) and running on different machines (Vax, Sun and 
Symbolics Lisp Machine). I am presently working on the integration of all relevant 
software into a single package written in Common Lisp and KRS and running on a 
Symbolics Lisp Machine. Source code listings are available for research purposes 
upon request. 

Production Note. The text was produced using the UNIX Troff formatting system. 
The more elaborated pictures were drawn using the Symbolics Lisp Machine picture 
editor. 

Acknowledgements. This work was financially supported by the EC under ESPRIT 
project OS-82 in which I participated both in Nijmegen and Brussels, and by a 
research grant from the Flemish Directorate for International Cultural Co-operation. 

First, I would like to thank my thesis supervisors, Prof. F.G. Droste and Prof. 
G. Kempen for giving me the opportunity to write this dissertation, and for their 
inspiring comments on my work. At the Katholieke Universiteit Leuven, Prof. 
Droste awoke a deep interest in me for theoretical linguistics. His clear view on the 
subject and his enthusiasm have always been an important incentive for me to go on. 
Prof. Franz Loosen of the psychology department of the Katholieke Universiteit Leu-
ven broadened my horizon to psycholinguistics and artificial intelligence, an evolution 
which I have never regretted. His encouragement has meant a lot to me. He also 
introduced me to Prof. Gerard Kempen of the psychological laboratory of the Katho-
lieke Universiteit Nijmegen, under whose supervision I started working on the com-
puter programs which finally led to this dissertation. I owe a lot to his incessant wil-
lingness to help me and to share his unparallelled knowledge of language technology. 
At the Artificial Intelligence Laboratory of the Vrije Universiteit Brussel, I finished 
this dissertation. I am very grateful to Prof. Luc Steels for allowing me to complete 
my work in peace in an intellectually stimulating environment. 

I am pleased to acknowledge the detailed, precise and useful critiques on the 
text which I received from the following people: Flip Droste, Gerard Kempen, Luc 
Steels, Carel Van Wijk, Koen De Smedt, Ronnie Geluykens, Viviane Jonckers and 
Marina Geerts. I have also profited from discussions on the subject with former and 
present colleagues, especially Henk Schotel, Dik Bakker and Bernard Manderick. 
Thanks are due to Eric 'Wyb' Wybouw for sharing his wizzardly knowledge about 



Lisp, Unix and Troff. I am grateful to my parents for their past financial and their 
continuous moral support. Finally, I would like to thank my wife, Marina, for her 
patience, her encouragement and her love. This dissertation is dedicated to her. 



PART I 
METHODOLOGY 

Human verbal behaviour can be viewed as a knowledge-based problem-solving 
activity. In mapping sound to meaning and vice versa, a person applies (unconscious) 
reasoning processes to a variety of knowledge sources (collections of highly struc-
tured information). This capacity can be simulated (or imitated) by constructing com-
puter models in which knowledge is represented by data structures, and processes by 
programs driven by these data. Advantages of this approach are consistency and com-
pleteness of description for theoretical linguistics, and useful applications for applied 
linguistics. Different disciplines relating language studies and computer science will be 
reviewed in Chapter 1, and the goals and methodology of language technology in 
particular will be studied. 

In Chapter 2, it will be argued that the object-oriented programming paradigm is 
ideally suited to represent linguistic knowledge and processes. All programming 
paradigms may be equivalent in that the programs they generate are ultimately 
Turing-machine equivalent, but to the programmer they are different in the metaphors 
they provide to conceptualise the problem domain. When using an object-oriented 
programming style, concepts, entities and events in the problem domain are 
represented as computational objects. All knowledge, procedural as well as declara-
tive, is stored in and accessible through the object. The computer appears to the pro-
grammer as a set of autonomous processors which can be addressed independently. 
A number of computational and linguistic arguments in favour of object-oriented pro-
gramming will be provided, and an advanced object-oriented knowledge representa-
tion system will be described. 



CHAPTER 1 

Language Technology 

Several disciplines attempt to establish a relationship between natural language study 
and computer science. This general effort has become known under the name natural 
language processing. We will not be concerned here with the classification and count-
ing of large quantities of linguistic data (statistical or quantitative linguistics), nor 
with the theory of formal languages and automata (mathematical or algebraic linguis-
tics). The remaining disciplines are captured under the name computational linguis-
tics. Computational linguistics, especially when dealing with the development of prac-
tical applications, is called language technology. 

In the following section, we will describe the Artificial Intelligence approach to 
computational linguistics (section 1.1). Characteristic of this approach is that it inter-
prets the study of language as part of cognitive science. Viewed from this perspec-
tive, computational linguistics includes computational psycholinguistics (the testing and 
implementation of psychological models of language processing), which we conse-
quently do not grant the status of an autonomous discipline. In section 1.2, it will be 
argued that language technology needs no separate methodology in which the metho-
dological constraints of theoretical computational linguistics are relaxed. This separate 
methodology is present explicitly or implicitly, however, in a lot of work in language 
technology. 

1.1 The Artificial Intelligence Approach 
The first twenty obvious ideas about how 
intelligence might work are too simple or 
wrong. 
David Marr 



In our opinion, the most fruitful approach to natural language processing is the one 
adopted in Artificial Intelligence research. AI can be defined as the science and tech-
nology of knowledge (see e.g. Steels, 1985). Knowledge is defined as information 
representing collections of highly structured objects (Kempen, 1983). More detailed 
definitions of AI can be found in any textbook on the subject (e.g. Winston, 1984; 
Charniak and McDermott, 1985). 

In an AI-perspective, language is viewed as a knowledge-based process (e.g. 
Winograd, 1983); a cognitive ability which allows people to apply (unconscious) rea-
soning processes to stored linguistic, world and situational knowledge. This cognitive 
system is described in a computer model in which knowledge is represented by data 
structures, and mental processes are represented by programs using or manipulating 
these data structures. As regards knowledge representation and manipulation, no a 
priori distinction is made between the linguistic and other cognitive systems. This 
position is not necessarily conflicting with some form of the autonomy or modularity 
thesis (e.g. Fodor, 1983) which views language as a computational cognitive module 
exhibiting only constrained information exchanges with other modules. We can envi-
sion an autonomous module making use of general knowledge representation, prob-
lem solving and learning techniques, yet at the same time having its own structure 
and interacting in restricted ways with other modules. 

The AI-approach makes use of a predominant axiom (or metaphor) from cogni-
tive science: the mind as an information processing system. This metaphor states that 
human and machine intelligence can be described at an appropriate level of abstrac-
tion as the result of symbol-manipulating processes; i.e. both people and (intelligent) 
machines are instances of the same informavore species (Miller, 1984). Cognitive 
science is a multidisciplinary science bringing together psychology, philosophy, 
linguistics, neuroscience, educational science and artificial intelligence in an effort to 
build programs or programmable theories which simulate or describe a cognitive 
behaviour, taking into account empirical phenomena (see e.g. Adriaens, 1986 for a 
linguistic theory developed within this framework). 

The basic relationships between cognitive system, computer model, algorithm 
and computational theory are sketched in Figure 1. The levels and interrelations were 
inspired by Marr (1977, 1982) and Kempen (1983). 

A computer model is a program running on some machine and exhibiting the 
same behaviour as the human cognitive system described by it. If this is the case, 



we say the model is extensionally adequate. Computer model and biological system 
together form the implementational level; the level in which an abstract cognitive sys-
tem is physically realised. The concept of a model always implies a hypothetical iso-
morphic (or homomorphic) relation between simulated system and simulating system. 
It is theoretically possible to posit this relation at the level of hardware: between cen-
tral nervous system and computer architecture, respectively. Recent efforts at connectionist models of cognition (e.g. Ballard, 1986) may be an example of this, 
although some workers in this field locate their research at the algorithmic level 
which we will outline shortly (e.g. Rumelhart and McClelland, 1986). But most 
often, the isomorphic relation is postulated at the level of computational theory. 

At that level we are concerned with an abstract and formal analysis of the prob-
lem (e.g. transforming sound into meaning in the case of language), and with the 



computational functions necessary to solve it. According to Marr, Chomsky's com-
petence theory is a computational theory in this sense. The computational level consti-
tutes a tertium comparationis between human cognitive system and computer model. 
The computer model is intensionally adequate if it implements an internally coherent 
and complete theory at the computational level. 

The algorithmic level is concerned with how the computational theory can be 
implemented. At this level, representations and processes transforming representa-
tions are basic building blocks. Efficiency considerations (in both processing time and 
storage requirements) and psychological data are especially relevant here. Perfor-
mance theories are usually algorithmic in nature. 

According to Marr (1977), AI-research should proceed in a three-step top-down 
manner. First, an interesting information processing problem is isolated. Next, a 
computational theory is developed describing and explaining the properties of the 
problem, and its basis in the physical world. Finally, algorithms are devised which 
implement a solution to the information processing problem in a computer model. 
This approach was applied by his group to low-level vision. Nevertheless, he also 
noted that there may be information processing problems for which no theory of 
computation could (yet) be developed. Hence his methodological preference for low-level vision problems like stereo-vision, as opposed to e.g. object-recognition. He 
suggested that most work in the field of AI has tended to be concerned with perfor-
mance and with the construction of algorithms rather than with the development of 
computational theories1. In his view, however, information processing problems are 
more important than implementation mechanisms, and the theory of computation 
should precede the construction of algorithms. 

We do not share this view. Language processing may be a problem for which 
no computational theory exists yet, as it lacks a clear basis in physiology and psycho-
physics. But this need not keep us from trying to construct one. We can use the 
evaluation measures2 of linguistics and the experimental data of psychology to 

1 Marr (1977) gives a 'sociological' reason for this: external pressures for early results 
made researchers jump from the problem to an algorithm implementing the solution without 
an intermediate stage of theorising. Chomsky (1983) has added a 'psychoanalytic' interpreta-
tion: many researchers do not want to get into areas where there may be far-reaching and 
abstract principles (computational theory of intelligence) because they would like to believe 
that explanations are close to the surface. 

2 Evaluation measures are used to make a choice between different linguistic theories. 
They are based on such (vague) criteria as simplicity, adequacy, significance, learnability etc. 



constrain our computer model. We can even use computational criteria like efficiency, 
speed, resource usage, etc., to restrict the model. This means that we see the algo-
rithmic level as an equally useful inspiration to computer model building as the com-
putational theory level. We will argue in Chapter 2 that some notations and formal-
isms (algorithmic level entities) are better suited to represent concepts in a problem 
domain than others, and that they may even have a definite influence on the charac-
teristics of the theory developed. We will therefore regard the computational and the 
algorithmic levels as one level (the computational level) in the remainder of this 
dissertation. 

At this (generalised) computational level, it is possible to theorise about language 
processing in the abstract (cp. Thompson, 1983, theory of linguistic computation). 
Moreover, design restrictions such as modularity can be postulated at this level. 
Modularity is a concept which is interpreted somewhat differently in various scientific 
disciplines. In computer science, a computer program is called modular if chunks of 
computer program can be added, modified or deleted, independently of the remainder 
of the database. A modular system or program is easier to understand and to main-
tain. In linguistics, modular theories are used to dissect a complex process into a 
system of simpler processes (e.g. the modularity of formal grammar in recent 
accounts of transformational generative grammar; Chomsky 1981). A complex system 
can be better understood as a set of modules interacting in clearly defined ways. 
Modularity has also proved to be a psychologically relevant property of low-level 
vision (e.g. Marr, 1982), and has been claimed for other cognitive systems as well 
(we have already mentioned Fodor, 1983). Thus, we can distinguish two aspects of 
modularity in computational theory: as a methodological principle to gain insight 
(even at the loss of efficiency or plausibility), and as a design property of biological 
cognitive systems. This constitutes a double incentive to develop computational 
theories and models which are modular. 

The lack of a physical basis for the devising of representations and processes 
implies that we cannot be sure that the representations hypothesised are 'real' (i.e. 
that human beings possess and use them). But at least we have the advantage of 
extensional and intensional validity. 

(Chomsky, 1965; Botha, 1978). 



Notice that the relation between psychology and linguistics on the one hand, and 
the computational model on the other hand is not one of uni-directional influence. 
Just as psychological (e.g. Johnson-Laird, 1980) and linguistic theories provide a 
source of inspiration for the development of a computer model does the latter have a 
beneficial effect on the former as well. A computer model can bring more insight 
into the representations and processes used by people when communicating. It has 
even been claimed that much psychological research has been guided by AI research 
rather than vice versa (e.g. Winograd, 1980). Computer models can also be used as 
a tool in linguistic research. In section 1.2.2 we will return to the advantages for 
linguistics, Finally, the preoccupation with knowledge representation and processing 
in AI has led to new programming languages and computing paradigms (Prolog, 
object-oriented programming) in mainstream computer science. 

Computational linguistics in the Dutch language area is divided between two 
unreconcilable interpretations of the discipline. The cognitive artificial intelligence 
approach has been adopted by a.o. Hoenkamp (1983, 1985), Kempen (1983), and 
Adriaens (1986). Other workers in the field of computational linguistics interpret 
natural language processing as the construction of algorithmic models of linguistic 
grammars and theories. This means that they see computational linguistics as a tool 
in the development of descriptive theories of language (a.o. Van Bakel, 1983; Brandt 
Corstius, 1974) and not as an effort to construct cognitive theories of verbal 
behaviour. Opposition to the AI-approach is often quite strong (e.g. Brandt Corstius, 
1981). 

1.2 Applications 
The linguist should be grateful that even if he 
is not interested in 'practical' results, the 
requirements, say, of computer programming 
may be a healthy incentive for explicit and 
rigorous formulation. 
G.C. Lepschy. 

Language technology (linguistic engineering) can be defined as the part of computa-
tional linguistics which concerns itself with the development of (commercial) applica-
tions. Examples are advanced word processors, natural language interfaces to data-
bases, automatic translation systems, etc. 



The linguistic and psychological relevance of these applications is often small, as 
they are mostly developed by programmers whose main concern is short-term compu-
tational efficiency. They try to combine the highest possible accuracy with the 
highest possible processing speed and the smallest possible storage prerequisites. 
Their systems contain ad hoc rules and feature a predominant use of heuristics3 

instead of algorithms. This need not be a bad thing, since commercial applications 
should be efficient rather than theoretically adequate. It could be argued that in 
language technology, intensional validity or an isomorphic relation with human infor-
mation processing are no prerequisites for the model as long as it is extensionally 
valid (i.e. if the program exhibits the desired behaviour). 

However, we believe that this engineering approach often leads to systems 
which cannot properly do what they are supposed to do. The 'highest possible accu-
racy' (e.g. 75% sentences correctly translated, 95% correct hyphenations) may often 
be increased even further if the desired behaviour is viewed from the perspective of a 
computational theory (cp. Droste, 1969). One of the central claims in this disserta-
tion is that algorithms and heuristics used in language technology should also be 
based on a computational theory which is founded in linguistics and psychology.4 An 
important shortcoming of most technological approaches to language processing is 
their complete lack of theoretical foundation, resulting in inaccurate systems. 

We will exemplify the unfruitfulness of the latter approach in Chapter 5, where 
we will show the inadequacy of a heuristic approach to hyphenation (Boot, 1984), 
and suggest an alternative approach, based on a computational theory of 
syllabification outlined in Chapter 4. 

Boot adheres to what he calls a (result-oriented) expert system approach to com-
putational linguistics. He interprets expert systems as systems of heuristic rules solv-
ing some specific problem, and claims that it is not necessary to have complete 
knowledge about human language competence in order to build natural language 

3 Heuristics are implemented as algorithms as well. However, the meaning we assign here 
to heuristics is the one traditionally used in AI: heuristics are informal judgemental rules 
drawing on regularity and continuity in the domain modeled (cf. Lenat, 1982). The 
knowledge they embody is therefore incomplete. An algorithm on the other hand embodies 
complete knowledge about how a problem is to be solved in principle. The algorithm may be 
deficient, but that is an entirely different matter. 

4 The call for a theory of translation in machine translation research (E.g. Van Eynde, 
1985) may be a manifestation of the same concern. 



processing systems. In our radically different view, a computational model, based on 
a computational theory and easily adaptable to different applications, is theoretically 
as well as practically superior to an approach in which each application has its own, 
independent, ad hoc 'expert system'5. Language technology in our opinion is the con-
struction of computational models incorporating computational theories (as in AI), and 
the study of how these can be efficiently exploited in applications. Apart from the 
fact that applications are useful in their own right, they can also function as a test 
case for computational theories, suggesting extensions or modifications. 

1.2.1 An Overview of Application Types 
Five main branches of language technological applications may be distinguished: 
(i) The computer as a dialogue partner. Natural Language front ends (accepting 

spoken or written language) make data processing systems more user-friendly 
and easy to use. The slogan here is let the computer speak our language instead 
of vice versa. Natural language interfaces have been or are being developed to 
databases (question answering systems) and expert systems (explanation 
modules). A 'talking computer' fits more naturally into people's lives and lowers 
the threshold to computer use. This is demonstrated in Figure 2 (adapted from 
Zoeppritz, 1983), which contrasts a database request in SQL (a database query 
language) with its natural language counterpart. 

select all x member 

from emp x 
where x.member not in 

(select unique y.member 

from emp 
where y.city='antwerp') Which members do not live in Antwerp? 

Figure 2. A database request in SQL as opposed to natural language. 

(ii) The computer as a translator. After a rude awakening from the dream of unres-
tricted full-automatic translation in the late sixties, more reasonable efforts at 
restricted computer-aided translation are being conducted, especially in Japan 
(Fifth Generation Computers program), and Europe (EC-Eurotra, Siemens-

5 The structure of the expert system may not be ad hoc, but the rules used are. 



Metal, BSO, Philips-Rosetta ...). 
(iii) The computer as a teacher. An effective system for Computer Assisted Instruc-

tion will have to contain some kind of natural language interface to respond sen-
sibly to the input from the user (cp. i). Furthermore, in CAI systems for the 
subject domain of first or foreign language learning, the system should have 
enough linguistic and meta-linguistic knowledge to correct the answers of the 
student, and to diagnose and explain his or her errors. 

(iv) The computer as an author and editor. Intelligent word processors (author sys-
tems, author environments) will differ from present-day text editors by the inclu-
sion of linguistic knowledge. This knowledge may be applied in functions like 
spelling and style checking and advice, on-line dictionaries, and in various addi-
tional text preparation aids. 

(v) The computer as a linguistic research assistant. Rule testing devices can be built 
to test the adequacy of existing linguistic theories or to help in the construction 
of such theories. As we see this as one of the most important contributions of 
language technology, we will go into it in somewhat more detail in the next sec-
tion. 

Many of these applications will be treated more extensively in the remainder of 
this dissertation: rule testing devices in the next section and in Chapter 8, CAI in 
Chapter 7, intelligent word processing in Chapters 5 and 6, and speech interfaces in 
Chapter 8. 

1.2.2. Linguistic Research Tools 
An important achievement of language technology is the development of programs to 
test the adequacy of existing linguistic theories. During the design and the implemen-
tation of the program, inconsistencies, shortcomings, redundancies and vagueness 
(intensional inadequacy) inevitably come to light. An analysis of the nature of these 
shortcomings (they may be reparable or not) may lead to a modification of the origi-
nal theory, or even to its rejection. Furthermore, once a theory has been imple-
mented, it can be quickly and easily tested on a large corpus of 'real-life' natural 
language data as opposed to the selected example sentences common in theoretical 
linguistics. 

The amount of work done in this direction is not very large, although its 
beneficial influence has often been attested (a.o. Brandt Corstius, 1978 6 ; Van Bakel, 



1983, Hoenkamp, 1985). Computer programs have been used to evaluate transfor-
mational grammars (Friedman, 1971), Montague grammar (Janssen, 1976) and Dik's 
functional grammar (Kwee, 1986). 

If computer models can be used profitably to test existing linguistic theories, 
they can also be used to develop new linguistic theories (e.g. Gazdar, 1985; Thomp-
son, 1983). Computer models have a distinct heuristic function, i.e. they can suggest 
ideas to the researcher through trial and error (Kempen, 1983), and they can help in 
overcoming the complexity barrier resulting from the application of large sets of 
interacting rules. Functional Unification Grammar (Kay, 1985) and GPSG (Gazdar, 
1983) are examples of theories whose development was guided to a large extent by 
computer modeling. In Chapter 7, a tool for phonological research will be presented 
which illustrates the advantages of a computational model for linguistic research. 

The use of computer programs in the testing and development of linguistic 
theories leads to a reflection on the relation between program and theory. Although 
programs may be developed which implement theories, the two should not be 
equated. Theories are sets of propositions while programs are sets of instructions (cf. 
Kempen, 1983). We interpret programs as notations for theories, much like the rule 
formalism in generative linguistics. We can prove that a program is a correct nota-
tion for a theory (if it comes up to the specifications of the theory when it is run), 
but this does not prove that the theory is correct. A program becomes a theory only 
when it is assigned an interpretation. E.g., we can construct a program which defines 
a set of linguistic rules. The program obtains a theoretical status only when 
(psycho-)linguistic relevance is claimed for these rules. Similarly, a program can use 
a number of levels of representation, but only when these are interpreted in some 
linguistic or psychological sense, they have theoretical status. 

In a sense, there is no difference between using a paper-and-pencil notation to 
formulate a theory or using a computer program. However, programs have some 
unique properties: (1) they are formal and explicit to the extreme, (2) they are exe-
cutable; i.e. they can give a physical interpretation to the concepts of a theory (it is 
precisely this property which makes them ideally suited to test the coherence of 
theories), and (3) they can be put to practical use, which gives them an economical 

6 Brandt Corstius even devoted one of his three laws of computational linguistics to it: 
Every linguistic description, however exact, but not a program itself, turns out to contain an 
error if one tries to make a program of it (translation, WD). 



value. 

1.3 Conclusion 
Language technology is the part of computational linguistics which is concerned with 
the construction of computational models and their adaptation for practical applica-
tions. Computational models should be based on a computational theory, i.e. an 
abstract theory of natural language processing. Such a theory can be founded in 
psychology, linguistics and possibly neurology. The construction and testing of appli-
cations can provide valuable feedback for the organisation of such a theory, and 
through it for the psychological and linguistic theories on which it was based. Figure 
3 pictures this view. 



CHAPTER 2 
The Object-Oriented Programming Paradigm 

Recently, computer science has seen the advent of a large number of new program-
ming paradigms. The traditional imperative and procedure-oriented programming style 
is now being challenged by logic-based, access-oriented, rule-based and constraint-
based programming. Another new development is object-oriented programming. After 
introducing the basic philosophy of this programming paradigm, its advantages and 
some variations between different object-oriented languages in sections 2.1 and 2.2, 
we will go into the syntax and semantics of the knowledge representation system 
KRS (Steels, 1985) in section 2.3. Finally, the usefulness of the object-oriented 
paradigm in linguistic knowledge representation and linguistic processing will be dis-
cussed in section 2.4. 

2.1 Principles of Object-Oriented Programming7 

Designing a good representation is often the 
key to turning hard problems into simple 
ones. 
P.H. Winston 

Objects are computational entities representing a concept in a domain of discourse. 
Objects in the domain of natural language processing could be NP, direct object, syll-
able, focus. Objects in the domain of office automation could be letter, 

7 A recent overview of the object-oriented paradigm can be found in Stefik and Bobrow 
(1986). The August, 1986 issue of Byte features a number of introductory articles on object-
oriented programming, which seems to indicate that the paradigm is rapidly becoming popu-
lar. 



communication-medium, invoice, employee. An object has an internal representation 
of the information associated with it, i.e. of its properties and behaviour. Declarative 
knowledge about an object (data) is represented by features (attribute-value pairs), 
and procedural knowledge by attached procedures (parameterised functions which can 
change the internal state of the object itself, or of other objects, or have some useful 
side-effect). The latter are often called methods. 

A predominant metaphor used to describe action in an object-oriented system is 
message-passing: objects sending messages to other objects. Messages can set a pro-
perty of an object to some value, retrieve the value of a property of an object or 
make an object execute a method (which may have arguments). E.g. an object 
ORDER-55 could have an internal structure as in Figure 1. 

object ORDER-55 

ordered-what: Lisp-Machine 
ordered-amount: 6 
ordered-who: Willy Wortel 
ordered-where: Symbolics 
communication-channel: Letter 

place-order (date): 
A procedure with as argument the date on which the order must 
be sent. When this specified date is equal to the present 
date, a message write is sent to an object 
letter, with arguments ordered-what, ordered amount 
etc.. 

Figure 1. Example of an object's internal structure (simplified). 

The object ORDER-55 has some declarative information associated with it: 
ordered-what, ordered-amount, ordered-who, ordered-where and communication-channel. A message could be sent to ORDER-55 asking for the current value of one 
of these features. There is also one attached procedure,8 place-order with one argu-
ment, date. Notice that the execution of this procedure causes ORDER-55 to send 
another message to another object (LETTER) with some arguments. In order to pro-
vide arguments for this message, the object has to examine its own internal state. 
We imagine the LETTER object to have an attached procedure write which fills out 

8 Procedures in most object-oriented languages are written in the programming language 
on top of which the object-oriented language was built, e.g. Lisp or Pascal. In this text, we 
shall use either a verbal description of what the procedure is supposed to do or an algorithm-
ic description in 'formal English'. 



the template of a standard order letter with the arguments provided whenever it is 
called. 

The way information is computed depends on the object to which the message is 
sent. Another object ORDER-56 could have its own place-order method attached to 
it, resulting in different behaviour if the same message is sent. This is sometimes 
called polymorphism. In this respect, object-oriented languages differ radically from 
procedure-oriented languages (also called action-oriented or function-oriented 
languages), which take a procedure as central. E.g. a generic9 function + would be 
implemented as shown in Figure 2(i) in a procedure-oriented and as in Figure 2(ii) in 
an object-oriented language. 

define function +, with arguments n and m 

if n or m is real 
then execute procedure real-plus 

if n and m are integers 
then execute procedure integer-plus 

if n and m are strings 

then execute procedure string-concatenate 

else signal argument error Figure 2(i). Function-oriented implementation of function +. 

object REAL 
method: + (arg) 

procedure real-plus 
object INTEGER 

method: + (arg) 

procedure integer-plus 
object STRING 

method: + (arg) 

procedure string-concatenate 

Figure 2(ii). Object-oriented implementation of function +. 

In a function-oriented approach, a generic function is accessed through its name, 
and a type-check on the arguments is performed to determine which sub-procedure is 

9 Generic functions are functions that apply to more than one data type. 



to be used. In an object-oriented approach, the different sub-procedures are associated 
directly with the different data-types, which are implemented as objects. 

Different objects are related to each other through hierarchical links. Mostly, 
more specific objects are defined as sub-types of more general types, but it is prefer-
able to understand type hierarchies in a purely technical sense, without confusing 
types with categories (classes) or species (cp. Steels, 1985), as this may lead to mis-
takes 1 0. Part of a type-hierarchy in the domain of office systems could be the one in 
Figure 3. 

1 0 Consider for example a hierarchical link between Clarence and lion: Clarence is a lion. 
And lion has the attribute-value pair (extinct false) associated with it. Clarence would inherit 
this feature although only species can be extinct, and not individuals (except in a metaphori-
cal sense). 



Information present in types is available to sub-types through a process called 
inheritance. The object SURFACE-MAIL can inherit information from the types it 
belongs to (LETTER, WRITTEN-COMMUNICATION, COMMUNICATION-MEANS). Inheritance reduces redundancy: if two objects are almost alike, one can 
be made a sub-type of the other, or both can be made sub-types of a third. Only 
those portions of the knowledge associated with an object which are different from its 
parent objects need be stored. Inherited information is overruled (substituted) if the 
information is provided in the object itself (Figure 4). 

object PERSON 
number-of-legs: 2 

number-of-arms: 2 

is-rational: yes 
object JOHN 

type: PERSON 
object IRRATIONAL-PERSON 

type: PERSON 

is-rational: no Figure 4. Example objects for PERSON, JOHN and IRRATIONAL-PERSON. 

The object JOHN inherits all information associated with PERSON, without a need to 
store it in John. IRRATIONAL-PERSON inherits all information associated with 
PERSON except the property is-rational which is overridden by the information asso-
ciated with IRRATIONAL-PERSON. 

Family relationship terminology is used to describe the relations among objects: 
the types an object inherits from are the parents of that object, inheriting objects are 
children or inheritors, parents of parents of an object are ancestors. 

When an object inherits from more than one type (multiple inheritance), the 
inherited properties are combined in some pre-defined way (e.g. union, with elimina-
tion of duplicate features). If different parents of an object have the same features or 
methods, it is a search algorithm (breadth-first or depth-first, left-to-right or right-to-
left) which determines which version is kept, and which one is destroyed as a dupli-
cate. Thus, in the following (tangled) hierarchy (Figure 5), the search algorithm 
determines which version of the life-expectancy property is inherited by BERT. In a 
breadth-first search, BERT inherits a low life expectancy, in a depth-first search a 
high one. Through multiple inheritance, existing pieces of knowledge can be com-
bined into more complex wholes (object-composition). In our example, BERT is 



composed as an alcoholic professor. 
Apart from the way the inheritance hierarchy is searched, decisions must be 

made about the way the inherited material is combined. Often, a procedure is inher-
ited as a monolithic whole. Some languages, however, provide utilities for the inheri-
tor to modify the code of the procedure before executing it. This can be done either 
by directly grabbing the definition of the procedure through an operator, change it, 
and evaluate the result (as in the language CommonORBIT, De Smedt 1987); or by 
providing demons which add pieces of code before and after the main code of a 
method at compile time, plus a declarative language which can be used to change the 
default behaviour of these demons (as in FLAVORS, Weinreb and Moon, 1981). 
Both approaches result in an ability to combine different methods. It would be possi-
ble, for example, in the example of Figure 5 to return the average of the life expec-
tancies for academics and alcoholics as the life expectancy of Bert. 

To what extent are object-oriented languages better than traditional programming 
languages? For now we will concentrate on general advantages. Later we will point 
out their relevance to linguistics. 
(i) Modularity (encapsulation): No knowledge about the internal details of an object 

type (data type) is needed. The actual implementation of an object can be 
changed radically (e.g. from a property list to an array), without any difference 
to the user. Furthermore, when adding new types, existing objects need not be 



redefined. Internal details can be changed without affecting other objects. An 
object may be imagined as a black box which accepts a number of inputs and 
produces a number of outputs, or as an expert who can answer a number of 
questions (stored in its properties), and who can solve some problems (by apply-
ing his methods). 

Due to inheritance, information can be changed in one place, and inheritors 
inherit this change automatically (if provision is made for this). As real-life 
applications typically involve thousands of objects, the time saved by this cannot 
be overestimated. Thus, extensibility and easy modification ensure the modular-
ity needed in the development and maintenance of large programs. A term 
currently in vogue for describing re-usable software modules which are largely 
independent from a particular application is Software ICs (Ledbetter and Cox, 
1985). 

(ii) Style: Object-oriented systems are conceptually simple to work with. Most of us 
think and reason about a problem in terms of entities, properties of entities, 
relations between entities and actions which are natural for these entities. An 
almost one-to-one mapping of these conceptual units is possible with the compu-
tational units of an object-oriented language. Thinking about an algorithm in 
terms of objects makes it easier to understand. This close relation between the 
way we think and the way the program is structured, makes the translation of 
the abstract solution to a problem into program code easier, and consequently 
less error-prone. Furthermore, all information about an object is collected in 
one place. Due to modularity and the simplicity of syntax and semantics of most 
object-oriented languages, programs are well-structured and easy to read. 

(iii) Efficiency. Efficiency of an object-oriented system depends on the number of 
objects and generic procedures in a particular application, and on a number of 
design features. Object-oriented systems are efficient when lots of objects are 
needed. Inheritance by search (in which information is looked for in the type 
hierarchy every time it is needed) prevents that copies of the same function have 
to be stored in too many objects, thereby keeping access times relatively low 
and storage requisites reasonable. Inheritance by copying (in which information 
associated with the parent is copied to the children when they are created) 
reduces search time in the hierarchy, but increases storage overhead, and an 
explicit recomputation in all inheritors is needed whenever changes are made in 
a type (consistency maintenance). 



Disadvantages of object-oriented systems sometimes pointed at are, first of all, 
that when adding a new function, it (or a variant) must be added to all relevant 
types, which may require a restructuring of the object network. Second, information 
about one function is scattered over different objects (whereas in a function-oriented 
approach, information about one object is scattered over different functions). And 
finally, careful thinking is required about which information should be represented as 
objects, and which as properties, and how to structure the inheritance network. 
Often, different options are open to the programmer, one of which turns out to be 
preferable, but not necessarily before programming has begun. Object-oriented pro-
gramming mechanisms may be too powerful in some cases. 

Summing up, an object-oriented approach is ideal for systems in which it is 
necessary to represent large quantities of interacting entities. The approach has been 
successfully applied to graphics (window systems), natural language semantics, 
VLSI-design, expert system development, etc. 

2.2 An Overview of Object-Oriented Systems 
Message-passing between computational entities as a programming paradigm has been 
developed at M.I.T. and XEROX in the early seventies. Carl Hewitt and collabora-
tors (1973) developed an actor formalism based on message passing, later imple-
mented as the ACT1 language (Lieberman, 1981). Alan Kay (1974) initiated work on 
SMALLTALK, which incorporates a similar philosophy. Inheritance derives from 
the work in semantic network theory which was started by Ross Quillian (1968). 
Attempts to connect related nodes of a network into a more coherent whole (parti-
tioned networks, Hendrix, 1979) are more or less equivalent with the computational 
object idea. Frame theory (Minsky, 1975; Kuipers, 1975; Winograd, 1975; Metzing, 
1979) has certainly influenced a lot of object-oriented concepts and languages (Steels, 
1981b). Frame theory is a psychological theory about the organisation of human 
memory. Frames are complex, partially declarative, partially procedural representa-
tional structures which hold all information about a limited subject matter. They can 
be interpreted as experts in a small domain, or as structures representing a stereo-
typed chunk of knowledge (a prototype). The internal structure of a frame is a set of 
named slots which are filled by other frames or by identifiers. Fillers can have res-
trictions (type checking), defaults (values to be used if no explicit value is provided), 
demons (actions to be performed before or after a slot is filled) and meta-knowledge 
attached to them. Larger frames, specifically designed for representing sequences of 



events, are scripts (Schank and Abelson, 1977). Frames and scripts can be easily 
implemented in most object-oriented languages. The language KRL (Bobrow and 
Winograd, 1977) and the first versions of ORBIT (Steels, 1981b) are examples of 
implementations of the frame idea. 

Differences and variations in the way programming languages implement the 
object-oriented philosophy described above abound. Most object-oriented languages 
are written on top of existing programming languages (Lisp: CommonORBIT, FLA-
VORS, KRS, ExperCommonLISP; Pascal: OBJECT PASCAL, CLASCAL; Algol: 
SIMULA; Forth: NEON), others are not parasitic upon an existing language 
(SMALLTALK). Some have a specific syntax for message-passing (FLAVORS, 
KRS), others represent function application and message-passing in a uniform way 
(CommonORBIT). Often a distinction is made between object-types and object-
instances. E.g. in FLAVORS, types (called Flavors) cannot receive messages, and 
instances can have properties (instance variables), but no associated methods; the 
flavors act as a mould to the instances. Other languages do not make this difference 
(KRS, CommonORBIT). An object can be implemented in a variety of ways: as a 
dynamic record, as a property-list, or as a function. 

Some object-oriented languages support inheritance in tangled networks (Com-
monORBIT, FLAVORS), others do not (KRS, at least not by default). We have 
already mentioned the difference in the way the inheritance hierarchy is searched if 
multiple inheritance is supported (depth-first in FLAVORS, breadth-first in Com-
monORBIT). Also, the way inheritance is implemented may vary: by copying the 
information of a parent to its children, or by searching it each time it is needed. 
Related to this choice is the presence or absence of a mechanism to propagate 
changes in a parent to its children. This propagation (dynamic inheritance or delega-
tion) is essential for modularity. Some object-oriented languages provide back-
pointers or bi-directionality (e.g. in CommonORBIT, if an object x has a property p, 
inherited or otherwise, then x can be retrieved through p), others do not (e.g., KRS, 
FLAVORS). 

SMALLTALK, the object-oriented language most widely used is described in 
Goldberg and Robson (1983). FLAVORS is documented in Weinreb and Moon 
(1981) and Cannon (1982), ORBIT and CommonORBIT in Steels (1981a, 1981b, 
1982) and De Smedt (1984, 1987) and KRS in Steels (1985) and Van Marcke 
(1987). 



2.3 Syntax and Semantics of the KRS Concept System 
A new language brings with it a new model 
of the machine. 
Lawrence G. Tesler 

KRS (Steels, 1985; Van Marcke, 1987) was designed to be able to incorporate and 
integrate different formalisms (functional, network, rules, frames, predicate logic etc.) 
into a single system. It is also possible to implement new formalisms on top of KRS. 
However, in the context of this dissertation, we will interpret it as a frame-based 
object-oriented language for knowledge representation. In the course of implementing 
the linguistic knowledge described in Part II, we experimented with several object-
oriented programming languages (ORBIT, FLAVORS and KRS). KRS seemed to us 
the most versatile and powerful implementation medium. All examples in following 
chapters will be written in a kind of 'stylised KRS' (with a simplification of syntax 
for readability). At this point we will give only a short introduction to part of the 
KRS concept system. More detailed information will be given in the following 
chapters whenever it is relevant. 

Knowledge is represented by means of descriptions (something which stands for 
something else). E.g. Human (Socrates) is a description (in this case in predicate cal-
culus) describing a state of affairs in a world. Note that with this definition, natural 
language, too, is a knowledge representation system. Phrases and sentences are 
descriptions of (real or imaginary) states of affairs in a possible world (cp. Droste, 
1985). 

In KRS, descriptions are called concepts. Concepts in KRS are the same as 
objects in other object-oriented languages (see section 2.1). This may cause some 
confusion. In the remainder of this text, we shall use both to mean the same thing. 
A concept has a name and a concept structure. A concept structure is a list of sub-
jects (slots), used to associate declarative and procedural knowledge with a concept. 
A concept name is only a mnemonic label, meaningless to the system. Subjects are 
also implemented as concepts, which leads to a uniform representation of objects and 
their associated information. The filler of a slot is called the referent. Concepts can 
be defined with a function defconcept and subjects with a function defsubject. Infor-
mation is retrieved from concepts by means of definite descriptions. In Figure 6 a 
few examples are given. 



(DEFCONCEPT CHARLOTTE 

(HUSBAND HUYBERT) 

(CHILD CASPER) 

(LIVES-IN NIJMEGEN)) 
A concept Charlotte is defined with a concept structure (husband Huybert) 
(child Casper)(lives-in Nijmegen). Each of these lists is a subject with an 
access (e.g. child) and a referent (e.g. Casper). Note that a concept 
description is not a definition of the concept in some theoretical sense; 
the concept structure of Charlotte is not a definition of Charlotte, but 
some information associated with this concept in a particular context. (DEFSUBJECT HOME OF CHARLOTTE CITY-HALL) 

This adds a subject home with referent City-hall to the concept structure 
of the concept Charlotte. 

( » CHILD OF CHARLOTTE) —> <CASPER> 

This is an example of a definite expression, it returns the referent concept 
of the subject with the access child associated with the concept 
identified by Charlotte. It is roughly comparable with message-passing 
in other languages. 

(DEFCONCEPT CASPER 
(MOTHER CHARLOTTE) 

(HAIR-COLOUR WHITE)) 
( » HAIR-COLOUR CHILD OF CHARLOTTE) —> <WHITE> 

As the referent of a subject is itself a concept, accesses via paths are 
possible as well. The definite description is equivalent to 

( » HAIR-COLOUR OF 

( » CHILD OF CHARLOTTE)) 

which is equal to 

( » HAIR-COLOUR OF CASPER) --> <WHITE> 

Figure 6. KRS Examples. 

Inheritance — the process of looking up information in the parents of a concept 
if it is not defined in the concept itself — is single by default in KRS, i.e. each con-
cept can have only one type or parent (but a type can have many instances or speci-
alisations). This default inheritance system can be changed by the user, however, for 
example into a multiple inheritance scheme. A concept is made an inheritor of a 
type by means of an indefinite description. Due to the fact that referents of subjects 
are concepts, inheritance works through subjects as well. Some inheritance examples 
are listed in Figure 7. 

The traditional language philosophical distinction between extension and intension 
is adopted in KRS. In linguistic semantics, proper names refer to entities (Fido -> 



(DEFCONCEPT PERSON 
(NUMBER-OF-LEGS TWO) 

(RATIONAL YES)) 
(DEFCONCEPT IRRATIONAL-PERSON 

(A PERSON 

(RATIONAL NO))) (DEFCONCEPT JOHN 
(AN IRRATIONAL-PERSON)) 

This KRS code defines a type relation between PERSON, IRRATIONAL-PERSON, 
and JOHN by means of indefinite descriptions: (a(n) Cconcept-description^ 

( » NUMBER-OF-LEGS OF JOHN) —> <TWO> 

This definite description looks for the subject NUMBER-OF-LEGS, first in 
JOHN, then in IRRATIONAL-PERSON, and finally in PERSON, where the subject is 
found. 

(DEFCONCEPT JOHN 

(A PERSON 
(AGE (A NUMBER)) 

(FATHER (A PERSON)))) ( » NUMBER-OF-LEGS FATHER OF JOHN) --> <TWO> 

This example illustrates inheritance through subjects. 

Figure 7. More KRS Examples. 

FIDO), predicates refer to sets of entities (dog -> the set of all dogs), and the exten-
sion of a sentence is its truth value. The intension of proper names and predicates is, 
depending on the theory, either a conceptual structure or a defining property (the 
necessary and sufficient conditions to fall within the extension). The intension of a 
sentence is a set of truth conditions (necessary and sufficient conditions for the sen-
tence to be true). Intension is a linguistic notion (defined as a set of relations with 
other linguistic expressions) as opposed to extension, which relates language to the 
world. Extensions are taken to be contextually determined, intensions are considered 
constant. It is therefore possible to define the intension as a function which yields the 
extension when applied to a particular context. 

A KRS concept is linked to its extension by means of a special subject, called 
the referent. E.g. the referent (or extension) of a concept two is a Lisp number 2. 
The referent of a formula (a program fragment) is a piece of Lisp code. The same 
referent can have different descriptions. For example, the concepts <Number-2>, 
<two> and <twee> all have as a referent Lisp number 2. A special notation 
exists for describing the referent of these data-concepts (a category of concepts 



having Lisp data-types as their referent): e.g. [number 2] is a shorthand for (A 
NUMBER (REFERENT 2)). Concepts which are not data-concepts have other con-
cepts or an abstraction as their referent. Only data-concepts have 'physical' referents 
(as defined by some action or state in the machine through Lisp data structures). 
This implies that most reasoning is done at the abstract level of definitions and 
descriptions, as most referents of concepts in an application cannot be represented in 
the machine (you cannot put a dog into the computer). 

Apart from a referent, concepts can have a subject definition (intension). A 
definition is a function which computes the referent of a concept in a particular con-
text (a Lisp environment). The referent of a definition must be an executable Lisp 
form. A basic feature of KRS is therefore that the referent of a description is the 
evaluation (execution) of the referent of the definition of the description (Figure 8). 

In Figure 9, a (simplified) BNF summary of the syntax of KRS is given. 
This brief sketch of the object-oriented programming system KRS suffices to fol-

low the representation of linguistic knowledge in Chapters 3 and 4. Although we 
will not go into this in the present dissertation, it is clear that KRS can be straight-
forwardly adapted to implement logic grammars such as the one developed by Mon-
tague (1974) due to its explicit representation of extensional and intensional meaning. 



CONCEPT-DESCRIPTION : = 
CONCEPT-NAME | DEFINITE-DESCRIPTION | CONCEPT-

STRUCTURE | INDEFINITE-DESCRIPTION 
CONCEPT-NAME : = SYMBOL 
DEFINITE-DESCRIPTION : = ( » ACCESS-1 ... ACCESS-n OF CONCEPT-DESCRIPTION) 
INDEFINITE-DESCRIPTION 

: = 
(A CONCEPT-DESCRIPTION CONCEPT-STRUCTURE) 

CONCEPT-DEFINITION : = (DEFCONCEPT CONCEPT-NAME CONCEPT-DESCRIPTION) 
SUBJECT-DEFINITION : = (DEFSUBJECT ACCESS OF CONCEPT-DESCRIPTION 

CONCEPT-DESCRIPTION) 
CONCEPT-STRUCTURE : = (ACCESS-1 CONCEPT-DESCRIPTION) 

(ACCESS-n CONCEPT-DESCRIPTION) 
ACCESS-i : = SYMBOL 

Figure 9. Simplified KRS summary. 

2.4 Object-Oriented Computational Linguistics 
Some kinds of notation seem to fit the sort of 
facts one encounters in some domain; others, 
which may ultimately be equivalent in some 
sense to the former kinds, do not. 
Gerald Gazdar 

In this section we will try to show that an object-oriented language is notationally 
adequate for the description of linguistic knowledge and processes. This demonstra-
tion can only be theoretical, and somewhat intuitive. Much of the power of object-oriented programming becomes obvious only through experience and by programming 
the same problem in both object-oriented and alternative ways. By means of exam-
ples, Part II of this dissertation will give more substance to the claims made here. 

We are fully aware that all programming paradigms are equivalent in that the 
programs they generate are reduced ultimately to machine language (i.e. they are 
weakly equivalent to Turing machines). But to the programmer (and to the computa-
tional linguist) they are different in the metaphors they provide to conceptualise the 
problem domain, and the image they generate of the machine. In that sense, the par-
ticular programming paradigm used has a distinct effect, not only on the speed and 
ease of theory building, but on the theory building itself. 

Besides the general computational advantages of the object-oriented paradigm 
outlined in section 2.1 (modularity, ease of programming, clarity of style and 
efficiency), we see five specific advantages for linguistics. 



(i) Hierarchies are a powerful mechanism for describing generalisations in an 
elegant and effective way, and as briefly as possible. Generalisation can be 
achieved by attaching general information (defaults) to concepts from which a 
number of other concepts inherit. Afterwards, one only has to specify in what 
respects an inheritor differs from a parent. This approach not only assures an 
efficient implementation (in terms of storage), it also brings conceptual clarity 
about the relations between theoretical concepts. 

(ii) The dichotomy between rules and exceptions is nicely captured by overruling 
inherited defaults. We can state, for example, that all vowels are stressable by 
associating this information to the concept vowel. The exceptional status of 
schwa can then be shown by letting it inherit from the type vowel, but overrul-
ing the subject stressable. Complexity of a language can be operationalised as a 
function of the number and kind of 'exceptional' specialisations (instances) of 
'regular' concepts. 

(iii) Related to (ii), the fuzziness of linguistic theoretical concepts can be modeled by 
multiple inheritance (semi-vowels inherit from both vowels and consonants, 
nominalised verbs from both nouns and verbs) or by specialisation (a new con-
cept which inherits all but a few of the subjects of its parent). That way, stereo-
types (prototypes) can be naturally and easily modeled. 

(iv) All knowledge which plays a role in linguistic processes (world, situational and 
linguistic knowledge) and all levels of linguistic description (from the pragmatic 
to the phonetic) can be represented in a simple and uniform way (objects, inher-
itance hierarchies, methods and features). Even meta-linguistic knowledge can be 
represented11. Furthermore, it seems natural for most linguistic theories to use a 
formalism based on graphs (nodes with features and arcs defining relations 
between nodes). Case frames, phrase structure trees, ATNs, scripts, semantic 
networks and functional descriptions are some instances of this kind of formal-
ism. They can all be represented straightforwardly in an object-oriented pro-
gramming style. Nodes map to objects, features of nodes to features of objects, 
relations between nodes to features of objects or hierarchical relationships. This 

1 1 In a sense, most linguistic knowledge represented in the following chapters is meta-
linguistic knowledge. For instance, KRS concepts exist for morphological boundaries, partic-
ular words, syntactic categories, dictionaries, etc. and for the relations between these con-
cepts. Describing this KRS knowledge base in natural language produces metalinguistic sen-
tences: 'Table' is a noun, 'z' is a fricative, A phonological rule consists of a condition part 
and an action part. (a meta-rule) (cp. Droste, 1983). 



shows that an object-oriented notation 'is close to the sort of facts one 
encounters in the linguistic domain' (see the citation by Gazdar at the beginning 
of this section). 

(v) Language processing (generating and interpreting) can be viewed as a problem-
solving task using hierarchies of linguistic knowledge concepts. Complex rule 
interactions and sequences of actions can be formulated relatively simply. By 
looking for an optimal division of knowledge among concepts, and an optimal 
explication of the interrelations between them, complicated actions can be 
described in a simple, intuitively plausible way. 

However, the expressive power of the object-oriented paradigm can also be 
regarded as a disadvantage: there are almost no restrictions on the way knowledge 
can be defined, organised and used. Different alternatives can be considered in the 
organisation of hierarchies and inheritance, different places in the hierarchy are 
equally defendable for the attachment of procedures. 

Relative to the methodological criteria which are important to us, however, these 
dilemmas can be resolved in different ways. If we want to simulate human verbal 
behaviour, our freedom in arranging knowledge and procedures will be restricted by 
psycholinguistic experimental data. If it is linguistic adequacy we are after, the sys-
tem would have to be organised so as to adhere most closely to linguistic methodo-
logical criteria such as maximal generalisation. Finally, if we have a commercial 
application in mind, the construction process must be guided by considerations of 
computational efficiency. In Chapter 1 it was claimed that a computational theory of 
verbal behaviour should incorporate all these different constraints into a coherent 
whole. 

In Part II of this dissertation, a KRS implementation of a computational model 
of aspects of Dutch phonology and morphology will be developed. A frame-based or 
object-oriented approach has been used extensively in the implementation of world 
knowledge for use in semantic interpretation. Similar approaches to phonology and 
morphology are less frequent. 



PART II 

LINGUISTIC KNOWLEDGE REPRESENTATION 
AND PROCESSING 
In the preceding chapters, language technology was defined as the design of applica-
tions of a computational linguistic model. Object-oriented programming was put for-
ward as an ideal paradigm for the programming of linguistic knowledge and 
processes. 

In the following chapters, an object-oriented implementation of aspects of Dutch mor-
phology and phonology will be described. The description of a complete model of 
Dutch morpho-phonology would involve a text several times the size of the present 
one. We will restrict our attention to the synthesis of verbal inflections, the analysis 
of compounds and the detection of internal word boundaries (Chapter 3), and 
syllabification and phonemisation algorithms (Chapter 4). Special emphasis will be 
put on the interaction between morphological and phonological knowledge and 
processes, and on the extensibility of the knowledge base developed. Also, a princi-
pled study of the interaction between spelling, phonological and lexical representations 
will be made, and some considerations in the design of a lexical database will be put 
forward. 



CHAPTER 3 
Aspects Of Dutch Morphology 

In this chapter1, a knowledge base of morphological concepts and morphological 
processes operating on this knowledge base will be built up. The resulting model, 
which will be further extended with phonological information in the next chapter, 
serves two aims: first, it should solve the technological problem; i.e. the model will 
have to be useful for the different applications we had in mind for it, and second, it 
should be constrained by linguistic and psychological evidence. As such, it comes up 
to the methodological requirements put forward in Chapter I of this dissertation. 

Morphology is a branch of linguistics which studies the internal structure of 
existing complex (polymorphematic) words and the rules with which new complex 
words can be formed. We will adopt a lexicalist framework2 of word formation here, 
presupposing the existence of an independent word formation component, the rules of 
which operate before lexical insertion. Our model will not be orthodoxically lexical-
ist, however, as we will allow all complex words to be entered in the word list, and 
not only those with at least one idiosyncratic property. 

In computational morphology, the morphological capacities people exhibit (pro-
ducing and interpreting morphologically complex words) are simulated. Aspects of 
both synthesis (production or generation, section 3.1) and analysis (interpretation or 
recognition, section 3.2) will be treated, as well as the role of the lexicon (section 
3.3) and word formation rules in both processes. 

1 This chapter is partly based on Daelemans (1986). 
2 See e.g. Chomsky, 1970; Halle, 1973; Jackendoff, 1975; Aronoff, 1976; Booij, 1977 

and others. 



In our model, morphological synthesis and analysis will be regarded as funda-
mentally different processes. Synthesis (the transformation of a lexical representation 
into a phonetic or orthographic representation) is determined uniquely by the proper-
ties of the lexical representation. Analysis on the other hand (assigning a lexical 
representation to the spelling or sound representation of a word form), is determined 
not only by the input representation, but also by linguistic and extra-linguistic con-
text. The reason for this is that different underlying representations can be realised 
as the same sound or spelling image, introducing ambiguity. Furthermore, both 
processes access the lexicon in essentially different ways. Synthesis enters the lexicon 
with a lexical representation, analysis with a phoneme or grapheme representation. 
As far as possible, however, the same knowledge base will be used by both 
processes. 

The model developed will be compared to other computational models of mor-
phology, and to results of psycholinguistic research (section 3.4). Only parts of the 
complete model, which is still under development, will be treated here, notably the 
synthesis of verbal inflections, the analysis of compounds, and the detection of inter-
nal word boundaries. We will not be concerned with the semantic level in the lexi-
con. 

Before starting the discussion of our model, it may be useful to define the ter-
minology which we will use in this and subsequent chapters, since much confusion 
exists in the literature. Our definitions will be based mainly on Matthews (1974) and 
Lyons (1981). 

Morphemes are the smallest elements of the language with a semantic or syntac-
tic function (roots, stems and affixes). A word form is a morpheme or a combina-
tion of morphemes. It consists of either a string of letters or a string of phonemes. 
Word forms are generated by morphological processes, captured in morphological 
rules. Dutch productive morphological processes are affixation, compounding and 
compounding affixation. There are also relics of an Ablaut process. A paradigm 
(lexeme, lexicon entry) is a set of formally related word forms which have the same 
base form (called root if it is unanalysable and stem if it is complex) but different 
affixes. In exceptional cases, a paradigm may have more than one base form (this is 
called suppletion). E.g., the paradigm of the verb kopen (to buy) has base forms 
koop and kocht. One, privileged, word form in a paradigm is the citation form, e.g. 
the infinitive of verbs and the singular of nouns. The citation form is used to name 



the paradigm. We can say e.g. that the paradigm or lexeme lopen consists of the 
word forms lopen, loop, loopt, lopend, gelopen, liep, liepen, lope with lopen as the 
citation form. 

It may also be useful to describe the different kinds of word level ambiguity 
which are usually distinguished. Class ambiguity exists when a word form can belong 
to two different syntactic classes. E.g. loop can be either a noun (barrel), or a verb 
(first person singular present indicative of lopen (to run). Class ambiguity can exist 
between paradigms (as in the case of loop) or within a paradigm (subclass ambi-
guity). E.g. lopen can be both infinitive, and plural present indicative. Semantic 
ambiguity can be due to either homonymy (unrelated words have the same spelling or 
pronunciation e.g. bank as a financial institution and as ground near the river), or 
polysemy (related words with different meanings e.g. dry as not wet and as not 
sweet, for wine). The distinction between homonymy and polysemy cannot always be 
easily made from a synchronic point of view. 

3.1 Morphological Synthesis 
In this section, part of a synthesis program written in KRS will be described. Syn-
thesis programs can be applied as a module in the generation part of larger natural 
language processing systems, and in automatic dictionary construction (Chapter 8). 

The task of the program fragment is to compute the inflections of Dutch verbs 
on the basis of their infinitive and it is intended to cover all regular and irregular 
categories of verbs. The inventory of verbs (the data) was taken from the authorita-
tive ANS (Algemene Nederlandse Spraakkunst, General Grammar of Dutch, 1984). 
The levels of description will be mainly the lexical and the spelling levels, but pho-
nological information will be discussed whenever it plays a role in the computation of 
the spelling image of word forms. The spelling and phonological levels are carefully 
kept apart. An autonomous spelling level provides insight into the structure of the 
spelling system, describes the knowledge people must have in order to spell the vari-
ous inflected word forms correctly, and may thus provide a scientific background to 
the evaluation of different proposals for spelling change. Similar ideas have been put 
forward by Zonneveld (1980), Kerstens (1981) and Wester (1985b). The phonologi-
cal level will be described in Chapter 4. We have tried to exploit this modularity as 
far as possible in order to have a clear view on the precise interaction between both 
levels. In practice, this approach implies that phonological information is used to 



compute word forms when it is available; but when it is absent, the system can 
nevertheless resort to other strategies and heuristics. This was necessary to make the 
knowledge base flexible enough to be useful in different applications. Input to our 
programs is mostly a spelling representation. 

The linguistic description model adopted is essentially Item and Process (IP, see 
Matthews, 1974 for a discussion of various models). Abstract morphemes are the 
basic elements of morphological structure, and their combination in word formation 
happens by means of morphological processes which may modify morphemes. These 
modifications are reflected in the realisation (in spelling and sound) of the new word 
form. The introduction of the possibility of morphological processes modifying mor-
phemes is an essential departure from the Item and Arrangement model (LA), and is 
necessary to describe non-sequential effects such as vowel changes. Both IP and LA 
are superior to the Word and Paradigm (WP) model in that they capture important 
linguistic generalisations instead of simply listing the inflected forms of a lexeme. 
However, the notion of paradigms acting as prototypical cases from which the 
inflections of other verbs can be induced (e.g. for learning and teaching purposes), is 
kept in our description. But our paradigms have a different meaning: they denote 
clusters of morphological processes rather than lists of examples. A WP-approach is 
also used to describe unsystematic irregularities (e.g. the suppletive verbs discussed 
earlier). 

3.1.1 Objects in the Domain of Synthesis 
When developing an object-oriented system, a set of concepts in the problem domain 
(morphological synthesis) must be defined, and their properties and interrelations 
made explicit. Figure 1 shows part of the object-hierarchy necessary to generate ver-
bal inflections. We use normal KRS-syntax, but pieces of Lisp code will be para-
phrased in 'formal English'. These parts will be set apart within curly brackets. 
Recall that in KRS a concept description (i.e. the subjects associated with it) is not 
the same as a definition of the described object in a particular theoretical framework. 
It is only a description of what is relevant in a particular context. To the concept 
description of morpheme, for example, subjects relating to phonological structure will 
be added later (Chapter 4). When incorporating a semantic level in the system, still 
other subjects will have to be added. 



(DEFCONCEPT BOUNDARY 
(LEXICAL-REPRESENTATION (A STRING))) 

(DEFCONCEPT WORD-BOUNDARY 

(A BOUNDARY 
(LEXICAL-REPRESENTATION [STRING "#"]))) 

(DEFCONCEPT MORPHEME-BOUNDARY 

(A BOUNDARY 
(LEXICAL-REPRESENTATION [STRING "+"]))) 

(DEFCONCEPT MORPHEME 
(LEXICAL-REPRESENTATION (A STRING)) 

(BOUNDARY (A BOUNDARY))) 
(DEFCONCEPT FREE-MORPHEME 

(A MORPHEME (BOUNDARY (A WORD-BOUNDARY)))) 

(DEFCONCEPT BOUND-MORPHEME 

(A MORPHEME)) 

Figure 1. KRS Implementation of some morphological concepts. 

The knowledge expressed in Figure 1 might be paraphrased as follows. All 
boundaries have a lexical-representation. There are two sub-classes of the boundary 
type: word and morpheme boundaries. All instances of the former have lexical 
representation instances of the latter have lexical representation ' + '. The 
difference between both types plays a role in morphological analysis and in phonolog-
ical processes such as syllabification (Chapter 4.1). We will argue in later chapters 
(Chapter 5 and 6) that the design of satisfying hyphenation and spelling/typing error 
detection algorithms for Dutch relies in large part on this distinction. We expect the 
morpheme object to have a lexical representation and a boundary. Whether a boun-
dary follows or precedes a morpheme depends on its type. A sub-class relation with 
free and bound morpheme is made. All free morphemes have a word boundary. 
Figure 2 continues the description of objects in the morphological synthesis domain 
by means of KRS concepts. In Figure 2, prefixes and suffixes are classified as bound 
morphemes. They inherit the lexical representation and boundary subjects from their 
ancestors. All prefixes have a word-boundary. An affix knows how to append itself to 
a morpheme (the context); the procedure to do this is described in its append subject. 

As an example, consider how the knowledge base built up so far can be used to 
compute the lexical representation of the past participle of the verb werken (to work). 
We compute the referent of the concept which results from 'appending' the relevant 
affixes to a string representing the root of a verb. 



(DEFCONCEPT PREFIX 
(A BOUND-MORPHEME 

(BOUNDARY (A WORD-BOUNDARY)) 

((APPEND (?CONTEXT) 

(A STRING 
{Concatenate the following strings: 

( » REFERENT LEXICAL-REPRESENTATION) 

( » REFERENT LEXICAL-REPRESENTATION BOUNDARY) 

( » REFERENT OF ?CONTEXT)} 

)))) 
(DEFCONCEPT PAST-PARTICIPLE-PREFIX 

(A PREFIX 
(LEXICAL-REPRESENTATION [STRING "ga"]) 

(BOUNDARY (A WORD-BOUNDARY)) 
((APPEND (?CONTEXT) 

(A STRING 
{Concatenate the following strings: 

(>> REFERENT LEXICAL-REPRESENTATION) 
(>> REFERENT LEXICAL-REPRESENTATION BOUNDARY) 
(>> REFERENT OF ?CONTEXT)} 

)) 
The part in italics constitutes the information which is accessible in the 
concept past-participle-prefix through inheritance. It must not be 
specified explicitly. We only provide it here as an example of the effect of 
inheritance. 

(DEFCONCEPT SUFFIX 
(A BOUND-MORPHEME 

(BOUNDARY (A MORPHEME-BOUNDARY)) ; This is a default, 
; not always true. 

((APPEND (?CONTEXT) 

(A STRING 
{Concatenate the following strings: 

( » REFERENT OF context) 
( » REFERENT LEXICAL-REPRESENTATION BOUNDARY) 

( » REFERENT LEXICAL-REPRESENTATION)} ) ) ) ) 
(DEFCONCEPT PAST-SINGULAR-SUFFIX 

(A SUFFIX 
(BOUNDARY (A WORD-BOUNDARY)) ; Overrules the default. 
(LEXICAL-REPRESENTATION [STRING "Da"] 

))) 
(DEFCONCEPT PAST-PARTICIPLE-SUFFIX 

(A SUFFIX (LEXICAL-REPRESENTATION [STRING "D"]))) 

Figure 2. Morphological concepts in KRS (continued). 

( > > REFERENT 

(APPEND 
( > > (APPEND [STRING "werk"]) 

OF PAST-PARTICIPLE-SUFFIX)) 

OF PAST-PARTICIPLE-PREFIX)) 



This will return gd#werk+D. 
First, the embedded definite description is computed: past-participle-suffix inher-

its the append subject from type suffix. The application of this procedure with as 
argument a string with referent "werk" results in the concatenation of this string, the 
lexical representation of the boundary of the suffix (which is found through the lexi-
cal representation subject of morpheme-boundary to be " + "), and the lexical 
representation of the suffix itself. 

The result of the concatenation is a string with referent (werk+D). It is used as 
an argument to the append method (which is inherited from prefix) of past-participle-prefix. Again, a concatenation is effected, this time of the lexical-representation of the 
prefix (which is gd), the boundary (a word-boundary, and therefore realised and 
the context, which is the newly created string with referent werk+D. The final result 
is a string with referent ge#werk+D. The example shows that fairly complicated 
sequences of actions and decisions can be described very simply if the necessary 
knowledge is organised object-orientedly. 

Additional concepts have been defined describing present-singular-suffix, plural-suffix, and present-participle-suffix. The concept-hierarchy described so far is graphi-
cally represented in Figure 3. The inventory of types is by no means complete; for 
the morphology of nouns and adjectives, additional types should be created (for 
example a type representing distance affixes such as ge...s in gezusters, sisters). 

At this point we would like to enlarge upon the lexical representation we use. 
As can be noticed from the examples already given, this representation incorporates 
graphemes, phonemes, morphophonemes (like D, for t or d in the computation of the 
past tenses of regular verbs) and a number of morphological markers (mainly boun-
dary symbols). Both spelling and phonological representations can be derived from it 
by means of filters. Its main inspiration is of course the traditional underlying form 
in generative phonology, but it may have some psychological validity as well. An 
interesting syllable monitoring experiment by Taft and Hambly (1985) yields evidence 
for an abstract representation level incorporating morphemic structure and influenced 
by orthography. Both pronunciation and orthography could be generated from this 
level (see also Jakimik et al., 1985, and Aronoff, 1978 for linguistic arguments). In 
our own approach, the particular form of the lexical representation was a natural 
result of working with spelling as point of departure and of needing phonological 
information to compute word forms, and boundary information to compute both 



spelling and phoneme representations 

3.1.2 Regular Inflection 
A concept regular-verb-lexeme, specialisation of verb-paradigm, represents the para-
digm of verbs with a regular inflection. When the inflection of a verb unknown to 
the system is asked, it is made a specialisation of this type as a first (default) 
hypothesis. The regular-verb-lexeme concept contains a number of subjects referring 
to procedures to compute the various verb forms belonging to its paradigm (Figure 
4). The root of a verb-lexeme is an abstract entity (never realised in spelling or 
speech), but is necessary in the computation of actual verb forms. The paradigm sub-
ject of a regular-verb-lexeme lists all inflected forms, computed on the basis of the 



(DEFCONCEPT REGULAR-VERB-LEXEME 

(A VERB-PARADIGM 
(CITATION-FORM (A STRING)) 

(PARADIGM 
(A CONCEPT-LIST 

{List the following verb forms: 

( » PRESENT-SINGULAR-ONE) 

( » PRESENT-SINGULAR-TWO) 

( » PRESENT-SINGULAR-THREE) ( » PAST-PARTICIPLE)} 
)) 

(ROOT 
(A MORPHEME 

(LEXICAL-REPRESENTATION 

{If 
( » REFERENT CITATION-FORM) 
ends in a consonant + "iën", Then chop off last letter, 

Else: chop off two last letters} ) ) ) 
(PRESENT-SINGULAR-ONE 

(A VERB-FORM 
(LEXICAL-REPRESENTATION 

{Apply present-singular-one-rule to the citation form} (PRESENT-SINGULAR-TWO ... )) 

Figure 4. Part of the concept regular-verb-lexeme. 

root or other inflected forms. 3 In each subject referring to a morphological process, a 
concept is created which is a specialisation of the concept verb-form. In this object, 
slots are defined relating to appearance (spelling, lexical-representation), origin (its 
lexeme) and morphological features (finiteness, tense, number, person) of the verb 
form (Figure 5). The latter features are concepts in their own right. 

The subjects of verb-forms are filled when their lexical representation is com-
puted. A linear version of these created word forms can be stored in the lexical 
database as a dictionary entry (see sections 3.3 and 8.2). The lexical-representation 
subject of a verb-form is computed by applying a morphological rule to the root of 
the regular-verb-lexeme. An example of the internal structure of the subject present-singular-three of regular-verb-lexeme and a description of the relevant morphological 
rule are given in Figure 6. This figure also lists the description of the concepts 
linguistic-rule and morphological-rule of which present-singular-three-rule is a 

3 A KRS-expression like ( > > PRESENT-SINGULAR-TWO) when used within the scope 
of a concept x is equivalent to ( > > PRESENT-SINGULAR-TWO OF X). Within the sub-
jects of a particular concept, the concept itself can be referred to by using the expression 
( > > ) . This is analogous to the self symbol in other object-oriented languages. 



(DEFCONCEPT WORD-FORM 
(A FREE-MORPHEME)) 

(DEFCONCEPT VERB-FORM 
(A WORD-FORM 

(SPELLING ... ) 
(LEXEME ... ) Pointer to the citation form 

of which it is derived. 
(FINITENESS ... ) One of finite, infinite. 
(TENSE ... ) One of past, present. 
(NUMBER ... ) One of singular, plural. 
(PERSON ... ) One of first, second, third. 

Figure 5. Part of the verb-form concept. 

specialisation. The concepts shown here are simplifications of the ones actually used. 
We will come back to the rule concepts in Chapter 4. 

In the same vein, subjects and rules were written to compute other inflected 
forms of verbs (present-singular-1, present-singular-2, present-plural, present-
participle, past-singular, past-plural and past-participle). It can be inferred from these 
procedures that forms are computed by passing the root of the verb or other forms to 
the application subject of the morphological rule in question. This rule then makes 
use of the boundary and affix concepts described earlier to compute the lexical-representation. 

The caching and lazy evaluation present in KRS are useful here because pro-
cedures sometimes make use of the result of other procedures. Caching means that 
fillers for subjects are computed only once, after which the result is stored. The con-
sistency maintenance system built in provides the automatic un-doing of these stored 
results when changes which have an effect on them are made. Without these mechan-
isms, some procedures would have to be computed several times. E.g., the past 
plural procedure gives rise to a cascade of procedure applications: past-plural uses 
past-singular, past-singular uses root. Furthermore, some verb forms, which are not 
described here because they are identical to other forms or because their computation 
is trivial (imperative and conjunctive forms are a case in point) can be defined in 
terms of the procedures described above, without need for re-computation. Lazy 
evaluation means that the concept filling a subject is only computed when it is asked 
for. That way, many concepts can be defined without computational overhead, since 
computation of the referent of a concept is postponed until it is needed. 



(DEFCONCEPT REGULAR-VERB-LEXEME 

(PRESENT-SINGULAR-THREE 

(A VERB-FORM 
(FINITENESS FINITE) 

(TENSE PRESENT) 

(NUMBER SINGULAR) 

(PERSON THIRD) 

(LEXICAL-REPRESENTATION 

(A STRING 

(DEFINITION 

[FORM 
( » REFERENT APPLICATION OF 

(A PRESENT-SINGULAR-THREE-RULE 
(DOMAIN (»))))]))) ; The rule is accessed 

; with the particular regular-verb-lexeme as its domain. 

...))) 

(DEFCONCEPT LINGUISTIC-RULE 

(ACTIVE-P (A BOOLEAN)); 
With this predicate a rule can be 
turned on and off. 

(CONDITIONS (A FORM)) 
; If-part of the rule. 

(ACTIONS (A FORM)) 
; Then-part of the rule. 

(APPLICATION (DEFINITION 
[FORM (IF (EVAL ( » REFERENT CONDITIONS)) 

(EVAL ( » REFERENT ACTIONS)) 

FALSE)])))) 
(DEFCONCEPT MORPHOLOGICAL-RULE 

(A LINGUISTIC-RULE (DOMAIN) ; This domain is the context in which 
; conditions are checked and actions performed. 

(CONDITIONS TRUE))) ; A morphological rule always applies 

; when it is used. 
(DEFCONCEPT PRESENT-SINGULAR-THREE-RULE 

(A MORPHOLOGICAL-RULE 
(ACTIONS ; The root of the domain is appended to 

; the present-singular-suffix. 

[FORM ( » REFERENT APPEND 
( » LEXICAL-REPRESENTATION ROOT DOMAIN)) 

OF PRESENT-SINGULAR-SUFFIX)]))) 

Figure 6. Apparatus to compute third person singular of verbs. 

3.1.3 The Spelling Filter 
So far, we have been computing lexical representations of word forms. As has 
already been explained, this level of description contains boundary symbols and morphophonemes, like D, which are not realised as such in spelling and sound. Spelling 
is derived from this lexical represention by means of a number of spelling rules, 
pronunciation by means of a number of phonological rules. Instead of including the 
necessary modifications in the different verb-form computation procedures or instead 
of introducing spelling subjects to the different affixes — thereby complicating them 
— we have adopted an approach in which a spelling filter, attached to the spelling 



slot of the verb-form concept combines all spelling modifications. That way, more 
generalisations can be made. 

Generalisation in an object-oriented system is represented by the attachment of 
subjects to concepts from which several other concepts inherit. Even more generalisa-
tions are possible if the system is extended with the inflections of adjectives and 
nouns as well. The (extended) spelling filter can then be moved up in the hierarchy 
from verb-form to word form or even free-morpheme. 

The spelling filter consists of six spelling rules, specialisations of the type 
spelling-rule (Figure 7). 
(1) Consonant-degemination is a rule which can be used to account for phenomena 

like the three following ones. 
(i) Degemination of the final root consonant as in legg, legg+t etc. (realised as 

leg, legt). 
(ii) Assimilation of suffix in past participle as in ge#praat+t and ge#dood+d 

(realised gepraat, gedood). 
(iii) Assimilation of suffix in present singular as in praat+t (realised praat). 
Note that we have to take into account the morphological boundaries (the rule 
must be blocked in cases like praat#te, past singular of praten, and realised 
praatte). More realistically, the scope of this rule is the syllable, which is not yet 
represented in the system (but will be in Chapter 4). Word-boundaries always 
coincide with syllable-boundaries while morpheme-boundaries are 'invisible' to 
syllabification rules. This explains the difference between 'praat+t' (degemination) 
and 'praat#te' (no degemination). In Chapter 4, phonological data and processes 
will be added to the spelling system, making reformulations of existing rules possi-
ble, without making them superfluous. 

(2) Zv-devoicing as a spelling rule has a phonological correlate in final devoicing, a 
rule which states that all voiced obstruents are pronounced voiceless in syllable-
final position. In spelling, this rule is restricted to z and v in root-final position. 
Examples are blijv (root of to stay) becoming blijf, and huiz (root of to house) 
becoming huis. There is one exception to this rule; the loan word fez. 

(3) An example of vowel-doubling is the fact that lat (root of laten, to let) becomes 
laat. The conditions in the rule avoid the generation of the following ungrammatical verb forms: *aankondiig, *duuw, *waaai, *houud etc. Forms like 
appreciëren (to appreciate) which seem to be wrongly adapted by this rule at 



(DEFCONCEPT SPELLING-RULE 

(A LINGUISTIC-RULE 

(DOMAIN) 
(CONDITIONS TRUE))) (DEFCONCEPT CONSONANT-DEGEMINATION-RULE 

(A SPELLING-RULE 

(ACTIONS 
{If lexical representation contains a word-final 

geminate CiCi or Ci+Ci, then 
replace C i C i by C i ) ) ) 

(DEFCONCEPT ZV-DEVOICING-RULE 

(A SPELLING-RULE 

(ACTIONS 
{If lexical representation contains z or v followed by 

nothing or by a morpheme boundary not followed by a 

vowel, then replace z by s or v by f}))) 

(DEFCONCEPT VOWEL-DOUBLING-RULE 

(A SPELLING-RULE 

(ACTIONS 
{If a vowel V, equal to a, e, o or u is preceded by 

a segment which is not equal i, a, e, or o, and followed 

by a segment which is not equal to w or i, and the 

latter is followed either by nothing or by a morpheme 

boundary, which in its turn is not followed by a vowel, 

then replace V by VV in the lexical representation} 

(DEFCONCEPT SPELLING-ASSIMILATION-RULE 

(A SPELLING-RULE 

(ACTIONS 
{If morphophoneme D is preceded either by t followed by 

a word boundary or by one of p, s, k, f, h followed by 

a morpheme boundary, then replace D by t. If D is 

preceded by t or d followed by a morpheme boundary, then 

replace D by "" (empty-string). Else, replace D by 

d.}))) 

(DEFCONCEPT SCHWA-REDUCTION-RULE 

(A SPELLING-RULE 

(ACTIONS 
{If a schwa is followed by a morpheme boundary followed 

by a schwa, then delete the second schwa}))) 
(DEFCONCEPT GE-DELETION-RULE 

(A SPELLING-RULE 

(ACTIONS 
{If gdff is followed by one of ont, her, vdr, 
bd or gd, then delete gdff}))) 

Figure 7: Spelling Rules. 

first sight (apprecier instead of apprecieer), are nevertheless correctly formed 
because the diaeresis is kept in the lexical representation of a word; it is 
represented as a special symbol which precedes the character to which it applies. 
The presence of this code 'prevents the preventing' of the application of this 
rule. 



(4) Spelling assimilation is a rule which states that the voicedness of the first con-
sonant of past-participle and past-singular suffixes (represented at the lexical 
level by "D") depends on the voicedness of the final segment of the morpheme 
to which they are appended. It is clearly a sandhi-process, but a marked one, 
since the direction of assimilation is opposed to the normal (phonological) case. 
It is therefore treated as a spelling rule. 

(5) Another rule, ge-deletion states that the realisation in spelling of the past-
participle prefix is either ge or an empty string, depending on the presence of 
certain affixes in the morpheme to which it is appended. E.g. compare 
ge#werk+t (worked) of werken to be#werk+t (adapted) of bewerken. In the 
latter case, the prefix is not realised. A category of problematic verbs exists 
(e.g. vernissen, to varnish, past participle vernist and in some dialects gevernist). We evaded the problem by storing these verbs without an internal word 
boundary between the prefix and the root. 

(6) Finally, schwa-reduction removes a suffix-initial schwa (d) when it is preceded 
by one. E.g. maak#td +dn becomes maak#td +n (they made), 

Apart from these spelling rules, the spelling slot in verb-form contains pro-
cedures which remove boundary symbols, insert a dieresis if necessary (to separate 
vowels if mispronunciation is likely, see Chapter 4), and transform remaining lexical 
representation symbols into their spelling correlates. For example, d becomes e etc. 

Notice that the order in which spelling rules are applied is important; vowel 
doubling can occur after zv-devoicing, as in 

blaz -(zv-devoicing)-> blas -(vowel-doubling)-> blaas, 
but not after consonant degemination: 

legg -(degemination)-> leg -(vowel-doubling)-> *leeg 
Generally, the rules are disjunctively ordered4. They interact only in two places: 

spelling-assimilation should precede zv-devoicing, and vowel doubling may apply 
after consonant degemination. In our program, the ordering of the rules guarantees 
the correct rule interactions. Provision must also be made for a recursive application 
of consonant degemination; e.g. in putt+t (he draws), realised as put. 

4 This means that they are mutually independent and can be applied in parallel. 



3.1.4 Interaction with Phonology and Error Diagnosis 
We have already mentioned syllabification as a phonological process which has an 
effect on word formation (the syllable is a domain in spelling rules). In some other 
cases, too, the processes described so far cannot operate properly on the basis of the 
spelling image of the morphemes alone. This is due to an ambiguity in Dutch spel-
ling, where grapheme < e > does not distinguish between phonemes /e/, /e/ and /d/ 
(unstressable vowel). This interferes with verb form computation in two spelling 
rules: ge-deletion and vowel doubling. 

Some of the prefixes blocking the realisation of the past-participle prefix (notably 
ge, ver and be) cannot be reliably identified on the basis of their spelling. E.g. ver-
ven /vervdn/ (to paint) has past participle gd#verf+d while verbeteren /vdrbetdrdn/ 
(to correct) has ver#beter+d. In the latter case the prefix is not realised. 

The vowel doubling rule is blocked when the vowel to be doubled is a /d/. 
E.g. vervelen /vdrveldn/ (to bore), ik verveel (I bore) versus wervelen /wervdldn/ (to 
whirl), ik wervel (I whirl). In some cases, the difference can only be made on 
semantic grounds, e.g. bedelen /bddeldn/ (to endow) or /beddldn/ (to beg). But 
often only one phonological representation is possible for a particular spelling image. 

The best solution is to include a phonological level and a level of morphological 
analysis (prefix stripping) in the model. To this end, we have to extend our morpho-
logical database with concepts for phonological objects and processes. Such a level 
will be described in the next chapter. In the absence of phonological information, 
heuristics could be used. E.g. consider the case of the disambiguation of grapheme 
< e > . In a word with three instances of < e > (e.g. wervelen, to whirl), 3 3 combina-
tions of /e/, /e/ and /d/ are theoretically possible. The number of possibilities can be 
reduced to three by taking into account heuristics like the following: Dutch infinitives 
end in /dn/, Dutch morphemes must have at least one vowel not equal to d, when 
<e> is followed by two (identical) consonants it represents /e/, etc.. In the case of 
three consecutive <e>s , the three remaining analyses are e-d-d, e-e-d, and d-e-d. All 
possibilities are realised in existing Dutch words: wervelen (to whirl), herlezen 
(reread) and vervelen (to bore), respectively. The heuristics we developed can 
disambiguate all words with two consecutive syllables containing grapheme < e > . 
The system could also ask the user for information each time it encounters a choice 
which it cannot make with the available information. In that case heuristics are still 
useful to constrain the number of possibilities among which the user has to choose. 



We adopted a strategy in which 'educated guesses' are used to make choices in 
the absence of the necessary information. The user, monitoring the output of the pro-
gram, indicates erroneous forms or parts of forms (this can be done quickly and 
easily with a mouse and menu system), and on the basis of this information, the sys-
tem tries to diagnose its error and to find a correction. To achieve this, a diagnosis 
procedure is attached to the regular-verb-lexeme object, which accepts as input infor-
mation about how many and which forms were indicated as erroneous, and delivers 
as its result a new paradigm of computed forms. As a side-effect, this procedure can 
delete false instances of the concept verb-form, and recompute them. Only anticipated 
errors can be handled this way. If no errors are detected in a computed paradigm, 
the computed verb forms are added to the lexical database. 

The same auto-correction procedure is used to recover from errors due to an 
erroneous categorisation of input verbs (a verb with irregular inflected forms is 
erroneously made a specialisation of the regular-verb-lexeme type). In this case, the 
diagnosis procedure specialises the verb-lexeme as one of the (semi-)irregular verb 
categories discussed in the next section, and transfers control to this lexeme, which 
may have a diagnosis method itself. 

3.1.5 Irregular Inflection 
The inflection of Dutch 'strong' verbs involves a vowel change which is a relic of an 
Ablaut process which has become unproductive. The different classes of irregular 
verbs must be learned, and a possible reason for their survival is their high fre-
quency of use. 

A specialisation hierarchy of irregular-verb concepts is used to describe the 
inflection of these irregular classes. Specialisations of these types inherit regular pro-
cedures from the regular verb lexeme type, and irregular procedures are delegated to 
other categories of (semi-)irregular types or to concepts which represent exception 
mechanisms (we will call the latter mixins). This process of multiple inheritance (an 
object inherits from two or more types) allows an easy definition of exception 
categories. Figure 8 lists the mixins we use for Dutch irregular verbs. Inheritance 
by delegation is only one possibility to implement multiple inheritance in KRS, but in 
this case it is the most natural way. Irregular verbs mostly are only irregular in a 
few forms (mainly past forms). Only for these forms, irregular processes must be 
considered. This can be done best by directing inheritance explicitly to some type or 



(DEFCONCEPT IRREGULAR-VERB-MIXIN) 

(DEFCONCEPT VOWEL-CHANGE-MIXIN 

(AN IRREGULAR-VERB-MIXIN 

(PAST-ROOT 
{Change vowel in (>> ROOT)}) 

(PAST-PARTICIPLE-ROOT 
{Change vowel in ( » ROOT)}) 

(PAST-SINGULAR 

(A VERB-FORM ... (LEXICAL-REPRESENTATION 
{Compute past-singular using past-root} 

(PAST-PARTICIPLE 

(A VERB-FORM 
... 

(LEXICAL-REPRESENTATION 

{Compute past-participle using past-participle 

root}))))) 

(DEFCONCEPT EN-PAST-PARTICIPLE-MIXIN 

(AN IRREGULAR-VERB-MIXIN 

(PAST-PARTICIPLE 

(A VERB-FORM 
... 

(LEXICAL-REPRESENTATION 

{Compute past-participle using 

en-past-participle-rule}))))) 

Figure 8: Concepts for irregular verb mixins. 

Sometimes, the vowel change in the vowel-change mixin can be predicted with 
certainty. E.g. an irregular verb with root vowel ui has a past participle and past 
root with vowel o. Sometimes, there are two possibilities. In that case, the most 
probable solution is chosen as a first try. With the present diagnosis system, a max-
imum of two tries is needed to predict the vowel change of all existing strong verbs. 
The consonant frame of the root, too, can be of help in predicting the vowel change. 
As irregular verbs constitute a closed class, it is of course possible to store them all, 
but such a solution would do injustice to the regularity which clearly exists in the 
Dutch irregular verb system. 

The en-past-participle mixin uses the past-participle root if it is defined (in that 
case, the concept inherits from vowel-change mixin), otherwise, the root of the 
regular-verb-lexeme type. The spelling rules and concept hierarchy used in the com-
putation of regular verbs are also applicable here. Only one suffix (en) had to be 
added (Figure 9). 



(DEFCONCEPT EN-PAST-PARTICIPLE-SUFFIX 

(A SUFFIX 
(LEXICAL-REPRESENTATION 

[STRING "dn"]))) 

Figure 9. The concept en-past-participle-suffix 

Irregular verb categories can be defined in terms of the regular-verb-lexeme type 
and the irregular-verb-mixins (Figure 10). 

(DEFCONCEPT SEMI-IRREGULAR-1-VERB-LEXEME 
(A REGULAR-VERB-LEXEME 

((PAST-PARTICIPLE 
(A DELEGATING-SUBJECT 

(DELEGATE-TO (AN EN-PAST-PARTICIPLE-MIXIN)))))) 

For example, bakken (to bake), bakte, gebakken. 
(DEFCONCEPT SEMI-IRREGULAR-2-VERB-LEXEME 

(A REGULAR-VERB-LEXEME 
((PAST-PARTICIPLE 

(A DELEGATING-SUBJECT 
(DELEGATE-TO (A VOWEL-CHANGE-MIXIN)))))) 

For example, wreken (to revenge), wreekte, gewroken. 
(DEFCONCEPT SEMI-IRREGULAR-3-VERB-LEXEME 

(A REGULAR-VERB-LEXEME 
((PAST-SINGULAR 

(A DELEGATING-SUBJECT 
(DELEGATE-TO (A VOWEL-CHANGE-MIXIN)))))) 

For example, vragen (to ask), vroeg, gevraagd. 
(DEFCONCEPT IRREGULAR-1-VERB-LEXEME 

(A SEMI-REGULAR-1-VERB-LEXEME 
((PAST-SINGULAR 

(A DELEGATING-SUBJECT 
(DELEGATE-TO 

(A SEMI-IRREGULAR-3-VERB-LEXEME)))))) 

For example, lopen (to run), liep, gelopen. 
(DEFCONCEPT IRREGULAR-2-VERB-LEXEME 

(A SEMI-IRREGULAR-2-VERB-LEXEME 
((PAST-SINGULAR 

(A DELEGATING-SUBJECT 
(DELEGATE-TO 

(A SEMI-IRREGULAR-3-VERB-LEXEME)))))) 

For example, zwijgen (to keep silent), zweeg, gezwegen. 

Figure 10. Concepts for irregular verb categories. 



In principle, every single irregular verb can be defined in terms of these and 
similar exception mechanisms. However, for classes with only one or a few items, 
the exceptional inflections were defined explicitly for reasons of efficiency. This is the 
case with suppletive zijn (to be), auxiliaries, and verbs with a consonant change (e.g. 
kopen, to buy, past singular kocht). In appendix A.3.1, the complete concept hierar-
chy used in the computation of verb forms is shown, and derivations of regular as 
well as irregular verbs are given. 

Figure 11 gives a survey of the complete synthesis part of the program. Unk-
nown citation forms are made an inheritor of one of the paradigms (lexemes) of 
which the attached morphological processes are used to compute the lexical represen-
tation of inflected forms (by means of the affixes and the stems). This lexical 
representation is transformed into spellings or pronunciations by means of a spelling 
and a pronunciation filter, respectively. The pronunciation filter will be described in 
Chapter 4. 

Figure 11. Overview of the synthesis algorithm. 



3.2 Morphological Analysis 
The task of a morphological analysis algorithm is to determine 
(1) whether a given string of orthographic or phonological symbols constitutes a 

word of the language, 
(2) if this is the case, 

(2a) to represent its internal (lexical) structure and 
(2b) to access its linguistic properties. 

Such an algorithm presupposes the existence of a lexical database and a morpho-
logical grammar as data, and segmentation and parsing procedures as processes. The 
presence of a grammar makes it feasible for a program to recognise not only existing 
words, but also possible words. These are words which do not exist (yet), but may 
one day be created as a result of rule-governed creativity. Some Dutch examples are 
louchiteit and voordeurdeler. These words did not exist until recently, but are per-
fectly acceptable for any speaker of Dutch. 

As was noted before, morphological analysis is undetermined due to ambiguity. 
E.g. a spelling string lopen would have to be analysed as in Figure 12. 

lop+en (noun plural) of LOOP (barrels) 
lop+en (verb nominalised) of LOOP (the running) 
lop+en (verb finite present plural person- 1) of LOOP (we run) 
lop+en (verb finite present plural person- 2) of LOOP (you run) 
lop+en (verb finite present plural person- 3) of LOOP (they run) 
lop+en (verb infinitive) of LOOP (to run) 

Figure 12. Six Analyses of lopen. 

We will not be concerned with how the linguistic (and in some cases extra-linguistic) 
context determines the appropriate analysis; our algorithm will have to provide all 
reasonable analyses. 

Applications of morphological analysis include hyphenation and spelling error 
correction (Chapters 5 and 6), integration into the interpretation parts of larger 
natural language processing systems (machine translation and dialogue systems), and 
systems for Computer Assisted Instruction (Chapter 7). 



3.2.1 The Storage versus Processing Controversy 
In the design of an analysis system, decisions must be taken about the balance 
between the amount of information included in the dictionary (storage) and the scope 
of the analysis algorithm (computation). The complexity of an analysis algorithm is 
directly proportional to the size and nature of the dictionary. 

Different types of dictionary can be distinguished depending on the kind of 
entries which are stored: morpheme dictionaries, citation form dictionaries and word 
form dictionaries. Most existing dictionaries (printed as well as computer-readable) 
only contain the citation form of a particular word (infinitive for verbs, singular for 
nouns etc.) and sometimes also some irregular forms (e.g. the past tense ran of to 
run would be entered as a separate entry because it is inflected irregularly)5. Mor-
pheme dictionaries only list the morphemes (base forms and affixes) of the language. 

If we want to use these relatively small dictionaries in morphological analysis, 
we have to build a complicated morphological analysis program, since we should be 
able to find the base form of derived forms which are often different from the form 
listed in the dictionary. E.g. we have to recognise huizen as the plural of huis 
(house), vertrouwd as the past participle of vertrouwen (to trust), koninkje as the 
diminutive form of koning (king), huizenkoninkje as a compound based on huis and 
koning, autogereden as the past participle of the compound verb autorijden (to drive), 
etc. If, on the other hand, we have a word form dictionary in which all derived 
forms of a citation form (irregular and regular) are listed as entries — i.e. if the 
whole paradigm is entered; tafels, tafeltje and tafeltjes of tafel (table); werk, werkt, 
werkte, werkend, gewerkt ... of werken (to work) etc. — the morphological analysis 
program can be much simpler; it only has to look for compounds and is relieved of 
the burden of having to interpret conjugations and declensions. 

We have adopted the latter strategy because (1) this form of analysis is more 
efficient in processing time, and (2), for Dutch it is feasible to store all derived 
forms. We will discuss both claims. 

5 Makers of dictionaries do not always seem to know exactly which form is exceptional 
and which is not. E.g. the first person singular of komen (to come) is ik kom and not the 
regular form ik koom, but it is never listed in a dictionary. On the other hand, the perfectly 
predictable allomorphs of the Dutch diminutive suffix -tje (-pje, -kje, -etje, -je) are often list-
ed as exceptions. 



(1) The overall speed of program execution depends on a large number of factors. 
If we disregard those which have to do with installation dependent parameters 
(processor clock frequency, complexity of machine instruction set etc.), two 
main components remain: the number of dictionary accesses (one access is the 
mean time it takes to determine whether a string of letters or phonemes is 
present in the dictionary), and the algorithm processing time (the time it takes 
for the segmentation and parsing procedures to analyse the input). In general, an 
analyser with a small dictionary will consume more algorithm processing time 
and need more accesses, but access time will be shorter (access time is a mono-
tonously increasing function of the size of the dictionary). Only if the difference 
in access time for word form and morpheme (or citation form) dictionaries is 
very high (which is not the case for Dutch with current storage technology), the 
morpheme dictionary solution would be faster than the word form dictionary 
solution. The dictionary we use, as well as various possible storage and search 
techniques, are fully discussed in section 3.3. 

(2) Provided an algorithm exists which generates (semi-)automatically the derived 
forms of the citation forms, a word form lexical database can be easily con-
structed and updated. Part of such a program was described in section 3.1. 
Furthermore, technologically speaking, the storage of large amounts of word 
forms causes no problem. 
The amount of processing necessary to analyse a particular word form depends 

on the place this word form takes in the regularity continuum. On one extreme of 
this continuum we find the trivial cases, on the other extreme the completely excep-
tional cases, and in between forms of varying levels of (ir)regularity. A trivial form 
is defined as being analysable using a simple, exceptionless rule. E.g., a diminutive 
plural is always formed by adding V to the diminutive singular form (hond#je+s, 
little dogs). Completely exceptional forms on the other hand cannot be analysed using 
rules. E.g., the citation form of suppletive verb waren (were) must be looked up, 
and cannot be computed (the form is zijn, to be). In most approaches to morphologi-
cal analysis the boundary between exceptional and regular is put arbitrarily some-
where in the middle of the regularity continuum. Forms which are regular according 
to this ad hoc boundary are computed, and the other forms are stored. In our own 
approach, only the trivial forms are computed (using the exceptionless rule criterion) 
and all other forms are stored. 



Summing up, the specific balance between processing and storage chosen in a 
particular system, depends in the first place on the available storage resources and on 
the application at hand. For our own purposes, an optimal balance for morphological 
analysis between processing and storage is achieved by storing the irregular and regu-
lar forms and computing only the trivial ones. 

3.2.2 The Algorithm 
Figure 13 gives an overview of the data, processes and representations in our 
analysis system. The remainder of this section contains a detailed description of these 
components. 

Our implementation so far works with spelling input exclusively, but the same 
algorithm can be applied to phoneme input if a phonological dictionary is available. 
Such a dictionary can be created using the phonemisation algorithm described in 
Chapter 4. The spelling input is first transformed into a normal form (a form 
without special characters, uppercase letters, numerals etc.) 6, and is made a speciali-
sation of a concept possible-word-form, which has a segmentations subject. 

Segmentation. Attached to the segmentations subject is a procedure which finds pos-
sible ways in which the input string can be partitioned into dictionary entries. First it 
is checked whether the complete string is present in the dictionary; if so, the analysis 
algorithm returns the associated analyses. Then, increasingly longer left substrings of 
the input string are taken in an iterative way, and the remaining right part is looked 
up in the dictionary. If the latter is present, the whole procedure is applied recur-
sively to the (left) remainder of the string. The procedure may stop with the first 
solution ('longest-only') or continue looking for other analyses with smaller dictionary 
items ('all-possibilities'). Both options are implemented in the present system, but the 
longest-only solution is sufficient in most applications. It is also more efficient in pro-
cessing time. When the 'grain size' of segmentation is small, more possible segmen-
tations will have to be accepted or rejected by the parser; this leads to considerably 
longer algorithm processing times. E.g. in the famous kwartslagen example, not 
only kwart+slagen and kwarts+lagen would have to be considered, but also 
kwart+sla+gen, kwarts+la+gen, kwart-h slag-hen and kwarts+lag+en. The two last 

6 See Chapter 6 (spelling error detection) and 8 (lexical analyser) for a discussion of this 
step, which is not relevant in this context. 



Figure 13. Data, representations and processes in a morphological 
analysis algorithm. White boxes are processes, black boxes are data. 
The double arrows indicate which data are used by which processes. 
The single arrows indicate the input and output relations between 
representations and processes. 

segmentations would be rejected by the parser as the conjunction en (and) cannot 
feature in a compound. Related to this problem is an increased risk at the 
occurrence of nonsense-analysis results (errors by over-acceptance). E.g. liepen (ran) 
would be analysed as li#epen (epics about the Chinese measure li), laster (slander) as 
la#ster (drawer star), kwartel as kwart#el etc. The latter analyses are not wrong (they 
are allowed by the morphological grammar, and may possibly occur), but they are 
unpractical as they will place a burden on the disambiguation part of any program in 
which the analysis module is to function. A longest-only approach prevents this. 



Furthermore, people producing them in spelling would be inclined to write a hyphen 
between the two parts of the compound. An additional reason to prefer a longest-only 
solution is the fact that we are working with a word form dictionary, in which boun-
dary information is present. I.e. morphological structure can be retrieved for a large 
part, making further analysis superfluous. 

There is no theoretical reason to prefer a segmentation using the longest right 
part to one using the longest left part. Both could be defended; the former by refer-
ring to the head role played by the second part of a compound, the latter by pointing 
at the 'psychological relevance' of left to right processing. We are currently using a 
longest right part approach, but the program can be easily adapted to a longest left 
approach.7 When used in a longest-only mode, our algorithm does not immediately 
stop, but keeps on iterating two more characters. This provision was built in in order 
to be able to find ambiguity of the kind exhibited by kwartslagen. A longest-only, 
longest right part approach stops with kwart#slagen, but with one more iteration, 
kwarts#lagen is found as well. We think two iterations is enough to find the large 
majority of ambiguous cases with a minimal number of dictionary accesses. We have 
already mentioned that the program can also be run in a more expensive mode in 
which all possible combinations are found. 

Dictionary Lookup. In order to check whether a substring of the input string consti-
tutes a dictionary entry, a procedure word-form-p — a subject of the concept string, 
is used. If the word is found, this procedure returns categorial information relevant 
for the parser as well as the lexical representation of the word (possibly with infor-
mation about internal word boundaries); a 'False' message is returned if the word is 
not found. Some global conditions on strings were devised to constrain the number of 
dictionary accesses necessary (thereby making the system more efficient). 
(i) Strings with a length less than the shortest dictionary entry, or longer than the 

longest dictionary item are not considered for dictionary lookup (Cp. Brandt 
Corstius, 1978). 

(ii) Strings which do not conform to the morpheme structure conditions of Dutch 
are not looked up. To achieve this, the initial and final consonant clusters of a 
string are checked before looking it up in the dictionary. If the string can be 

7 It would be interesting to investigate if there are any empirical differences when using a 
longest-only analysis between longest right and longest left. The difference could be measured 
in number of errors, number of dictionary accesses needed, etc. 



rejected on the basis of these phonotactic restrictions, processing time can be 
saved This is of course only true if the string-manipulation and searching neces-
sary for checking the restrictions demands less processing time than a single dic-
tionary lookup. In our particular case, the time saved is considerable. More 
information about the use of phonotactic restrictions is given in Chapter 4 and 
6. 

(iii) All strings looked up get a property already-analysed, which can be Nil (if the 
string is not looked up yet), a list with dictionary information (if the string was 
already looked up, and found to be a word), or - (if the string was already 
looked up, but was not found). Thus, the result of the previous lookup is 
immediately available, which again constitutes a considerable gain in processing 
time. During segmentation, the same substrings are often looked up more than 
once. Again, a caveat is in its place here: in small systems, internal storage may 
be too small to follow this approach which requires additional memory to store 
the strings. 

The lookup procedure also includes some spelling modifications. Sometimes, a 
linking grapheme emerges between the parts of a compound. E.g. boerekool, 
hemelsblauw, eierkoek etc. The occurrence of linking graphemes is largely unpredict-
able; no hard and fast rules exist (Van den Toorn, 1981a, 1981b, 1982a, 1982b). 
This is reflected in spelling behaviour: a lot of confusion exists about this aspect of 
Dutch spelling. We looked for a practical solution to this problem. The analysis 
system accepts all linking graphemes which cannot be ruled out on phonotactic 
grounds (e.g. *kaassplank can be ruled out on the basis of the double s). The 'trick' 
we use is the following. If a string, representing the left part of a possible com-
pound and ending in s, is not found in the dictionary, it is looked up again without 
the s. If a string ending in e is not found, it is looked up with an n attached to it. 
Although it is a heuristic, it works surprisingly well. The problem of the er linking 
grapheme was solved by listing morphemes like kinder in the dictionary (they form 
an exceptional case and a small closed class with kalver, blader, hoender, volker, 
kleder, lammer, runder and eier). 

Parsing. The result of segmentation and dictionary lookup is a set of segmentations, 
associated with the input form, and a number of strings (dictionary items with some 
categorial information and their lexical representation attached to them). Appendix 
A.3.2 lists some sample traces of the application of the segmentation and dictionary-
lookup procedures. This environment will be used by the parsing subject associated 



with the concept possible-word-form to compute the subset of segmentations which 
are allowed by the compound grammar of Dutch. The grammar consists of a number 
of restrictions on co-occurrence. E.g. Figure 14 lists the rule which restricts the 
behaviour of compounds with a noun as their second part. 8 

RULE Noun = X + Noun 

If X = Noun 
Then X = one of Singular Noun, Plural Noun, 

Diminutive Plural Noun 

If X = Adjective 
Then X = one of Normal Form Adjective, Inflected Adjective 

If X = Verb 
Then X = Present Singular First Verb 

Figure 14: Rule which restricts the formation of compound nouns. 

The rule prevents the acceptance of ungrammatical constructions like *meisjegek, *hogerschool, *zwevenvliegtuig etc. At the same time, if a combination is 
accepted, the rule assigns a lexical representation to it. The compound inherits all 
linguistic features from its second part (the head). Similar rules exist for possible 
combinations with adjectives and verbs. The parser works from left to right. E.g. 
with a segmentation A + B + C, first the legality of A + B is checked, and then 
the legality of D + C (with D = A + B, if A + B is a legal combination). 

Measuring Efficiency. Efficiency of a morphological analysis program is a function 
of the number of dictionary accesses needed to assign an interpretation to the input 
string. In this paragraph we will relate the number of necessary dictionary accesses 
for varying input lengths (when using our algorithm) to the theoretically necessary 
number of accesses in the worst case. 

It can be proved that the theoretical number of dictionary accesses necessary in 
the general case (without the restrictions described earlier) is an exponential function 
of the length of the input. The relation is described in formula (1). 

8 We adopt the view that in a single composition, a maximum of two word forms is com-
bined. Viewed from that perspective, huisvuilvernietigingsfabriek is the composition of 
huisvuilvernietiging, 's' and fabriek, huisvuilvernietiging the composition of huisvuil and vernietiging, and finally, huisvuil the composition of huis and vuil. The final structure using la-
beled bracketing would be [[[huisN+vuilN]N+vernietigingN]N+fabriekN]N. 



(1) f(n) = 2 n - 2 +2f(n-1) (n > 0 and f(1) = 1) 
This implies that processing time approaches oo in exponential time. The introduction 
of restrictions (i) and (iii) above reduces this to polynomial time. The relation is 
expressed in formula (2). 
(2) f(n) = (n 2 - 5n + 10)0.5 
In an empirical test (see below for details) of our algorithm, which incorporates as 
additional restrictions (ii) above and a longest-only segmentation strategy, the number 
of accesses was further reduced to a linear relation. This means that access time 
increases linearly with the length of the input (which is acceptable for practical appli-
cations). For the worst case (i.e. the segmentation routine finds no segmentation), this 
linear relation approaches f(n) = 0.5n (where n is the length of the input string, and 
f(n) averages access time). Figure 15 depicts the functions for the three cases dealt 
with. Notice that in our empirical test, the number of accesses is further diminished 
by the fact that substrings already analysed in earlier input strings are 'remembered' 
as well, which results in an increasingly better performance of the algorithm. 

The introduction of a phonotactic check before dictionary access reduced the 
required number of accesses with 15% on the average (for words with length 2 to 
20). For words with length 10 to 20, the average gain even equalled 25%. In sys-
tems where checking phonotactic restrictions is expensive, the restriction could be 
reserved to larger words only. 
Affix stripping. For some applications (notably hyphenation, chapter 4, and morpho-
logical synthesis), an analysis system which can find internal word boundaries (boun-
daries with representation #) is needed. Although we presume a dictionary in which 
these boundaries are already present, we nevertheless have to provide for the possi-
bility that such a dictionary is not available (for example to indicate internal word 
boundaries in existing dictionaries, or for new words). To strip affixes, a list of 
prefixes followed by an internal word boundary and a list of suffixes preceded by an 
internal word boundary, are merged with the dictionary, and additional rules are 
added to the compound grammar. The normal analysis procedures described in this 
section can then be applied. Notice that in this case, a number of parts of formally 
complex words must be added to the dictionary which are not morphemes in the 
sense that they are meaningful units. They nevertheless have the same status: e.g. 
amen in be#amen (to agree) and velen in be#velen (to order) are cases in point (see 
Booij, 1977 and 1981). A similar form in English could be cran in cranberry 
(Aronoff, 1976). 



Figure 15. Relations between number of accesses and string length. Curve 
A corresponds to the logarithm of formula (1) in the text, curve B to 
formula (2), and curve C to the results of our empirical test. 

Performance. We tested our parser on a number of compound words. Of an input 
text of 924 word tokens, each word token was analysed by the morphological parser. 
The speed of the program (measured in average number of dictionary accesses 
needed) has already been discussed earlier. The text contained 45 compounds (types, 
not tokens), 29 of which were correctly analysed (64%). For ten compounds (22%) 
no analysis was found because one of the parts was not present in the dictionary. We 
used only the Top-10,000 dictionary (described in section 3.3) as lexical database, 
without an additional user dictionary for special terminology. As the input contained 
a lot of specialised terminology (checker, vocabularium, detectie, congruentie etc.) 
the results should be interpreted with caution. Also due to the incompleteness of the 
dictionary, six compounds (14%) were analysed wrongly. E.g. as massas (masses) 
was not present in the dictionary, the word form was analysed ma+s#sas. Similarly, 
tekstverwerker (word processor) was analysed tekst#ver#werker (text far worker) due 
to the absence of verwerker, and inputtekst (input text) was analysed in#put#tekst 
(collect hole text) due to the absence of input. 



Residual Problems. A more efficient architecture could probably be obtained by 
integrating segmentation and parsing. The serial model presented here, however, has 
the benefit of surveyability and modularity. The drawback of any morphological 
analysis program is over-acceptance; there are lots of compounds which are grammat-
ical but which are semantically or pragmatically anomalous. These words are 
nevertheless accepted by the parser if they occur. In our case, the problem of overacceptance is diminished automatically by the mere fact that less morphological rules 
are used than in most systems. The remaining over-acceptance of compounds, how-
ever, cannot be completely solved at the present state-of-the-art of semantics and 
pragmatics. Another problem is the incompleteness of the dictionary, but we believe 
that this drawback can be removed by including a user dictionary (see Chapter 6). 

3.3 Organisation of a Lexical Database 
A lexical database (computer lexicon, dictionary) is a computer-readable list of 
language elements. For each entry (an element of the list), some relevant information 
is provided. 

3.3.1 Design Choices and Problems 
Traditionally (e.g. Geeraerts and Janssens, 1982), two aspects of dictionary organisa-
tion (for both printed and computer dictionaries) are distinguished: macro-structure 
(how do we collect a list of entries?) and micro-structure (which information is 
relevant for each entry?). A third design problem, relevant only to computer dic-
tionaries, concerns the storage of the dictionary in memory, and the construction of 
search algorithms to find information quickly (how can we minimise access time?). 

Macro-Structure. Some problems to be solved in the design of the macro-structure 
of a dictionary are the kind of language elements to be entered (morphemes, citation 
forms, word forms, phrasal idioms), the number of entries (the n most frequent. as 
many as possible9), and the order in which the items are put (alphabetically sorted or 
in order of decreasing frequency). The latter is different for printed and computer 
dictionaries. 

9 It is clear that a dictionary can never contain all words of a language, because the voca-
bulary is infinite in principle. E.g. the set of numerals is infinite because the set of numbers 
is infinite, and unpredictable neologisms and derivations (especially compounds) can be and 
are continuously formed. 



Micro-Structure. In organising the information for each individual entry, the main 
problem is to determine which information should be available. Information which 
could be relevant includes: spelling form, spelling variants, phonological transcrip-
tion, stress position(s), syllable boundaries, morphological boundaries, syntactic 
category, subcategories (e.g. transitive, intransitive, reflexive for verbs), selection 
restrictions (e.g. to eat takes an animate subject), case frames for verbs, semantic 
features, definitions in terms of synonyms, antonyms and hyponyms, origin (Romance 
or Germanic), pointers to a concept (for content words), written frequency, spoken 
frequency ... . Which information is necessary depends on the particular application 
or task at hand and whether we want to retrieve it or compute it. For example in 
hyphenation, we need information about the morphological boundaries in a word 
form (see Chapter 5), in spelling correction we need information about the morpho-
logical structure and the phonological representation (see Chapter 6). This information 
can be either stored or computed. 

Search and Storage. We will give a short characterisation of the most important 
options which are available. Detailed accounts of different search, sort and storage 
techniques in general can be found in Knuth (1973) and, applied to natural language 
dictionaries, in Hays (1967). 

A first design feature to be considered is the place of storage: internal or exter-
nal memory. We presume that it is not feasible with present-day hardware to store a 
complete dictionary (typically involving tens of thousands of records) in internal 
memory. It is, however, possible to combine search in internal and external memory 
to achieve high performance. 

The most straightforward way to organise a dictionary in external memory is to 
represent each entry as a record with as its key the spelling form and as fields the 
different types of information associated with it. These records can be ordered alpha-
betically, in order of decreasing frequency or a combination of the two. A sequential 
search consists of comparing a word looked for with all keys of the dictionary 
records until a match is found, or until all keys have been checked without a match, 
in which case the search fails. This method is unpractically slow. 

Sequential search can be sped up considerably, however, by partitioning the dic-
tionary and storing in internal memory a table each element of which points to the 
beginning of a partition in external memory. Such a table could consist of the set of 
first-two-letter strings of the keys in the dictionary (theoretically 26 2 elements for 



Dutch and English, in practice much less). Each element of this table would contain 
a pointer to a partition in external memory containing the entries the keys of which 
start with these two letters (Figure 16). 

Figure 16. Indexed-sequential dictionary organisation (letter table in 
internal memory, partitioned dictionary in external memory). 

E.g., if we look up the word lexicon, we look up le in the table in internal memory. 
There we find the external memory location where the first word beginning with le 
(lead) is listed. From that position on, we do a sequential search until either we find 
lexicon or we reach the end of the partition. This method has been termed indexed-
sequential storage and search. We applied this method (or rather a variant of it) to 
the organisation of our main dictionary. The operating system VMS (Digital) pro-
vides standard programs to create indexed-sequential versions of sequential files. 



Another combination of search in internal and external memory consists of stor-
ing the keys of all entries in internal memory to permit fast search. The keys contain 
a pointer to a unique memory location in external memory from which the relevant 
information can be retrieved. A technique which allows us to do this is storage in 
the form of a letter table combined with a trie-search. In trie-lookup, the searched 
word is matched to the keys one letter at a time. A letter table is an m-ary tree, with 
letters as nodes, and arcs pointing to possible following letters. Consequently, a key 
is interpreted as an ordered sequence of nodes, connected by continuation arcs and 
leading to a pointer to a location in external memory. In a complete letter table for 
a language, we would find at the first level all possible word-initial letters for that language (say 26). At the second level, 26 2 continuations are theoretically possible, at 
level three 26 3 etc., but restrictions on morpheme structure reduce the possible con-
tinuations to a fraction of what is theoretically possible. The letter table is therefore 
an efficient storage medium for large collections of words. 

An example will make things clearer. Suppose we have a lexicon consisting of 
only the words aap, aan, apen, appel, banaal and banaan. A trie structure for this 
dictionary is given in Figure 17. In this figure, an asterisk (the 'leaf-mark') indicates 
that the sequence of nodes followed to reach it constitutes a word. A pointer to dic-
tionary information can be added after the 'leaf-mark'. Adding words to the diction-
ary is done by following a path through the trie until there is no more match with 
the string to be added, at which point a new branch to the tree is inserted, with the 
remaining letters of the string. Searching in a trie is looking for a path through the 
tree. If one is found when all letters of the input string have been matched to nodes, 
and a leaf-mark is immediately following, then the input string has an entry in the 
dictionary, and the associated information can be retrieved by using the pointer after 
the leaf mark. If not all letters of the input string can be matched to nodes during a 
legal path through the tree or if no leaf-mark follows when all letters of the input 
string are matched, then the search fails. In the latter case (failure), a longest match 
is found, which may be helpful in some applications. It could be exploited, for exam-
ple, in error correction (see Chapter 6). 

A trie structure is also useful in applications where it is interesting to know the 
possible continuations of a string (the cohort). E.g. in our mini-dictionary the cohort 
of the string ap is the list (apen appel). Cohorts can be straightforwardly computed in 
a trie structure. An example of such an application is a typing aid which completes 
words as they are being typed in. With each new letter typed in, the cohort of the 



Figure 17. A trie structure for a mini-dictionary; tree-notation and 
Lisp list notation. 

string obtained so far is computed. Whenever the cohort contains one element, this 
element is probably the word being typed, and the remaining letters can be printed 
by the program. This application seems particularly useful for helping motorically 
handicapped people. We used a trie-structure to implement a version of our user 
dictionary; a dictionary which can be filled and updated by the user of a particular 
application, and which can be combined with the main dictionary. 

Still another method to search quickly in external or internal memory is hashing. 
Hash functions, which are mostly based on multiplication or division, compute a 
(preferably unique) memory location on the basis of (a numerical version of) the key. 
In searching, we simply apply the hash function to the searched word, and look at 
the location in memory indicated by the resulting value. An example of a hash func-
tion is the summation of the ASCII code (or any numerical code) of each letter in the 



key modulo the largest prime number smaller than the number of entries of the dic-
tionary (e.g., 997 for 1000 entries). We have implemented a version of our user 
dictionary using this storage technique. 

Another way to achieve the necessary compression of keys to be able to store 
them in internal memory is by avoiding redundant use of characters. E.g. the words 
occult, occultistic, occupancy, occupant and occupation (together 44 characters) could 
be stored occult, 6istic, 4pancy, 7t, 6tion (only 25 characters, 43% saving). The 
numeral refers to the number of letters which should be taken from the preceding 
word. This compression method is a variant of the letter table discussed earlier. 

3.3.2 A Flexible Dictionary System 
In section 3.2.1, the traditional storage versus processing dilemma was laid out in 
relation to morphological analysis. Applied to morphological synthesis, three theoret-
ically possible choices in the dilemma could be the following: 
(i) Store only citation forms and compute all derived forms. 
(ii) Store citation forms and irregular derived forms, and compute the rest (this 

solution would appear to be the most 'balanced'). 
(iii) Store all citation forms and derived forms (regular and irregular). Compute 

nothing. 
Present day technology permits us to store enormous amounts of lexical data in 

external memory, and retrieve them quickly. Soon, 'dictionary-chips' and optical disk 
lexicons will be available, improving storage and search possibilities even more. In 
view of this evolution, the traditional debate about storage versus computation 
becomes irrelevant when applied to language technology. Natural Language Process-
ing systems should exhibit enough redundancy to have it both ways. For instance, 
derived forms should be stored, but at the same time enough linguistic knowledge 
should be available to compute them if necessary. There is some evidence that this 
redundancy is psychologically relevant. 

Two competitive psychological theories about the organisation of the mental lexi-
con exist (roughly comparable to the storage versus processing controversy). One 
states that it is possible in principle to produce and interpret word forms without 
resort to morphological rules except in the (special) case of newforms. We will call 
this the concrete hypothesis (e.g. Butterworth, 1983). This hypothesis implies that 



morphological boundaries are represented somewhere. The alternative abstract 
hypothesis claims that in production and comprehension rules are routinely used. E.g. 
in production, an abstract representation work+ [past] is transformed by rule into 
worked. Within this hypothesis, it can be claimed that concrete word forms (like 
worked) are or are not present in the mental lexicon. In the former case, the lexicon 
is largely redundant. This duplicated information (co-existing rules and stored forms) 
could be part of the explanation for the fuzzy results in most experiments aimed at 
resolving the concrete versus abstract controversy (Henderson, 1985). One example 
of this fuzziness can be found in the work of MacKay (1972, 1976). On the one 
hand, the fact that regular past tenses of verbs are produced faster than irregular past 
tenses seems to suggest that people apply rules of word formation in the routine pro-
duction of (regular) past tense verbs. On the other hand, evidence from a rhyming 
task seems to suggest that concrete forms are nevertheless immediately available 
whether they are regular or not. 

The problem of how much information should be present in a dictionary (both 
on the micro- and the macro-structure level) becomes irrelevant if we assume two 
types of dictionary: (a) a mother dictionary (MD) containing as much relevant infor-
mation as can be gathered1 0, and (b) various daughter dictionaries (DDs), tailored to 
suit a particular application and derived from the mother lexicon. We have called 
such a system a Flexible Dictionary System, and in section 8.2, we will give a 
detailed description of the architecture of a FDS, and how it can be constructed 
(semi-)automatically. Of course there are both practical and theoretical restrictions to 
the amount of information entered in the MD. Memory is not unlimited, so it would 
not make very much sense to store e.g. all inflectional forms of nouns and verbs 
when compiling a dictionary for Finnish. In general, it would not be interesting to 
store forms which can be analysed and generated by a simple exception-less rule. 

3.3.3 The Top-10,000 
The development of the Top-10,000 dictionary is a project carried out at the Univer-
sity of Nijmegen. A computer readable version of a dictionary containing some 
10,000 citation forms (11,605 to be precise; class ambiguity in a citation form was 
resolved by entering a separate form for each class a particular citation form could 
belong to) with some syntactic information, compiled from various sources, was ini-
tially available. 



Construction. A (function-oriented) program developed by Dik Bakker, Henk Schotel 
and the present author, generating a number of inflectional and derivational variants, 
was applied to this dictionary. The program was written in Franz Lisp, building 
upon an original Fortran program by Dik Bakker. It generates plural, diminutive and 
diminutive plural of nouns, all inflected forms of verbs, ordinal variant of numerals 
and inflected, comparative and superlative forms of adjectives. A computer readable 
Van Dale dictionary (Kruyskamp, 1982) was used by the program as a source of 
information about irregular word forms. After applying it, the dictionary was 
expanded by a factor five. 

Although it works fairly well, we believe this particular program has a number 
of important drawbacks: first, no attention was paid to a user-friendly interface allow-
ing the output of the program to be checked and corrected interactively; and second, 
the program drew upon an unrelated dictionary containing part of the information 
which had to be computed (the Van Dale). An object-oriented program such as the 
one described for the inflections of verbs (section 3.1) would be more suitable. The 
latter approach is more complete, more easily extensible and maintainable, more 
modular because of its object-oriented implementation, and it does not make use of 
external sources of information ('irregular' forms are to a large extent computed 
instead of simply listed). All relevant information about phonology, spelling and 
morphological structure is present in the program, and intervention by the user while 
checking and correcting the output is reduced to a minimum. 

Apart from morphological synthesis, each of the morphological modules 
described earlier and the phonological ones in the next chapter, can be applied to 
extend the information present in the Top-10,000 dictionary: morphological analysis 
to find morpheme boundaries in wordforms, phonemisation to compute phonological 
representations of word forms and syllabification to indicate syllable boundaries. In 
section 8.2, the application of linguistic knowledge in lexicography will be discussed 
more systematically. 

Organisation and Access. A sequential version of the Top-10,000 was transformed 
into an indexed-sequential file using standard operations available in VMS and 
UNIX-code developed by Eric Wybouw of the AI-LAB in Brussels. Access func-
tions, retrieving specified records and fields of records in this indexed-sequential file 
were written as FORTRAN and C procedures, and can be executed from within a 
LISP environment. For the Lisp programmer, dictionary access operations take the 



form of LISP functions (Figure 18 lists some of these). 

(lookup 'word) Looks up word and returns t (word is found) or nil 
(word is not found). If a word is found, the record 
containing it as a key is made the current lemma as 
a side-effect. 

(lemma:stress) 
(lemma:pronun) 

Position of word stress in current lemma. 
Transliteration of current lemma into a phonological 
alphabet. 

(lemma:category) One of noun, adj, adv, art, verb, prep, pro, conj, 
interj, num. 

(lemma:singularp) True if current lemma is a singular noun. 
(lemma:transp) True if current lemma is a transitive verb. 
(lemma:ordinalp) True if current lemma is an ordinal numeral. 

Figure 18. Some Lisp dictionary access functions. 

Updating. It has already been mentioned that a dictionary can never be complete. It 
should be possible to add neologisms and newly derived forms to the MD in a con-
venient way. How this was done in our system will be fully explained in section 8.2. 
The modified or added records are stored in a user dictionary which acts as a shell 
around the MD. From time to time, the contents of this user dictionary is merged 
with a sequential version of the MD, and a new indexed-sequential version is com-
puted (a procedure expensive in processing time). 

3.3.4 Conclusion 
The distinction between MD and DDs resolves the storage versus processing dilemma 
by introducing a possibly psychologically motivated redundancy to the dictionary sys-
tem. The construction, extension and maintenance of the MD can be made more 
manageable by using the linguistic knowledge and processes, and optimal databases 
for specific applications (DDs) can be derived from the MD without much effort (see 
section 8.2). Current and forthcoming storage and search technology seem to 
guarantee that it is a feasible enterprise. With the Top-10,000 dictionary, we have a 
reliable database of the 10,000 most frequent citation forms and their derived forms, 
which could be a good point of departure for the development of a complete MD for 
Dutch using among other the linguistic knowledge described in sections 3.1 and 3.2 
of this chapter, and in Chapter 4. 



3.4 Related Research 
In computational linguistics, much less work has been done on morpho(phono)logy 
than on syntax. This may be due to the fact that English, with its impoverished mor-
phological system, has been the target language of most projects until recently. In 
these applications, all word forms (including inflected and derived ones) could be 
simply included in the dictionary with their phonetic representation. At most, related 
word forms (elements of the same paradigm) would be made to share common 
features, or some rudimentary form of affix stripping would be included to save 
storage space. It comes as no surprise then, that most original insights have come 
from research on languages with a rich morphology, e.g. Finnish. We will describe 
Koskenniemi's (1983) research on finite state morphology as well as two additional 
systems and compare them to our own approach. In addition, a number of related 
object-oriented approaches to morphology will be discussed. Finally, our model will 
be evaluated from the point of view of psycholinguistics. 

3.4.1 Finite State Morphology 
Recent computational morphophonology has been dominated by finite state models, as 
exemplified by the work of Kimmo Koskenniemi (1983, 1984) and Kay (1983). The 
model Koskenniemi proposes consists of a dictionary and a set of morphophonological rules. 

The dictionary consists of a root lexicon and a number of affix lexicons. The 
latter are lists of inflectional and derivational suffixes. The root lexicon contains the 
morphemes of the language in their underlying representation (drawn from an alpha-
bet of phonemes, morphophonemes, boundary symbols and diacritics), syntactic and 
semantic properties, and a list of pointers to continuation lexicons. If a particular 
lexicon is pointed at in a lexical entry, this means that all its members can co-occur 
with this morpheme. In a sense, these pointers determine the possible sequences of 
morphemes within a word. 

Whereas rules in generative phonology are sequentially ordered, uni-directional 
and involving a series of intermediate stages; two-level rules operate simultaneously 
(in parallel), are bidirectional and relate the lexical level immediately to the phonetic 
or orthographic level, and vice versa (only two levels of description are necessary). 
The bidirectionality of the rules allows them to be used both in analysis and genera-
tion. The rules also act as a filter which blocks some morpheme strings allowed by 



the continuation pointers in the lexicon. Consider as an example rule (1), taken from 
Barton (1985), 

which states that lexical y must correspond to surface i when it occurs before lexical 
+s (as is the case with tries which has lexical representation try-hs). Two-level rules 
use character pairs as units instead of characters. The equality sign is a wildcard 
character. The arrow indicates that the character pair on the left must occur in the 
context of the character pairs on the right. 

Each rule can be compiled (by hand or automatically) into a Finite State Trans-
ducer. An FST is basically a Finite State Automaton, but with two tapes instead of 
one. The transducer starts from state 1, and at each step, it changes its state as a 
function of its current state and the character pair it is scanning. Each FST should be 
interpreted as a constraint on the correspondence between lexical and surface (phono-
logical or graphemic) strings. The FST corresponding to rule 1 is given in Figure 
19. The use of . instead of : after state numbers indicates possible final states. 

y y + s _ (lexical) 
i y = s = (surface) 

state 1: 2 4 1 1 1 
state 2. 0 0 3 0 0 
state 3. 0 0 0 1 0 
state 4: 2 4 5 1 1 
state 5: 2 4 1 0 1 

Figure 19. Finite state transducer table for rule (1), adapted from 
Barton, 1985. 

Different FSTs can either be collapsed into a single FST, or applied simultaneously. 
In analysis, the tape representing the lexical representation is written (with the addi-
tional help of dictionary stored in the form of letter trees, see section 3.3), and the 
tape with the spelling or phonological representation is read. In synthesis, the 
phonetic or spelling tape is written, and the lexical representation tape is read. It is 
obvious that such a system is both extremely efficient11 and computationally attrac-
tive. The approach has been applied successfully to Finnish, and is being adapted for 

1 1 Nevertheless, it has been proved by Barton (1985) that analysis and generation with 
FSTs is an NP-hard (i.e. computationally difficult) problem in the general case. The computa-
tional class NP consists of problems which can be solved in polynomial time on a non-deterministic Turing Machine. 



Japanese, Rumanian, French, Swedish, English and other languages (see Gazdar, 
1985, for full references). 

The approach does not endanger the usefulness of our own model, however. 
To begin with, Koskenniemi's system is devoted more to phonology than to morphol-
ogy (only inflectional morphology is discussed, and alternations of longer sequences 
of phonemes are resolved in the lexicon). It would be difficult in his approach to 
account for restrictions on the combination of roots into compounds, for example, 
and the inclusion of rules modifying word internal structure (Ablaut, reduplication, 
infixation) would be problematic, too, as was noted in Golding and Thompson 
(1985). 

Second, we have been working on quite a different level of abstraction. From 
the onset, we have wanted our system to be formalism- and theory-neutral. This 
implies, for example, that it should be equally well equipped to handle feature bun-
dles (like in generative phonology) as monadic phonemes (Koskenniemi's approach). 
The rationale behind this was that enough problems remain in the organisation of a 
word formation component for Dutch to justify a flexible, open-ended system. 

Furthermore, recent trends in phonological theory (auto-segmental phonology 
and metrical phonology) cannot be straightforwardly incorporated into a two-level 
approach, as the latter has only limited context-sensitivity, while this incorporation 
constitutes no problem for our own model. 

Perhaps the most important difference is the fact that Koskenniemi starts from a 
lexicon in which underlying representations of morphemes are already present (his 
main interest is to construct an efficient parser and generator). In contrast, we tried 
to organise our knowledge base in such a way that the underlying representation can 
be constructed if needed. 

3.4.2 Oracle 
Oracle (Honig, 1984) is a general morphological analysis program (in principle 
language independent). It resembles our system in the independence of lexicon, mor-
phological rules and spelling rules. The segmentation procedure is left to right, long-
est left first (as opposed to our longest right first), and parsing is interleaved with 
segmentation (as opposed to our sequential approach). The regular lexicon contains 
only categorial information. Entries of the irregular lexicon are listed with their 



internal structure. An irregular lexicon was necessary to prevent a large number of 
invalid results by applying unproductive morphological processes routinely. This 
problem led us to a solution in which word forms are stored instead of morphemes. 
Morphological rules are described using an extended context-free grammar; spelling 
rules and context rules use a regular expression formalism. 

As the program expects well-formed input, a large number of invalid word 
forms are accepted (and analysed). For example, both koppen and kops are accepted 
as the plural of kop (cup), while only the former is correct. Spelling rules undo 
those root modifications which produce spelling forms different from the lexical form. 
Like in our own system, Oracle incorporates no semantic processing. A superficial 
syntactic analysis of the sentence in which a word occurs is included to disambiguate 
between multiple analyses. 

As we did not focus our research on analysis (in fact, we use some kind of 
analysis-by-synthesis approach), it is difficult to compare both systems. We believe 
that our analysis of spelling rules is linguistically more relevant, and our inclusion of 
a phonological component (next chapter) improves completeness and descriptive ade-
quacy. To be fair, it should be mentioned that Oracle was not intended as a linguistic 
model, but it remains to be seen whether the formalisms developed are flexible 
enough to make the modeling of experimental linguistic theories a straightforward 
matter. 

3.4.3 Lexicrunch 
The Lexicrunch program (Golding, 1984; Golding and Thompson, 1985) induces 
rules of word formation given a corpus of root forms and the corresponding inflected 
forms, thereby compressing the dictionary. The resulting rules can then be used in 
analysis and generation. This approach is diametrically opposed to our own, which 
uses inflectional rules to expand a citation form into a word form dictionary, and 
which restricts morphological analysis to compound analysis including, whenever 
necessary, detection of internal word boundaries. 

The basic operation which rules can perform is string transformation (replace 
substrings and concatenate strings). Rule induction proceeds in two stages: data entry 
and rule compression. During data entry, pairs of roots and corresponding inflected 
forms are accepted, and the system tries to find a set of minimal string manipulations 
which transform the former into the latter. The resulting, inefficient, rules are 



subsequently compressed, which is an expensive operation. This process involves res-
tating of transformations (there are lots of ways to achieve a particular string 
transformation), cross-classification of words, elimination of redundant transforma-
tions, and building a decision tree. Currently, the system has been applied 'ade-
quately' to the past tense inflection in English, the first person singular indicative of 
Finnish and the past participle in French. 

A major drawback to the system is that the inferred rules are linguistically non-
sensical. They are based on the surface properties (appearance) of the input strings, 
and linguistically relevant representations like morphological boundaries, syllable 
structure and phonological representations are either absent, or remain unused. 
Therefore, the system seems applicable only as a means of dictionary compression, 
which, as we have argued earlier, is unnecessary in view of current storage and 
search technology, especially for languages like English and Dutch. Moreover, other 
dictionary compression methods exist which are computationally less demanding. The 
system can certainly not be used to model morphological competence and perfor-
mance. On the other hand, we think the system is extremely useful in the linguistic 
analysis of irregular past tenses. The elements of the different Ablaut categories 
indeed seem to be related by appearance (both consonantal and vocalic properties of 
the stem): e.g. drink, shrink, sink, stink. The same goes for Dutch. E.g. stinken, 
drinken, zinken. Although this regularity is nicely captured by Lexicrunch, it does 
not justify its application to regular processes. 

As regards Dutch, (concatenated) compound analysis is impossible with Lexi-
crunch, and several morphological rules which rely heavily on phonological informa-
tion cannot be induced reliably on the basis of the spelling string alone (cp. section 
3.1). 

3.4.4 Other Object-Oriented Approaches 
In this section, some recent approaches to linguistic description with an object-
oriented tenor are described and compared to our own approach. 

In word grammar (Hudson, 1984; Hudson and Van Langendonck, 1985) a 
language is represented as a network of linguistic entities (comparable to concepts), 
related by a limited number of propositions (comparable to subjects and type hierar-
chies). Linguistic entities are words, parts of words, strings of words, etc. Basic 
propositions are composition (relating a word to its parts), model (relating a more 



general entity to its specialisation, this proposition makes selective inheritance of 
information possible), companion (relating a word to the words which it occurs 
with), referent (connecting words to semantic structure), and utterance-event (linking 
a word to the pragmatic context via uttering it). The similarity to our approach lies 
in the uniformity of representation (all linguistic knowledge is represented uniformly) 
and the object-oriented flavour. The main difference is that in Hudson's system all 
representation is declarative (descriptive) so that the use of the knowledge in genera-
tion and analysis is not considered. 

De Smedt (1984) describes advantages of the object-oriented programming para-
digm for the representation of syntactic knowledge. An object-oriented implementa-
tion of IPG (a psycholinguistic theory of sentence generation; Kempen and Hoenkamp, forthcoming) using the object-oriented language CommonORBIT is outlined in 
Kempen and De Smedt (in preparation). 

In Steels and De Smedt (1983) linguistic structures are viewed as collections of 
descriptions (frames). Frames are organised into tangled inheritance hierarchies. 
Linguistic processing (building structures in analysis or generation) happens by apply-
ing frames and searching the hierarchy in both directions (i.e., generalisation and 
specialisation). The theory can be easily implemented using an object-oriented 
language. 

Functional Unificational Grammar (Kay, 1979, 1985) is another recent linguistic 
theory which lends itself to an object-oriented implementation. A functional descrip-
tion, which is the basic representation unit of FUG, is a set of feature-value pairs in 
which the values can be functional descriptions in their own right (this is basically a 
frame-structure). An implementation of functional descriptions as KRS concepts with 
subjects as features and concepts as fillers is straightforward. Unification can be 
defined as a subject of the concept representing the functional description type. 

3.4.5 Psycholinguistic Research 
In Chapter 1, it was claimed that a computer model should be constrained by both 
linguistic and psychological theory. In this section we will review our model from the 
point of view of related research in psycholinguistics. What we see happening in the 
domain of morphology, is a convergence of psycholinguistic and computational 
efforts. In both disciplines the construction of explicit models of morphological and 
lexical processing and representation is attempted. Even the terminology overlaps 



(e.g., lexicon file, computational order, on-line processing, affix-stripping). 
A number of observations and experiments suggests that internalised 

morpho(phono)logical rules are a psychological reality 1 2. This evidence can be 
divided into two categories: production of errors (overgeneralisation in child 
language: Schaerlaekens, 1979; speech errors by adults: Fromkin, 1973 and Garrett, 
1975 and aphatic speech: Henderson, 1985), and production or comprehension of 
new complex words (rule-governed creativity in adults and children: Berko, 1958). 
All error forms and new forms show phonological accomodation i.e. the correct 
allomorph and pronunciation are produced in the phonological context. These data 
seem to suggest that a relatively independent morphological level exists between the 
syntactic and the phonological levels (Gibson and Guinet, 1971; Laudanna and 
Burani, 1985; Cutler, Hawkins and Gilligan, 1985). Units at this level are mor-
phemes (stems) and affixes, word forms and rules. It is exactly these units which are 
also represented as concepts in our computational model. 

Most of the data discussed so far, however, give only a vague idea about the 
morphological processing going on in language users and about the memory represen-
tations they use to store lexical material. What we would like to know is whether 
morphological rules are routinely used in production and comprehension, or only in 
special cases. Furthermore, we would like to have some information about how lexi-
cal entries are represented and how they are accessed, and whether inflections and 
derivations are processed differently. 

Unfortunately, psycholinguistic research does not help us to resolve these prob-
lems. Most of the more detailed theorising on the basis of experiments is highly 
controversial (see Henderson, 1985 for a recent discussion). This controversy may be 
due in part to the debatable precision of a psycholinguist's instruments (lexical deci-
sion task, priming, naming tasks). To begin with, there is a serious risk of task 
effects (strategies generated by the task or the context, but without correlate in 'nor-
mal' processing). Furthermore, only strictly serial models and theories can be tested. 
Different time lapses between input and output of a black box have nothing to say 
about the organisation of the black box if parallel processing is allowed. Worse, it is 

1 2 Notice that this assurance does not extend to the way these rules are psychologically (or 
biologically) implemented. There may be ways that rule-governed behaviour can be produced 
in which there is no explicit representation of any rules (by parallel distributed processing 
models, for example, see Rumelhart and McClelland, 1986). 



nearly impossible to balance all possibly relevant independent variables in the selec-
tion of the test items (it is simply not clear what would constitute an exhaustive list 
of relevant dependent variables in morphological processing). Even the selection of 
the test material implies a theoretical choice (e.g. which words are affixed and which 
are not?). In view of these provisos, it is only natural that not much agreement has 
been achieved among workers in this field. Another possible reason for the lack of 
clear results —- the fact that derived and inflected forms may be at the same time 
stored and computed — was discussed in section 3.3. 

Although our morphological model was primarily designed from a technological 
point of view, it could be adapted to serve as a psychological model of human mor-
phological processing. The level of abstraction (concepts for affixes, morphemes, 
word forms, paradigms and rules) seems empirically right, and theories like the mor-
phological decomposition model (Taft and Forster, 1975, 1976; Taft, 1981), the logo-
gen model (Murrell and Morton, 1974; Morton, 1970, 1979a, 1979b) and the cohort 
model (Marslen-Wilson and Welsh, 1978; Marslen-Wilson and Tyler, 1980; 
Marslen-Wilson, 1980) can be easily simulated using the same concepts (but with 
additional subjects). 

In a sense, computational models are richer than psycholinguistic theories 
because they have to be explicit to the extreme. In general, a lot of problems which 
we are confronted with in the development of artificial morphological generators and 
analysers (ambiguity, backtracking, heads of compounds, Ablaut, root structure 
changes etc.) are almost never mentioned in psycholinguistic research. Perhaps 
language technology can provide a fresh perspective on psychological theory building 
in these matters (rather than vice versa). 

3.4.6 Conclusion 
Summing up this brief overview of related research, we believe that our model has 
some advantages setting it apart from other approaches. The basic open-endedness 
and extensibility inherent to object-oriented implementations make the system ideally 
suited as a 'laboratory' for the studying of different linguistic formalisms, models and 
rule interactions (this will become even clearer in the next chapter). Psycholinguistic 
models can also be implemented and evaluated with it. At the same time, the imple-
mented program has proved to be efficient enough to be used in concrete practical 
applications (see Part III). 



However, our model may be inferior in computational efficiency and elegance to 
finite state approaches. It would therefore be interesting to investigate whether Dutch 
morphophonology can be described similarly, once we have agreed upon the relevant 
rules and their interactions. 



CHAPTER 4 

Aspects Of Dutch Phonology 

In this chapter, an object-oriented database of phonological knowledge for Dutch will 
be developed, and two phonological processes which make use of this knowledge 
(phonemisation and syllabification) will be discussed in detail. In section 4.1, the 
syllabification algorithm is described, and the role of internal word boundaries in this 
process is explicated. In section 4.2, the phonemisation algorithm is outlined, and the 
architecture of our phonological database and its user interface are sketched. 
Throughout the chapter, special emphasis will be put on the interaction between pho-
nological and morphological knowledge and processes. 

4.1 A Syllabification Algorithm1 3 

4.1.1 The Syllable as a Phonological Unit 
In general, the Dutch syllable conforms to the sonority hierarchy (Kiparsky, 1979), a 
universal restriction on the build-up of syllables. In essence, this condition specifies 
that the sonority of phonemes decreases from the inside of the syllable to the outsides, following a sonority hierarchy in which vowels are most sonorant, followed by 
semi-vowels, liquids, nasals, fricatives, and plosives: — in that order. In Dutch, 
syllable-initial clusters like sp, st and sk ignore the hierarchy. 

In addition to the sonority hierarchy, language-specific restrictions on length and 
form of syllable-initial and syllable-final clusters, and on the nucleus of the syllable 
can be defined. E.g. in Dutch, only vowels can be syllabic (be the nucleus of a 

1 3 This section is based in part on Daelemans (1985c). 



syllable), syllable-initial clusters cannot be longer than three phonemes, etc. Gen-
erally, there are two complementary ways to obtain these language-specific data: one 
more bottom-up, the other more top-down. A phonologist would try to describe 
morpheme and syllable structure conditions by means of positive and negative rules, 
filters and other constructs (e.g. Trommelen, 1983 and Booij, 1981 in the framework 
of generative phonology). This approach is based on empirical data, but has a top-down (deductive) nature. The complementary approach is more bottom-up (induc-
tive) in that it would involve statistical analysis on a large quantity of data. In the 
latter case, we are confronted with a vicious circle: we need a syllabification program 
to produce the raw material for our statistical analysis (i.e. syllables) and we need 
the statistical information to make a proper syllabification program. 1 4 

While the deductive approach is more pleasing from a linguistic point of view, 
statistical analysis is needed because some clusters which are pronounceable on 
theoretical grounds may not be realised in the vocabulary of the language. On the 
other hand, there is a large amount of loan words in Dutch. Some of these may con-
tain un-Dutch clusters. Nevertheless, we wish to divide them correctly into syllables 
since they are not felt to be foreign any more. The lists we will use are based on a 
statistical study of the spelling syllable by Brandt Corstius (1970) (for which he used 
his SYLSPLIT hyphenation algorithm) and on Bakker (1971). In the process of test-
ing our program, the lists were considerably modified and extended, according to the 
empirical data. 

A useful description of the syllable, borrowed from metrical phonology is the 
one in Figure 1. This diagram suggests that a syllable is a string of phonemes, con-
sisting of a nucleus (a single vowel: short, long or diphthong), optionally preceded 
by consonants (the onset) and/or optionally followed by consonants (the coda). It can 
be shown that the rhyme is a phonologically relevant unit by the fact that restrictions 
exist on the co-occurrence of nucleus and coda without comparable restrictions on the 
co-occurrence of onset and nucleus (Figure 2, adapted from Booij, 1981 and Trom-
melen, 1983). 

Another traditional argument for the phonological relevance of the rhyme are 
rules like schwa-insertion, which would have the rhyme as their domain (Trommelen, 

1 4 The problem disappears if we entertain the idea to collect a large enough corpus of syll-
ables by hand. 



Figure 1. Syllable Structure. Parentheses indicate optionality. 

1. Long vowels or schwa cannot be combined with the velar nasal to form 
a rhyme. 

*aang, *eeng, 

2. Long vowels or schwa cannot be combined with [b] to form a rhyme. 

*aab, *eeb, .. (Exception: foob) 
3. Diphthongs and [r] cannot be combined to form a rhyme. 

*eir, *aur, .. (Exception: taur) 
4. If the nucleus of a rhyme is stressed and long , the coda must be 

of the form (C)(s)(t). 

*oemp, *aalm, 

Figure 2. Restrictions on the Rhyme of Dutch Syllables. 

1983). Schwa-insertion is a rule which inserts a schwa between a liquid and a non-
coronal or nasal consonant if they occur in the same coda. 

The boundary between two syllables may be fluid in some cases, but in general, 
speakers of a language can indicate syllable boundaries without problem, which 
makes syllabification a competence phenomenon. The phonological process of splitting 
up a word into syllables is governed by a universal maximal syllable onset principle 
(Selkirk, 1982). This principle dictates that in a consonant cluster between two 



nuclei, as many consonants as possible belong to the same syllable as the following 
nucleus. The remaining consonants belong to the previous syllable. Again, Dutch 
does not follow this principle completely. A contradictory rule which states that short 
vowels occur in closed syllables forces the syllabification of words like pastei (paste) 
to be pas-tei instead of the expected pa-stei. 

The algorithm we will describe in the next section assigns syllable boundaries to 
spelled words. As with the morphological module in the previous chapter, spelling 
was our point of departure for practical reasons: most language data are accessible to 
the computer via spelling exclusively. Apart from this, the algorithm was designed 
with practical applications (like hyphenation) in mind, which makes spelling an obvi-
ous choice. 

4.1.2 A Computational Approach to Syllabification 
Automatic syllabification remains a thorny problem for computational linguistics. The 
rules, which are simple for humans, are difficult to implement because they make 
extensive use of knowledge about the internal structure of words (morphological 
knowledge). In this chapter, new statistical data necessary for developing 
syllabification algorithms are presented, and a system is outlined which uses a lexicon 
and a word form parser to imitate the capacity of language users to analyse words 
morphologically. The presence of a lexicon suggests a simple solution to the prob-
lem: store the syllabification of each word form explicitly in the lexicon, and retrieve 
it when needed. However, we need a program to do this automatically for existing 
lexicons, and to cope with new words. 

The algorithm, based on the approach taken by Brandt Corstius (1970), but with 
important modifications, splits up Dutch words into spelling syllables, following an 
explication of the rules provided by the official Woordenlijst van de Nederlandse Taal 
(word list of the Dutch language), and was inspired by recent (generative) phonologi-
cal research on the subject. Phonological syllables do not always completely coincide 
with spelling syllables, but the latter can be easily derived from the former. Apart 
from its application as an automatic hyphenation program of Dutch text (section 5.2), 
the system plays an important role in the grapheme-to-phoneme conversion system 
described in section 4.2. This system needs information about the syllable structure 
of words. An overview of a computational theory of syllabification is given in Fig-
ure 3. In the remainder of this section, we will discuss the different parts of this 



Figure 3. An outline of the syllabification algorithm. Black boxes 
represent data, white boxes processes. The double arrows indicate which data 
are used by which processes,. The single arrows indicate the input and 
output relations between representations and processes. 

The processes are KRS subjects, attached to the word form concept described in 
the previous chapter. This implies that, although syllabification rules apply after mor-
phological synthesis at the lexical level, syllable representations are accessible to the 
spelling filter attached to the spelling subject of the word form concept. 



During morphological analysis, morphological word boundaries are inserted into 
a string of spelling symbols by a parsing process (section 3.2) which uses a word list 
(lexical database, see section 3.3). In the primitive phonemisation phase, each 'word' 
(a string of spelling segments between word boundaries) is transformed into a string 
of vocalic and consonantal segments. We have called this process primitive phonemi-
sation because, in this stage, a first step from spelling to sound is taken. 
Syllabification Rules apply to the output of the segmentation stage. They are based on 
the Maximal Onset Principle, but with important extensions and modifications for 
Dutch. The result of this stage is a string of phonological syllables. An additional 
set of spelling modifications is necessary to transform these into spelling syllables. 

4.1.2.1 Monomorphematic Words 
In this section we concentrate on the division into syllables of words without morpho-
logical structure and words in which morphological structure has no bearing on 
syllabification (i.e. after morphological analysis). The rules described in this section 
therefore not always work in the case of complex words. 

The (more or less) language-independent process we will describe is to be sup-
plemented with language-specific data, as described earlier. These data include lists 
of the syllabic and non-syllabic segments of a language and lists of possible onsets 
and codas of Dutch syllables. For Dutch, a syllabic segment is defined as a spelling 
symbol or a string of spelling symbols pronounced as one vowel or diphthong (a, ee, 
ij, ooi, ui, ...). Each syllabic segment is the nucleus of a syllable. Since each syllable 
has exactly one such nucleus, and syllabic segments can only function as the nucleus 
of a syllable, the number of syllables of a word (a useful piece of information for 
some applications, notably style checking) can be measured by counting the number 
of syllabic segments in it (cp. Brandt Corstius, 1970). A non-syllabic segment is a 
spelling symbol or string of spelling symbols pronounced as one consonant or other-
wise analysable as a consonantal unity (p, t, w, ch, qu, ...). Table 1 lists all seg-
ments for Dutch. 

The clusters ph, th and ng are treated as a single segment. However, they are 
removed from the table in some applications (e.g. an hyphenation algorithm without 
morphological analysis, 5.2.3.1). In the latter applications, they must be treated as 
two-segment clusters, due to possible confusion in words like uit-houden (to suffer), 
op-houden (to stop), and in-gang (entry). 



Syllabic segments: 

a, e, i, o, u, y, aa, ee, ie, oo, uu, ae, au, ij, ei eu, ai, oi, 
ou, oe, ui, oy, ay, ey, uy, aai, aau, eeu eui, ieu, oei, ooi, 
eau, oui, oeu, oey, aay, ooy. 

Non-syllabic segments: 

b, c (pronounced /k/ or /s/), d, f, g h, j, k, 1, m n, p, 
qu (pronounced /k/ or /kw/), (ph, th, ng) 
r, s, t, v, w, x (pronounced /ks/), y (as in yoga), z ch. 

Table 1. Syllabic and non-syllabic segments of Dutch. 

The first step in the algorithm consists of transforming the input word (a string 
of spelling vowels and spelling consonants) into a string of syllabic and non-syllabic 
segments (primitive phonemisation). E.g.: 

schreeuwen (to cry) is segmented s-ch-r-eeu-w-e-n 
apparatuur (apparatus) is segmented a-p-p-a-r-a-t-uu-r 

To obtain this result, a function is used that separates spelling vowels from spelling 
consonants, and a function which analyses adjacent strings of spelling vowels or con-
sonants from left to right until the longest possible segment is found. E.g. the vowel 
string aaie in papegaaien is analysed as aai-e, and not as aa-ie, because aai is the 
longest possible syllabic segment which can be found, passing through the string 
from left to right. 

This particular strategy to parse vowel clusters is possible because in general in 
Dutch, a diaeresis or hyphen is used when the division 'longest possible left part + 
rest' is not correct. E.g. zoeven (a moment ago), auto-ongeluk (car accident). The 
diaeresis and hyphen prevent the analysis of oe and oo as one syllabic segment. This 
permits us to use a deterministic vowel string parser even in morphologically com-
plex words (see next section and also section 5.2.3.1). 

There are some exceptions to this strategy; the vowel strings iee, aie and oie are 
always divided i-ee, a-ie and o-ie (longest right part). E.g. materi-eel (material), 
moza-iek (mosaic), zo-iets (something like that). When the other division is the 
proper one, this is signalled by a diaeresis, (e.g. drieëndertig, thirty three). Further-
more, ieu is only interpreted as a single segment if a w follows immediately (e.g, 
nieu-we, new). If this is not the case, the analysis is i-eu, as in superi-eur (superior). 



Alternative solutions to this problem exist. In an approach used by Boot (1984) 
a string of spelling vowels is assigned syllable boundaries by looking for patterns in 
it in a well-defined order. This order was determined by the general principle 'long-
est patterns first' and by empirical results (exhaustive testing). Basically the same 
idea was put forward by Wester (1985a, 1985b) in the context of a generative 
description of the function of diaereses in Dutch spelling. We will comment upon the 
general approach by means of the proposal of the latter. Wester argues correctly that 
the traditional view of the diaeresis as 'written on the second of two adjacent (spel-
ling) vowels which together can be read as one vowel, but should not be read as 
such' is deficient in that this rule would require a dramatic increase in the use of 
diaereses. For example, diaereses would have to be written in the following words: 
*geüit (uttered), *ingeniëur (engineer), and *bloeïen (to blossom). Wester explains 
this fact by postulating an ordered list of rules (Figure 4), rewriting strings of spel-
ling vowels to segments (cp. the ordered list of patterns in Boot, 1984) 1 5. 

(1) [+Voc].[+Voc]i 

[o][e][i] 
-> <+Voc,+Voc> 

(2) 
[+Voc].[+Voc]i 

[o][e][i] -> <oei> 
(3) [e][i] -> <ei> 
(4) [u][i] -> <ui> 
(5) [e][u] -> <eu> 
(6) [a][u] -> <au> 
(7) [o][u] -> <ou> 
(8) [o][e] -> <oe> 
(9) [i][e] -> <ie> 

(10) [+Voc] -> <+Voc> 

Figure 4. Ordered list of rules rewriting strings of spelling vowels to 
segments. Square brackets indicate spelling vowels, angular brackets 
syllabic segments. Based on Wester (1985a). 

A diaeresis is only necessary when the lexical representation of a word does not 
coincide with its mechanical reading (as determined by applying the rules in Figure 
4. Examples are: geëist (demanded; lexical = ge#eist, mechanical = gee-isi), and 
kippeëi (chicken egg; lexical = kippe#ei, mechanical = kippee-i). In the earlier cases 
a diaeresis is not necessary since both readings coincide: geuit (uttered, lexical = 
mechanical = ge-uit). If the Boot-Wester hypothesis is correct, vowel strings can 
always be provided a correct syllable-boundary by means of the list of rewrite rules 
and the information supplied by diaereses. Apart from being obviously incomplete 

1 5 Incidentally, the two ordered lists are completely different and contradictory. Many ex-
amples given by Wester cannot be solved properly by means of Boot's list. 



(ij, ooi, aai, eeu and others should be added to the list), a problem exists for the 
vowel string ieu which can be divided (ingeni-eur, engineer) or not (nieu-we, new) 
depending on the context. While a left-to-right parsing algorithm can solve this prob-
lem by adding a context-sensitive rule, as we showed earlier, there is no way to 
prevent the incorrect division nie-uwe in Westerns system (or when ieu is added to 
the list, the incomplete division in-genieur). While equally adequate in principle, we 
see therefore no reason to prefer the Boot-Wester approach to our own. 

After this preliminary analysis into segments, traversing the string of segments 
from left to right, each cluster of one to seven non-syllabic segments intervening 
between two consecutive syllabic segments is provided a syllable boundary. In our 
examples: 

s-ch-r-eeu-w-e-n 
eeu, e --> compute syllable boundary for cluster w 
apparatuur 
a, a --> compute syllable boundary for cluster pp 
a, a --> compute syllable boundary for cluster r 
a, uu --> compute syllable boundary for cluster t 

It follows that word-initial and word-final non-syllabic clusters are never split (they 
do not occur between two syllabic elements of the same word). 

The following set of rules is used to distribute the non-syllabic cluster over two 
successive syllabic segments. 
Rule 1. If there are no non-syllabic segments (the cluster is empty), insert a syllable 
boundary between the syllabic segments. 

E.g. moza-iek (mosaic), cha-os 
If there is a diaeresis in spelling, it can always be substituted by a syllable boundary 
before the element which carries it. We assume that a diaeresis is present whenever 
it is prescribed by the spelling rules of Dutch. E.g. 

Israël —> Isra-el 
naäpen (to ape) — > na-apen 

Rule 2. If the cluster consists of one non-syllabic segment, insert a syllable boundary 
before it. E.g.: 

la-chen (to laugh), po-ten (paws), stra-ten (streets) 



Rule 3. If the cluster consists of two non-syllabic segments, and it belongs to the set 
of cohesive clusters, insert the syllable boundary before it. Otherwise insert it 
between the two non-syllabic segments. E.g.: 

pot-ten (pots), kan-ten (sides) versus 
li-vrei (livery), a-pril 

Cohesive clusters (Table 2) contain two inseparable non-syllabic segments. 

vr, vl, (th, ph), sch, 
pr, br, tr, dr, cr, kr, gr, fr, 
pi, bl, cl, kl, fl, kw 

E.g.: li-vrei, me-thode, logi-sche, a-pha-sie (ph is an obsolete 
spelling of /f/), 
a-pril, ze-bra, ma-troos, Ma-drid, a-cryl, ma-kro, a-gressie, 
A-frika, di-ploma, pu-bliek, cy-clus, re-klame, re-flex, reli-kwie. 

Table 2. Cohesive clusters in Dutch. 

Sometimes they are inseparable because the first segment of the cluster cannot occur 
in syllable-final position (vr, vl), sometimes because the cluster is pronounced as one 
segment (th, ph, sometimes sch). In the remaining cases, the clusters occur in loan 
words. They then consist mostly of a plosive, followed by a liquid. Note that th and 
ph are only present in this table if they are not present in Table 1. 
Rule 4. If the cluster consists of three or more non-syllabic segments, then traverse 
the cluster from right to left, and find the largest possible cluster which can function 
as the onset of a syllable in Dutch (i.e. which belongs to the set of possible syllable-
initial clusters; see Table 2). Insert a syllable boundary before it. 

Clusters of three non-syllabic segments: 

schr, spr, spl, str, scl, scr, ski, skr. 

Clusters of two non-syllabic segments: 

sch, sm, sp, ps, ts, kn, sn, gn, st, dw, kw, tw, zw, th, ph, 
sk, sc, cl, pi, si, bl, fl, chl, gl, kl, vl, chr, cr, pr tr, 
br, dr, fr, gr, kr, vr, wr, tj (as in zee-tje', little see), 

s j, pj (as in droom-pje; little dream), sh sf , fn, 

fj, pn 

Table 2. Possible onsets (syllable-initial clusters) in Dutch. 

E.g.: 



kor-sten (crumbs), amb-ten (offices), herf-stig (autumnal) 
There are some problems with this rule. Although ts is a possible syllable-initial clus-
ter — it occurs in a number of loan words —, there is a reluctance to insert a syll-
able boundary in front of it in clusters of length three. E.g. artsen (physicians), not 
ar-tsen\ rantsoen (ration), not ran-tsoen. A similar phenomenon exists with the possi-
ble syllable-initial cluster tvr. ant-woord (answer), not an-twoord and Ant-werpen 
(Antwerp), not An-twerpen. These words are interpreted as compounds, possibly for 
reasons of analogy or (folk) etymology. 

A small-scale, informal empirical investigation showed that there is also some 
confusion as to where to insert a syllable boundary in clusters ending in st teksten 
or teks-ten (texts), bors-ten or borsten (breasts), monsteren or mons-teren (inspect). 
Both possibilities are equally possible. But there are also clear cases, conform to the 
rule: venster (window), borstel (brush). 1 6 

Finally, there is the case of the cluster str (mostly in words of foreign origin). 
Following the rules, a syllable boundary can be inserted before this cluster, because 
it belongs to the list of possible syllable-initial clusters. However, sometimes this is 
clearly the wrong solution: Cas-tro, not Castro and mis-tral not mistral. This is due 
to the fact that the vowel before str is short, and in Dutch, short vowels are nor-
mally indicated by closed syllables. The same rule contradicts the maximal syllable 
onset principle in the case of intervocalic non-syllabic clusters of length two (see 
4.1.1). In other cases two alternatives seem equally possible: adminis-tratie and 
administratie, Aus-tralië and Australië, minestrone and mines-trone. Individual 
differences in the pronunciation of these words may account for this undecidedness. 

For clear cases among these exceptions, ad hoc rules should be added to the 
program, overriding the syllabification rules. For fuzzy cases, for which people differ 
in meaning, the default rules should be applied. 

1 6 In Trommelen (1983), s in onsets is analysed as extra-metrical (i.e. independent from 
the metrical syllable structure), and in codas it is analysed as an appendix (again independent 
from the syllable structure). The undecidedness in words like these is then explained by the 
special status of s, and the fact that no morphological boundary can force a decision. But no 
convincing independent evidence is given for the marginal status of s (except that it makes 
the rules look better). 



4.1.2.2 Polymorphematic Words 
Polymorphematic or complex words are words consisting of a combination of sim-
plex words, complex words, and/or affixes. In complex words, the rules discussed 
earlier often lead to errors. This is due to the fact that Dutch syllabification is also 
guided by the principle 'divide according to morphological structure'. This principle 
sometimes conflicts with the basic syllabification rules. We tested a program 1 7, incor-
porating the rules discussed in the previous section, on a corpus of 5546 word forms 
(the letters A, W and Z in a computer-readable version of Uit den Boogaart, 1975). 
This program included no morphological analysis. It failed in 5.6% of the cases (707 
of a total of 12647 computed boundaries) due to the morphological structure of the 
words. This is an unacceptable error percentage, and the experiment proves that mor-
phological analysis is necessary to obtain high quality syllabification. 

In morphological description, the different parts of a complex word are 
separated by morphological boundary symbols. In Dutch (as in English) two types of 
boundaries are considered; morpheme boundaries (+) and word boundaries (#) 
(Booij, 1977). Only the latter type overrules syllabification rules. E.g. compare 

groen + ig groe-nig (greeny) (syllabification not overruled) 
to 
groen#achtig groen-ach-tig (greeny) (syllabification overruled) 

Other examples of the priority of morphological structure to syllabification rules: 
in#enten in-en-ten (vaccinate) < - > *i-nen-ten 
stads#plan stads-plan (city map) < - > *stad-splan 
zee#tje zee-tje (little sea) < - > *zeet-je 

The third column shows the erroneous syllabification which would ensue if the 
syllabification rules were not overruled. 

In Dutch, all prefixes and all parts of a compound are followed by a word 
boundary. Some suffixes are preceded by a word boundary, others by a morpheme 
boundary. Only word boundaries must be replaced by a syllable boundary before the 
regular syllabification rules apply. In our algorithm, this is done by a word form 
parser which splits up compounds into their parts, and by an affix analyser which 
indicates the boundary of all prefixes and those suffixes which are preceded by a 

1 7 More fully described in 5.2.3.1. 



word boundary. 1 8 These algorithms were described in section 3.2. By means of this 
partial morphological analysis the problems caused by the conflicting effects of 
syllabification rules and the morphological principle are resolved in essence. Remain-
ing errors are the result of deficiencies in the morphological analysis. 

To minimise the probability that these erroneous morphological analyses have an 
adverse effect on syllabification, analysis can be limited to those cases where it is 
absolutely necessary. There is a category of combinations of word parts separated 
by an internal word boundary ('internal words') which can be proved to be 'unproblematic' for syllabification. That is to say, the default application of the syllabification 
rules for simplex words is correct for these combinations as well. In those cases, no 
morphological analysis is transferred to the syllabification part of the algorithm. In 
our program, an analysis is only returned in the following cases (an internal word is 
indicated by Wi). 

(i) Wi ends in a non-syllabic segment, and W i + 1 starts with a syllabic segment 
(e.g., in#enten, to vaccinate). 

(ii) Wi ends in a syllabic segment, and Wi+1 starts with a possible syllable-initial 
cluster which is not a cohesive cluster (e.g., zee#tje, little see). 

(iii) Wi ends in one or two non-syllabic segments, and Wi+ 1 starts with a non-syllabic cluster, where the last segment of Wi and the first segments of Wi + 1 
taken together form a possible syllable-initial cluster (e.g., stads#plan, city map). 

Notice that it is not the case that no morphological analysis is computed in these 
cases (it is only after such an analysis that the restrictions can be checked). The 
mechanism described only diminishes the probability that an erroneous analysis is 
sent to the syllabification algorithm by diminishing the overall number of analyses 
which is sent. 

It is an empirical question which suffixes in Dutch are preceded by a word 
boundary. The official word list claims that all suffixes beginning with a consonant 
and the suffixes -aard and -achtig overrule syllabification rules. But there may be a 
class of unclear cases. One variant of the past participle suffix (-te) may be a case in 
point. When asked to hyphenate the following words, people tend to hesitate between 
s-te (interpreting the boundary before te as a word boundary) and -ste (interpreting it 

1 8 Morphological analysis is only necessary when a dictionary containing information about 
the place of these internal word boundaries is not available and for new compounds. 



as a morpheme boundary), with a slight preference for the former: boks-te (boxed), 
fiets-te (biked), vors-te (investigated), wals-te (waltzed), vervlaams-te (Flemished). It 
should be noted that the difference between word and morpheme boundary is not only 
motivated by a different effect on syllabification, but also by other phonological 
phenomena, e.g., the shifting of word accent and blocking effects on other phonologi-
cal rules. 

4.1.3 Implementation of the Algorithm 
We added a subject syllabification to the KRS concept word-form. This procedure 
computes the syllable boundaries. Sub-problems are delegated to various other pro-
cedures (e.g. primitive-phonemisation and compute-word-boundary, attached to 
word-form; find-syllable-boundary, attached to vowel-string, and generate-syllable-boundaries, attached to the concept consonant-string. The different lists with phono-
tactic data (possible syllable-initial clusters, cohesive-clusters etc.) are implemented 
simply as Lisp lists. 

4.2 A Phonemisation Algorithm19 

Phonemisation cannot be regarded as a simple transliteration function f: S -> P, 
where S is a set containing the alphabet of spelling characters and P the set of pho-
nological symbols. The relation is not isomorphic, it is context-sensitive, and involves 
mappings from single spelling symbols to strings of phonological symbols and from 
strings of spelling symbols to single phonological symbols. This creates a parsing 
problem when the function is applied to a string of spelling symbols. 

It is quite common for a single sound to be represented by different spelling 
symbols (or sequences of spelling symbols) on different occasions. E.g. phoneme /a/ 
may be realised in spelling as < a > or <aa> depending on whether it is the nucleus 
of an open or a closed syllable. On the other hand, one spelling symbol may 
represent different sounds in different contexts. A notorious example to which we 
have already referred is grapheme < e > , which can be realised in speech as /e/ (lax 
vowel), /e/ (tense vowel) or /d/ (unarticulated vowel, schwa). E.g. 

<perforeren> (to perforate) — > /perforeren/. 
1 9 This section is based on parts of Daelemans 1985b. 



In this case, it is a combination of stress and syllable structure information which 
decides how the phoneme is represented in spelling. 

The parsing problem is illustrated by the transcription of <ng>, which has to 
be transliterated to /ny/ in some cases (e.g. aangeven, to pass) and to /N/, the velar 
nasal 2 0, in other cases (e.g. zingen, to sing). In this case it is morphological struc-
ture (aan#geven versus zing+en) which determines the correct transcription. 

Reliable phonemisation can be achieved only by means of a system of context-sensitive rules, drawing on diverse sources of linguistic information (mainly phono-
logical and morphological, but also syntactic and semantic). 

4.2.1 Overview of the Algorithm 
The algorithm works in three stages: (i) syllabification and word stress assignment, 
(ii) application of transliteration rules, and (iii) application of phonological rules. Fig-
ure 5 provides an overview. Before applying the algorithm, a small on line excep-
tion dictionary with the pronunciation of foreign words and phonologically irregular 
Dutch words is checked. In a lexical database as described earlier, the phonemisation 
of these words and of regular words can be simply retrieved, and the algorithm 
would only have to be used in the case of new word forms. 
(i) Syllabification and word stress assignment. For each input word the syllable 

structure and a partial morphological structure are computed or retrieved. At the 
same time, word stress is looked up in the lexical database. 

(ii) Transliteration rules. Spelling syllables are transformed into phonological syll-
ables by means of a set of mappings. 

(iii) Phonological rules. Diverse phonological rules are applied to the output of stage 
(ii). 
The difference between transliteration and phonology, as regards the output of 

these stages, roughly corresponds to the (fuzzy) traditional distinction between a 
broad and a narrow phonetic transcription. Sometimes there is no linguistic motiva-
tion to treat a particular rule in either (ii) or (iii). Each stage will be described in 
more detail in later sections. 

2 0 Our notation of the velar nasal is the only case in which we will deviate from the stan-
dard phonetic notation. 



Figure 5. An outline of the phonemisation algorithm. Black boxes 
represent data, white boxes processes. The double arrows indicate which data 
are used by which processes. The single arrows indicate the input and output 
relations between representations and processes. 

Several applications are possible for a phonemisation algorithm: 
(i) The construction of a phonological representation of written text is an important 

step in the automatic synthesis of speech from printed text. An obvious applica-
tion of such a system would be the construction of a reading machine for the 
visually handicapped (see section 8.3). 



(ii) It can be used as a tool for linguistic research and for teaching phonology (see 
section 8.1). 

(iii) The algorithm can also be used for the automatic generation of pronunciation 
and rhyme dictionaries or to add a level of phonological information to existing 
dictionaries (see section 8.2). 

(iv) If the program is applied to a large enough text corpus, statistical information 
about the frequency of phonemes and phoneme combinations can be obtained. 
These data may be helpful in teaching Dutch as a foreign language. 

Two restrictions should be kept in mind: 
(i) The input text should not contain abbreviations and numbers. These must be 

expanded to a pronounceable form first. E.g. 21 should be transformed into 
een-en-twintig, and bijv. to bijvoorbeeld (for example). This pre-processing 
could be done by a lexical analyser (described in section 8.3). 

(ii) No syntactic or semantic analysis is involved. Consequently, the phonological 
phrase, which restricts sandhi processes in Dutch, is not present as a possible 
domain for phonological rules, and semantic ambiguity cannot be resolved. E.g.: 
ververs /vervdrs/ (painters) versus /vdrvers/ (to refresh). 

In words like these, the correct pronunciation cannot be predicted without semantic 
information. Our system will choose one possibility at random in these cases. 

4.2.2 The Representation of Phonological Data 2 1 

Few textbooks agree upon an inventory and classification of Dutch phonemes. Espe-
cially the status of d/, /h/, /N/, semi-vowels and diphthongs is much debated, and 
different sets of distinctive features are proposed for categorising vowels. 
Classifications are closely related to the phonological rules which are used. Every 
theory tries to make distinctions in such a way that phonemes fall into 'natural' 
classes which can be treated as unities by the rules. E.g., if a set of consonants (say 
/l/ and /r/) always feature in the same rules in the same way, a class liquids can be 

2 1 The data presented in this section can only be used when spelling symbols have already 
been transformed into phonemes. I.e. they can only be used by the phonological rules, not 
by the transliteration rules (this distinction is made clear in the next sections). This implies 
that some functions must be defined twice: once applicable to graphemes and once to 
phonemes. The predicate vowel-p which distinguishes between vowels and consonants is a 
case in point. 



created, containing these consonants. Our phoneme inventory is organised so as to 
be easily compatible with most formalisms and taxonomies currently in use in Dutch 
phonology. 

A simple hierarchy is used (Figure 6) to describe the relations between different 
phonological concepts. 

Figure 6. Hierarchy of Phonological Concepts. 

The nodes of the tree refer to types. The branches denote subtype relationships 
between types. The phonemes listed are subtypes of the type immediately above them 
in the figure. 

Consonants are categorised by means of the properties manner of articulation 
(plosive, fricative, nasal, ...), place of articulation (bilabial, alveolar, velar, ...) and 
voice. The first property is represented in the hierarchy of Figure 6, the other two 
are represented by means of features associated with objects (Figure 7). Vowels are 
categorised by means of the properties length, manner of articulation (rounded or 
not) and place of articulation (front, high, ...). Again, the first property is implicit in 
the hierarchy, and the others are represented by means of features (Figure 8). 



B
IL

A
B

IA
L 

LA
B

IO
D

E
N

TA
L 

A
LV

E
O

LA
R

 

P
A

LA
TO

-A
LV

E
O

LA
R

 

V
E

LA
R

 

G
LO

TT
A

L 

PLOSIVE p b t 
d c k 9 

F R I C A T I V E f V 9 z J 3 X 8 h 

NASAL m m n n n 

LIQUID I r 

S E M I - V O W E L w j 

Figure 7. Features for Consonants. 

The phonological knowledge base is implemented as a hierarchy of KRS con-
cepts with associated subjects. Figure 9 shows the definition of some of the concepts 
in the knowledge base. 

Programs can access this phonological knowledge base by means of a relatively 
independent interface consisting of Lisp predicates and functions in a uniform format. 
E.g. (obstruent-p x), (syllabic-p x), (make-short x) etc. These functions should be 
interpreted as questions to the lexical database: (obstruent-p x) means 7s x an 
obstruentV. The answer can be t (true), nil (false), a numerical value (when a 
binary opposition is insufficient, and a gradation should be used), or a special mes-
sage (when a function is not applicable to its argument). E.g. (high-p s) returns 
undefined. This is comparable to either 'irrelevant' or 'redundant' in generative pho-
nology. Table 3 lists the access functions and transformation functions which are 
used in our system. 

The functions can be computed in any of four ways: 



Figure 8. Features for Vowels. 

(i) The information can be implicit in the hierarchy of objects. E.g., phoneme /a/ 
is defined as an inheritor of the object-type long-vowel, which inherits from the 
type vowel, which stands itself in a type/subtype relationship to segment. To 
answer the 'question' (segment-p a) the program merely needs to check the 
hierarchy. 

(ii) The information can be stored as data associated with an object. E.g. the object 
/w/ (an inheritor of the type semi-vowel) has value 'true' for the feature round-
ness. To answer the question (round-p w) the program checks if a feature 
roundness is specified for /w/, and if so, what the value is of this feature. 

(iii) The information may be inherited from objects higher in the hierarchy. E.g. the 
function (voiced-p a) returns true because the object /a/ is an inheritor of long-
vowel, which is an inheritor of the vowel, which has value true for the feature 
voicedness. Note that this feature was not specified explicitly for the object /a/. 
In this way default values can be provided. E.g. the type vowel also has as a 
feature that it is stressable. All vowels inherit this feature by default. Defaults 
can be overruled by specifying the same feature with a different value for the 



(DEFCONCEPT SEGMENT 

(A PHONOLOGICAL-OBJECT 
(PRINT-FORM 

(A STRING)))) 
(DEFCONCEPT CONSONANT 

(A SEGMENT 
(SYLLABIC FALSE) 

(VOICED (A BOOLEAN)) 
(VELAR FALSE) ;; This is the default 
(VOICED-VERSION (A CONSONANT)) 

(DEVOICED-VERSION (A CONSONANT)))) 
(DEFCONCEPT NASAL 

(A CONSONANT (VOICED TRUE))) 
(DEFCONCEPT CH22 

(A NASAL 
(PRINT-FORM [STRING "n"]) 

(VELAR TRUE)) 
... 

;; Overrides default specified in 
;: Concept CONSONANT Figure 9. Some KRS-concepts describing knowledge about consonants. 

relevant objects lower in the object hierarchy; to the object Idf, the value nil is 
specified for the property stressable, although it is a vowel. The value of a 
feature of an object is not inherited by its inheritor if it conflicts with a known 
value of that feature associated with the inheritor. 

(iv) Finally, the answer can be computed. The question (obstruent-p k) is answered 
by computing a Lisp Boolean function (or (fricative-p k) (plosive-p k)). 
At present, the phonological knowledge base distinguishes 41 phonemes (some 

of these only occur as the result of assimilation processes) and five diacritics. We list 
them in Table 4. This inventory can be altered or extended at will, as can the 
hierarchy and the number of access functions. E.g, we could decide to give up the 
distinction long versus short for vowels and use tense versus lax instead. Or we 
could alter the hierarchy so that voiced obstruents inherit information from their 
voiceless counterparts. Changing or extending the knowledge base can be done by 
adding or modifying KRS concepts and subjects, but it can also be achieved (in a 
more limited way) by changing the Lisp-function interface (by renaming, adding or 
removing functions). 

The present organisation of the phonological data derives from an eclectic choice 
from the opinions of various authors: Collier and Droste (1977), Collier (1981), De 



LISP PHONOLOGICAL ACCESS FUNCTIONS 
fricative-p (segment) 

plosive-p (segment) 

nasal-p (segnent) 

liquid-p (segnent) 

seni-vowel-p (segnent) 

long-p (segnent) 

short-p (segment) 

diftong-p (segnent) 

vowel-p (segment) 

consonant-p (segment) 

obstruent-p (segment) 

nasa-liquid-p (segment) 

bilabial-p (segment) 

palatal-p (segment) 

alveolar—p (segment) 

velar-p (segment) 

labiodental-p (segment) 

glottal-p (segment) 

voiced-p (segment) 

front-p (segment) 

back-p (segment) 

high-p (segment) 

lou-p (segment) 

round-p (segment) 

syllabic-p (segment) 

stressable-p (segment) 

LISP TRANSFORMATION FUNCTIONS 
make-voiced (segment) 

make-voiceless (segment) 

make-short (segment) 

make-long (segment) 

Table 3. Access functions to and transformation functions of phonological 
data. 

Schutter (1978), Van den Berg (1978), Van Bakel (1976), Booij (1981) and Cohen 
(1961). 

4.2.3 Syllabification and Word Stress Assignment 
The algorithm used to compute syllable boundaries is described in section 3.3. We 
use a lexical database (section 3.5) and a partial morphological analysis system (sec-
tion 3.2) to make possible the correct hyphenation of the whole potential vocabulary 
of Dutch; i.e. all existing words and all potential new words which may be formed 
by rules of compounding and affixation.22 The syllable is central in this algorithm; it 
is the default domain for the application of phonological and transliteration rules. 
This approach deserves some explicit motivation. 

2 2 The necessity for the presence of morphological analysis in grapheme-to-phoneme 
transliteration systems has recently been argued for the case of German as well (Pounder and 
Kommenda, 1986). 



Table 4. Phoneme and diacritic inventory. The first column lists the 
concept names, the second column the internal representation, and the third 
column the traditional phonetic symbol. E.g., the velar nasal is a concept 
named CH22 and with internal representation "N". 

As some important phonological rules have the syllable as their domain, it is at 
least necessary to represent it. Consider for example schwa-insertion, a rule which 
inserts a schwa (/d/) between a liquid and a nasal or non-coronal consonant. This 
rule applies only if both consonants belong to the same syllable. E.g. compare 

erg (bad) /erdX/ and melk (milk) /meldk/ (schwa-insertion) 
to 

er-ge (bad) /eryd/ and mel-ken (to milk) /melkd/ (no schwa-insertion). 
A simple pattern matching rule system would fail to make this distinction. Other 
rules, like final devoicing, a rule which devoices voiced obstruents in final position, 
and progressive and regressive assimilation, are traditionally described as applying to 
words or morphemes, excluding their operation at the end of syllables. However, 
the following examples show that it would be more correct to define them with the 



syllable as their domain: e.g. 
het-ze (smear campaign) becomes /hetsd/ (progr. assimilation), as-best 
(asbestos) and anek-dote (anecdote) become /azbest/ and /anegdotd/ (regr. 
assimilation) and Cam-bod-ja becomes /kambotja/ (final devoicing). 

Although these examples show that syllable structure is necessary, they do not prove 
that it is central. The centrality of the syllable is suggested by the following observa-
tions. 
(i) The combination of syllable structure and information about word stress seems 

sufficient to transform all spelling vowels correctly into phonemes, including 
grapheme < e > , a traditional stumbling block in the design of Dutch phonemisation algorithms. 

(ii) An implementation of our algorithm shows that most phonological rules can be 
defined straightforwardly in terms of syllable structure. I.e. rules which are 
defined in the literature with the morpheme as their domain, can be redefined 
with the syllable as their default domain without producing errors (rules apply-
ing at syllable boundaries also apply at morpheme boundaries). 

Not everyone is convinced that it is necessary to consider the syllable as a starting 
point for a phonemisation algorithm. For instance, Boot (1984) claims that 

'(...) there is no linguistic motivation whatsoever for a [phonemisation 
WD] model in which syllabification plays a significant role (o.c. p. 63) [my 
translation WD].' 

It is clear from the data presented here that this is not true. His own 'second gen-
eration' program uses a set of context-sensitive pattern matching rules and some form 
of affix-stripping. No dictionary is present. It is hard to see how his program would 
be able to distinguish between word-pairs such as beven (to shudder; no prefix) and 
bevelen (to command; prefix be#). They are transliterated respectively as /bevdn/ 
and /bdveldn/. What is needed to detect affixes is morphological analysis, which 
presupposes a dictionary, as was pointed out in 3.3. The output of the syllabification 
part of the algorithm is a character string in which internal and external word boun-
daries (# and ##) and syllable boundaries (=) are inserted. 

Parallel with morphological analysis, the primary word stress of each word and 
of each part of a compound is looked up in the dictionary which is used for morpho-
logical analysis. This information is indicated by an asterisk (*) before the stressed 
syllable. Word stress can be computed instead of looked up for compounds. 



Some examples of the output of this stage: 
vergelijking (comparison) 
##ver#ge#*lij=king## 
een heerlijke appelmoes (a delicious apple-sauce) 
##een##*heer=lij=ke##*ap - pel#*moes## 
herfststorm (autumnal tempest) 
##*herfst#*storm## 

4.2.4 Processing Syllable Strings 
Before discussing the transliteration and phonological rules in more detail, we return 
once more to the object-oriented organisation of the phonological data. Every syll-
able in the hyphenated input string becomes an instance of the type syllable (imple-
mented as a KRS concept), which has a number of features (Figure 10 lists these 
features, and their value for one particular syllable). 

Figure 10. Features of the object SYLLABLE and an example. 

The value of some of these can be set by means of the information in the input: 



spelling, is-closed? (true if the syllable ends in a consonant), is-stressed? (true if the 
syllable carries word stress), previous-syllable (a pointer to the particular syllable 
immediately preceding the one being processed), next-syllable (a pointer to the next 
syllable), external-word-boundary-on-right? (can be true or false), and internal-word-
boundary-on-right? (can be true or false) are initialised this way. The names of these 
features are self-explanatory. Their values are used by the transliteration and phono-
logical rules. For other features, the value must be computed: structure is computed 
by means of the value for the spelling feature and the predicate vowel-p, which dis-
tinguishes spelling vowels from spelling consonants. The value for this feature 
reflects the internal structure of the spelling syllable: nucleus (the vocalic element of 
a syllable), onset (the consonantal part optionally preceding the nucleus) and coda 
(the consonantal part optionally following the nucleus). E.g. the structure of the spel-
ling syllable herfst is "h" "e" "rfst". As the syllabification part of our algorithm 
incorporates a similar segmentation (primitive phonemisation), the structure feature 
can be provided a value without computation as well. 

The values of the features onset, nucleus, and coda (this time of the phonologi-
cal syllable) are computed by means of the transliteration and phonological rules. 
Their initial values represent the spelling, and their final values the pronunciation. 
The rules take the values of these features as their input and can change them. The 
rhyme of a syllable is nucleus and coda taken together, and the feature transcription 
stands for the concatenation of the final (or intermediate) values of onset, nucleus and 
coda. A useful metaphor is to envision the onset, nucleus and coda features as 
pieces of paper. At first, the spelling is written down on them. Later, the rules may 
wipe out what is written down, and write down other symbols. When all rules have 
been applied, the pieces of paper can be pushed against one another and the result is 
the phonological transcription of the spelling syllable. 

Apart from the information specified by features of the object and the phonolog-
ical data discussed earlier (all accessible in a uniform Lisp function format), the rules 
use primitive string-manipulation functions to check their conditions and to change the 
values of the features. If the transformation from spelling to phonological syllable 
has been achieved for all syllables in the input, their transcriptions are concatenated, 
and the result is returned. 



4.2.5 Transliteration Rules 
An input string is scanned twice from left to right: by the transliteration rules and by 
the phonological rules. 2 3 Transliteration rules are mappings of elements of syllable 
structure to their phonological counterpart. E.g. the syllable onset <sch> is mapped 
to /sX/, nucleus <ie> to /i/, and coda <x> to /ks/. Conditions can be added to 
make the transliteration context-sensitive: the syllable onset <c> is mapped to /s/ if 
a front vowel follows and to /k/ if a back vowel follows. Here the distinction 
between transliteration and phonological rules becomes fuzzy. E.g. 

cola /kola/ versus cent /sent/ 
We have already mentioned that syllable structure and word stress information suffice 
to disambiguate spelling vowels. E.g. grapheme <e> when occurring in a stressed 
and open syllable becomes /e/, in an unstressed syllable Ibl (schwa), and in a 
stressed and closed syllable it becomes lei. Some examples (external word boun-
daries are omitted for clarity's sake): 

*cent (closed and stressed) becomes /sent/, 
*ne=ro (open and stressed) becomes /nero/, 
*lo=pen (to run; closed and unstressed) becomes /lopdn/, and 
*ro=de (red; open and unstressed) becomes /rodd/. 

Other spelling vowels are transformed in a similar way. 
Apart from this mapping, some modifications are necessary to transform spelling 

syllables into phonological syllables: e.g. the cluster <ng>, sometimes split into 
two parts during syllabification, must be rewritten as one phoneme: *zin =gen (to 
sing) becomes /ziNdn/. There are about forty transliteration mappings and 
modifications. 

4.2.6 Phonological Rules 
The phonological rules apply to the output of the transliteration mappings. They are 
sequentially ordered, but alternative orderings, triggered by arbitrary properties of the 
input, can coexist with the default order. This default order can be changed. Each 
rule is a subtype of the phonological-rule concept, which, like any rule, has five 

2 3 This is by no means an essential property of the algorithm, transliteration and phono-
logical rule application could easily be done in one pass. The present organisation is only in-
tended to reflect a conceptual (theoretical) distinction between both types of rules. 



features: active-p, application, conditions, actions and examples. An example of the 
KRS-implementation of a rule is given in Figure 11. 

(DEFCONCEPT SCHWA-INSERTION 
(A PHONOLOGICAL-RULE 

(ACTIVE-P TRUE) ;; The rule is turned on 

(APPLICATION ;; Actually, this subject is inherited 
(DEFINITION ;; from the general concept Rule 

[IF ( » CONDITIONS) ( » ACTIONS)])) 

(CONDITIONS ;; coda-first and coda-second refer 
(DEFINITION ;; to the first and second character 

[FORM (AND (LIQUID-P CODA-FIRST) ;; of the coda 
(ALVEOLAR-P CODA-FIRST) 
(OR (BILABIAL-P CODA-SECOND) 

(LABIODENTAL-P CODA-SECOND) 
(VELAR-P CODA-SECOND)))])) 

(ACTIONS 
(DEFINITION 

[FORM (CHANGE-CODA 
(STRING-APPEND CODA-FIRST 

( » PRINT-FORM OF SCHWA) 
CODA-SECOND))])))) 

Figure 11. A simplified KRS-concept for the schwa-insertion rule. 

Active-p can be true or false. If it is set to true, the rule can be executed. This way, 
the effect of the 'deletion' or the 'addition' of a particular rule can be studied. If a 
rule is active, first the conditions specified in the application part of the rule are 
checked. This is a Lisp expression which evaluates to true or false. Conditions 
mostly consist of checking for phonemes with specific properties in the onset, nucleus 
or coda of a syllable, and inspecting the context of the syllable within the specified 
domain. If the result is true, the action part of the application feature of the rule is 
executed. Actions consist of modifications of the values for the features onset, 
nucleus and coda of a particular syllable or its neighbour (changing what is written 
on the 'pieces of paper'). Actions may also involve the triggering of phonological 
processes. E.g. in the case of schwa-insertion, a complete phonological process (re-syllabification) should be triggered. E.g.: 

ver=*berg (to hide) -> (schwa-insertion) -> fvdrberdX/ -> (re-
syllabification) -> /vdr=be = rdX/ 

Intermediate values for the features are unrecoverably lost (the output of one rule 
serves as the input of the next), unless they are explicitly stored at some specific time 
intervals. E.g. we could copy what is written on the pieces of paper each time a rule 
has been applied. This way a detailed derivation is obtained. 



If a rule was activated, the conditions satisfied, and the actions undertaken, two 
'book-keeping' activities occur: 
(i) The name of the rule is entered in the rule history associated with each input 

string. This way the derivation of an input string can be traced. 
(ii) The input-string to which the rule applied is stored in the feature examples of 

this rule. This way, interesting data about the operation of a rule can be 
obtained. 

Some important rules included in the program are listed in Appendix A.8 with a 
short description, accompanied by a few examples (computed by the program). A 
trace of the derivation was added for each example. The order in which the rules 
appear in this derivation for each syllable reflects the order in which they were 
applied to that syllable. The numerical value preceding the names of the rules in the 
derivation reflects the overall temporal order in which the rules were activated by the 
program. 

4.2.7 Evaluation of the Program 
In Appendix A.4, the result of applying the program to a randomly chosen Dutch 
text is demonstrated. The input text (A.4.1), the output of the intermediary 
syllabification and word stress retrieval stage (A.4.2), the southern Dutch transcrip-
tion (Flemish, A.4.3) and the northern Dutch transcription(A.4.4)24 are presented. 
Figure 12 gives short fragments of these different representations. The overall results 
were satisfying: of 475 predicted syllable boundaries, 6 turned out wrong (success-rate 99.99%), of 3639 phonemes produced in the output, 27 were judged wrong by 
an independent linguist (again a success-rate of 99.99%), and finally, 23 out of 964 
phonemised word tokens were rejected (success-rate 99.98%). The mistakes made 
by the program can be reduced to four categories: 

(i) Ambiguity. The spelling form <een> can be either /dn/ (a/an, determiner) or 
/en/ (one, numeral). Usually, the difference is reflected in spelling (the numeral 
is spelled <een>), but this is not obligatory. With syntactic information, this 

2 4 We have implemented (our impression of) a simplification of the two major variants of 
standard (educated) Dutch: southern and northern Dutch. The former can be derived from the 
latter by deleting a few rules (initial devoicing and vowel diphthongisation), and by some ad-
ditional modifications. In practice, aspects of both the southern and northern dialect may be 
combined in a single speaker. 



Hij bewoont de kamer naast de mijne. 
De volgende dag belde hij mij. 
Je kamer staat er bij 
zoals je hem hebt verlaten. 
Ik durfde niet te vragen 
naar de toestand van de meubels. 

(+hij == be +woont == de == +ka mer == +naast == de == +mij ne) 
(de == +vol gen de == +dag == +bel de == +hij « +mij) 
(je == +ka mer == +staat == +er = +bij) 
(+zo = +als == je == +hem == +hebt == ver +la ten) 
(+ik == +durf de == +niet == te == +vra gen) 
(+naar == de == +toe = +stand == +van == de == +meu bels) 

Figure 12. Fragments of input text, intermediary representation, southern 
Dutch transcription and Northern Dutch transcription of a random text Taken from Appendix A.4. 

ambiguity can be resolved when the numeral is used as the head of an NP. 
Unfortunately, even then, cases remain which cannot be resolved (compare e.g. 
één boek; one book and een boek; a book). 

(ii) Foreign words and names: The majority of errors is of this kind: from French 
<beige>, <college> and <plafond>; from English <More>, <tower>, and 
< Charterhouse > ; and from German < Holbein > . These words must be added 
to the exception dictionary which is consulted before the application of the rules. 
Note that the transliteration coincides with the pronunciation of these words by 
Dutch speakers not familiar with the foreign language. 



(iii) Syllabification, morphological analysis and stress assignment. The word 
<glorieuze> (glorious) was hyphenated glo-rieu-ze (parallel with nieu-we, new) 
instead of glo-ri-eu-ze. This shortcoming of the syllabification algorithm was 
corrected. The parser understandably failed to see the compound structure of 
<Luxaflex> (a brand name). Accordingly, no stress was assigned to the syll-
able flex, which was therefore transcribed /fldks/ instead of /fleks/. A general 
rule seems to exist which forbids a schwa before an x (compare examenexami-
nation, which would lead to an incorrect phonemisation with correct stress-
information as well as without). Incorrect morphological analysis explains the 
faulty phonemisation (/beina/ instead of /beina/) of <bijna> (almost). In five 
other cases, morphological analysis generated a syllabification error; we give the 
incorrect hyphenation: mee-stal, voo-roor-log-se, moois-te, waa-rach-ter, and 
ver-bij-sterd. The correct hyphenations are meest-al, voor-oor-log-se, mooi-ste, 
waar-ach-ter and ver-bijs-terd. However, these errors did not result in incorrect 
phonemisation. 

(iv) Rules: In two cases, the definition of the phonological rules generated an error. 
In <melancholie>, intervocalic-voicing voiced the /x/. In <centimeter>, 
plosive-to-fricative transformed < t> into /s/, because it interpreted ti as a vari-
ant of the suffix -tie. These rules could be improved by adding new conditions. 

4.3 Conclusion 
The object-oriented approach which we adopted in the description of some morpho-
logical data and processes in Chapter 3 was extended to phonological data and two 
phonological processes: syllabification and phonemisation. Phonological data are 
represented by means of generalisation hierarchies and features of objects in these 
hierarchies (subjects of concepts in KRS terminology). Several dependency relations 
between processes and data were emphasised: syllabification relies on partial morpho-
logical analysis, lists of language-specific phonotactic data (possible clusters), and a 
(more or less) universal phonological principle (the maximal syllable onset principle). 
Phonemisation needs syllabification, stress assignment (or retrieval) and a number of 
transliteration and phonological rules. Both the syllabification and the phonemisation 
algorithms reached a nearly-perfect accuracy when tested on a random Dutch text. 



PART III 
APPLICATIONS 

The number of ways in which a modular and extensible model such as the one 
described in Part II can be applied is immense, and covers the complete domain of 
language technology. 
In Chapter 5, the Author Environment — a software tool for authors — is intro-
duced, and two of its modules: automatic hyphenation (Ch. 5) and automatic detec-
tion and correction of spelling and typing errors (Ch. 6) are discussed in detail. The 
programs described in these chapters present a solution to problems generated by the 
particular way in which Dutch compounds are formed. Where gaps in our linguistic 
knowledge base prevent pricipled solutions to some sub-problem, or to improve 
efficiency, heuristics are proposed. 
A rapidly growing held in Artificial Intelligence is ICAI (Intelligent Computer 
Assisted Instruction). An ICAI system contains — apart from knowledge about the 
subject-matter to be taught — a model of the student, diagnosis heuristics, an expla-
nation module and educational strategies. In Chapter 7, a prototype ICAI system for 
the teaching of one aspect of Dutch morphology (verbal inflections) is described. 
Rule testing devices offer a radically new way of doing linguistics. They accelerate 
the development of rule systems and theories, and provide powerful ways of control-
ling complex rule interactions and side-effects. A rule testing device for Dutch pho-
nology is demonstrated in section 8.1. 
In section 8.2, the potential use of linguistic algorithms in lexicography is exemplified 
by means of a Flexible Dictionary System which allows the semi-automatic creation, 
extension and updating of lexical knowledge bases. 
A morpho-phonological model is indispensible as a module in larger natural language 
processing systems. A morphological component is needed in machine translation and 
dialogue systems as a part of the syntactic generation and interpretation programs. A 
phonological stage is necessary to make text-to-speech systems (reading machines) 



and speech understanding systems possible. These systems are an essential part in 
any application incorporating a speech interface. The transportability and modularity 
of object-oriented systems makes them ideally suited for integration into larger sys-
tems. In section 8.3, the role of our phonemisation algorithm in a speech synthesis 
system will be discussed, and the concept of a lexical analyser (a general purpose 
front-end to natural language interpreting systems) will be introduced. 



CHAPTER 5 
Automatic Hyphenation 
in an Author Environment 

5.1 The Author Environment 
An Author Environment (AE)1 is a set of interacting computer programs making up 
an intelligent software tool which helps authors and editors in all activities related to 
writing. Its aim is to make writing easier by allowing the author to devote his atten-
tion to content rather than to form. 

An ideal AE should assist in all stages of the writing process which are tradi-
tionally distinguished (e.g. Bartlett, 1982; Hayes and Flower, 1980; Smith, 1982): in 
the planning stage by providing the relevant information (e.g. bibliographic data-
bases, text retrieval systems etc.) and by helping to set up goals; in the writing stage 
by helping in text and paragraph structuring and word selection; and in the reviewing 
stage by finding errors, suggesting corrections and improvements, and decreasing the 
complexity of editing. We will be concerned exclusively with the writing and review-
ing stages. 

An AE differs from current word processors in that linguistic knowledge is 
integrated into it, which extends the possibilities of the user considerably. The idea is 

1 A system incorporating some of the ideas described in this section is currently being 
developed at the university of Nijmegen by Prof. G. Kempen and his co-workers in the 
framework of an ESPRIT project of the EC. See Kempen, Anbeek, Desain, Konst, De 
Smedt, 1986 for a recent overview, and also Konst, Daelemans and Kempen, 1984 and 
Daelemans, Kempen and Konst, 1985. 



to keep several linguistic representations of the text available. Apart from the normal 
orthographic representation (alphanumeric characters, punctuation) which we find in 
present day word processors, several linguistic representations and an on-line diction-
ary are available as well. The representations supported by an AE give access to the 
grammatical structure of the sentences (produced by a syntactic parser), the morpho-
logical structure of words (produced by a morphological parser) and the syllable 
structure of words (produced by a syllabification algorithm). These representations 
serve in a multitude of useful applications. 

At the word level we can hyphenate words while formatting a text, suggest 
synonyms, check the spelling of words, analyse the structure of a word, give the 
pronunciation of a word, or compute a particular form of a word. 

At the sentence level, applications include checking grammar and punctuation, 
drawing attention to ambiguous sentences, and a number of linguistic transformations 
for which the propagation of features is needed. For example, if we want to pluralise 
a noun, we also have to modify determiners, pronouns and finite verbs that are 
dependent on it. Linguistic transformations which seem useful are the aforemen-
tioned singular/plural transformation, active/passive, declarative/interrogative, main 
clause/subordinate clause (this involves a change in word order in Dutch) and 
male/female. All editing related to a particular transformation should be done 
automatically (in spreadsheet fashion), using the underlying linguistic representations. 
In many languages such a facility is expected to be time saving. 

At the text level, too, some of these transformations can be applied, and text 
can be checked for consistency in the use of a particular spelling system. Another 
useful facility is a readability score. Most existing scores are based on quantitative 
judgements (frequency measures, e.g. Flesch, 1976). The different linguistic represen-
tations would make additional qualitative judgments possible. Furthermore, applica-
tions can be envisioned in which AE helps in the structuring of a text, or even in its 
creation (report generation). Finally, common word processing functions used in edit-
ing such as delete word, character backward etc. could be broadened to linguistic 
functions such as jump to subject, delete syllable, transpose constituents and others. 

All these facilities should not overwhelm the user of AE; a transparent user 
interface which avoids linguistic jargon, and which is easy and pleasant to use should 
be developed. Intuitively, a mouse, menu and window system with icons seems 
preferable, but more research is needed to compare the merits of different 



approaches. A mouse is a little hand-held box with one or several buttons on it, and 
connected to a computer terminal. It can be rolled on a desk causing the cursor to 
move on the screen in a fashion analogical to the movement of the mouse on the 
desk. Most mouse systems allow the user to indicate, 'pick up' and 'move' things on 
the screen by clicking on them (position cursor on it and click the mouse button). A 
menu is a list of options between which a user can choose at some point in the exe-
cution of a program. Users choose by clicking with the mouse on the selected option. 
A window system is a program that allows users to have a video screen which is 
divided into several areas (windows), each of which is connected to a different pro-
cess. E.g. they can write a text in a text-editor window, inspect the output of a style 
verification program in another window, and browse through a text in still another 
text-editor window. All these windows can be visible at the same time. Windows can 
be moved, reshaped, created and deleted at will by the user. Icons are drawings 
representing concepts. E.g. users can delete a file containing a draft of their article 
by moving a picture representing this file to the picture of a dustbin on the screen. 
The interface will also contain facilities to manipulate linguistic trees (representing the 
grammatical structure of sentences) directly (see Desain, 1986). 

As described here, AE is a fairly revolutionary system. It is scheduled to be 
operational (at least in a prototype form) by 1988. Systems which offer part of this 
functionality already exist for English, e.g. IBM's EPISTLE project (also called CRI-
TIQUE; Miller, Heidorn and Jensen, 1981) comments on spelling, grammar and 
style. The UNIX Writer's Workbench (Cherry, 1981) offers readability measures and 
an abstractness measure, and checks for punctuation, word use and spelling. How-
ever, for Dutch a different approach is often needed, as will become clear in the next 
sections and in the following chapter. We will describe two parts of the AE which 
directly rely on the linguistic model outlined in Part II: automatic hyphenation (this 
chapter) and error detection (Chapter 6). 

5.2 Automatic Hyphenation2 

Computers are notoriously bad at hyphena-
tion. When the type-setting of newspapers 
began to be fully automated, jokes about 

2 This section is based in part on Daelemans (1985c). 



HYPHENATION Automatic Hyphenation 

'the-rapists who pre-ached on wee-knights' 
soon began to circulate. 
D. E. Knuth 

5.2.1 Background 
A hyphenation algorithm incorporates a set of rules to find the positions in a word 
where a syllable boundary can be inserted. Hyphenation programs are used in type-
setting and word-processing environments, most often as part of a text-formatting 
system. 

In order to provide for the possibility of having justified paragraphs (paragraphs 
with straight margins on both sides), it is necessary to be able to split long words. 
The justification process normally works in two stages: filling and adjusting. A line is 
filled by inserting words in it until the current-line-length (a global variable) is 
reached. If at that point a word cannot be fitted on the line, an attempt is made to 
hyphenate it. Afterwards, spaces between words are increased to spread out the 
words in the line to the current-line-length (this is called adjusting). Figure 1 shows 
the effect of filling, adjusting, and hyphenating, respectively. 

If no hyphenation is possible, justification often leads to ugly 'white holes' 
within lines, especially in languages like Dutch and German, where long words are 
the rule rather than the exception. Dutch presents some special hyphenation prob-
lems, as was pointed out in section 4.1; most notably the influence of some word-internal morphological boundaries on hyphenation makes the construction of a fool-
proof hyphenation algorithm a stingy problem. 

5.2.2 Adapting the Syllabification Algorithm 
A principled solution to the problem is available by means of a slight adaptation of 
the syllabification algorithm described in section 4.1. The fact that this algorithm 
takes spelling as input is convenient for a hyphenation application because this res-
tricts the adaptation to the introduction of a number of spelling and stylistic rules3. 
When used in a hyphenation program, these rules are added to the algorithm as a 

3 The rules we use are based on the rules for Dutch hyphenation listed in the official 
Woordenlijst van de Nederlandse Taal (Word List of the Dutch Language, 1954) on the one 
hand, and on typographical practice on the other hand. 



(i) 
Algorithms and heuristics for natural language processing 
should be founded 
on a computational theory which is (psycho-)linguistically motivated. Two 
generations of hyphenation programs, one based on list search, the other 
on pattern matching, have failed in this respect and have therefore not 
succeeded in offering a general solution to the problem. An alternative 
approach which relies on a theory about the interaction between 
morphology and phonology is proposed. 

(ii) 
Algorithms and heuristics for natural language processing should be founded on 
a computational theory which is (psycho-)linguistically motivated. Two 
generations of hyphenation programs, one based on list search, the other on 
pattern matching, have failed in this respect and have therefore not succeeded 
in offering a general solution to the problem. An alternative approach which 
relies on a theory about the interaction between morphology and phonology is 
proposed. 

(iii) 
Algorithms and heuristics for natural language processing should be founded on 
a computational theory which is (psycho-)linguistically motivated. Two 
generations of hyphenation programs, one based on list search, the other on 
pattern matching, have failed in this respect and have therefore not succeeded 
in offering a general solution to the problem. An alternative approach which 
relies on a theory about the interaction between morphology and phonology is 
proposed. 

(iv) 
Algorithms and heuristics for natural language processing should be founded on 
a computational theory which is (psycho-)linguistically motivated. Two genera-
tions of hyphenation programs, one based on list search, the other on pattern 
matching, have failed in this respect and have therefore not succeeded in 
offering a general solution to the problem. An alternative approach which re-
lies on a theory about the interaction between morphology and phonology is pro-
posed . 

Figure 1. Four versions of the same paragraph. As it was entered in the text editor (i), filling 
only (ii), filling and adjusting (iii), filling, adjusting and hyphenation (iv). The formatting system 
used was UNIX troff. 

post-processing module. The rules included in the program are the following: 
(1) It is not allowed to insert a syllable boundary before an x: E.g. exa-men, not 

e-xa-men (examination). 
(2) The string oo before ch is reduced to a single o: e.g. goochelaar (magician) is 

hyphenated go-che-laar. 
(3) A double vowel is reduced to a single vowel before the diminutive suffix #t/e, if 

the singular non-diminutive form of that word is spelled with a single vowel. 
Thus, autootje (little car) is split as au-to-tje, and vlaatje (little pie) is split as 
vla-tje. A lot of confusion exists about this aspect of Dutch spelling. Some-
times we find the form auto'tje (little car), analogous to auto's (cars), sometimes 
autoos (cars), analogous to autootje. Only autootje and auto's are officially 
correct. 



(4) If possible, word forms should be split in the middle. Peripheral split-ups are 
considered ugly. E.g. atomair (atomic), not a-to-mair, and bur-ge-meester, not 
bur-ge-mees-ter (mayor). 

(5) Internal word boundaries are a good place to split up a word (on-interessant, 
kwart-slag), even when this contradicts rule (4). E.g. a-gnostisch (agnostic). 
Boundaries immediately to the left or right of such a boundary are not very well 
suited (onin-teressant, massage-heugen) because they tend to make identification 
of the different word parts more difficult. 

(6) Splitting up short words (less than five spelling characters long) produces an 
ugly effect. E.g. la-de (drawer). 
In the current implementation of the syllabification algorithm of section 4.1, 

these constraints are implemented by means of a filter which removes some hyphens 
in the output of the syllabification algorithm on the basis of the aforementioned rules. 
A more efficient approach would be to prevent the insertion of these boundaries in 
the first place, but this would obfuscate to some extent the modularity of the phono-
logical and the spelling parts which now exists. 

The approach described here to the hyphenation of Dutch words is infallible in 
principle; remaining errors are due to shortcomings of the morphological decomposi-
tion algorithm, incompleteness of the lexical database (see Chapter 3) or semantic 
ambiguity, but it is also a computationally expensive approach. In the next section we 
will show how phonotactic restrictions can be applied to make feasible high-quality 
hyphenation with a less expensive algorithm. 

5.2.3 Phonotactic Restrictions 
In some cases, a syllable boundary can be predicted with full certainty, even when no 
morphological analysis is performed. This is the case whenever phonotactic restric-
tions exclude all but one possibility. 

In the context of hyphenation, we define phonotactic restrictions as 'restrictions 
on the form and length of onset, nucleus and coda, and on the combination (co-
occurrence) of nucleus and coda' (see section 4.1.1). E.g. take the word post#zegel 
(stamp). Syllabification rules must split the cluster stz. There are four possible 
places for the hyphen: -stz, s-tz, st-z and stz-. The clusters stz and tz do not belong 
to the set of possible onsets for Dutch, and stz does not belong to the set of possible 



codas. Only one possibility remains: st-z (post-zegel). In this case morphological 
analysis, which precedes syllabification, would have operated vacuously. 

Due to the restrictions on cluster length, the number of hypotheses about the 
place of the hyphen which must be checked never exceeds four. E.g., a cluster con-
sisting of five non-syllabic segments (each segment represented here by C) has only 
three possible syllable boundaries: CC-CCC, CCC-CC, and CCCC-C, because a coda 
can never be more than four segments long, and an onset never more than three. 

When the restrictions leave open more than one possibility, morphological 
analysis is necessary to determine the syllable boundary with quasi-certainty. E.g. 
ontspringen (to rise): possible syllable boundaries are nt-spr, nts-pr, and ntsp-r. 
Only the last case can be excluded because of the impossible cluster ntsp. Morpho-
logical analysis must decide between the two other possibilities. In this case, the 
syllabification rules would choose nt-spr, which is correct, but only accidentally so; 
compare abonnements-prijs (subscription fee). 

If diaeresis and hyphen are used properly, syllable boundaries in vowel clusters 
can be predicted with absolute certainty, on the basis of restrictions on vowel combi-
nations. E.g., if a cluster of spelling vowels can be reduced to two syllabic segments, 
the syllable boundary is always located between them. Therefore, beaam (agree) is 
hyphenated e-aa. Again, no morphological analysis is necessary to find this syllable 
boundary. A deterministic vowel string parser was described in section 4.1. 

In section 5.2.3.1, a program will be described which uses phonotactic restric-
tions to find syllable boundaries. We will also present some statistical data obtained 
by using it on a corpus of Dutch word forms and a performance evaluation. This 
program can be used profitably in hyphenation systems (1) to constrain the number of 
dictionary lookups during morphological analysis (this possibility is discussed in sec-
tion 5.2.3.2) and (2) as a basis for an autonomous hyphenation system without mor-
phological analysis in some applications: notably (a) a partial hyphenation to assist 
justification algorithms, and (b) in a user-friendly interactive hyphenation environ-
ment. These possibilities are described in section 5.2.3.3. 



5.2.3.1 CHYP, a Cautious HYphenation Program 
CHYP is a program which refuses to insert a syllable boundary whenever it does not 
have absolute certainty that there is only one possible solution. E.g. in postzegelverzameling (stamp collection) the program would insert a syllable boundary three times 
post-zegel-ver-zameling. Three other boundaries (ze-gel, za-me-ling) cannot be 
predicted with certainty. 

Description of the Program. Figure 2 gives a survey of the program and an exam-
ple. 

The input spelling image of a word form is segmented into a head, a middle and a 
tail. Head and tail (word-initial and/or final consonant clusters) are ignored by the 
program because they need not be split. In the middle part, vowel strings and con-
sonant strings are separated. Strings of spelling vowels are transferred to the Deter-
ministic Vowel string Parser (DVP), discussed in section 4.1, which inserts syllable 
boundaries at the appropriate places. 



Consonant clusters are handled by the Boundary Hypothesis Generator (BHG). 
This submodule generates and tests hypotheses about syllable boundaries. For 
instance in splitting a cluster dr, the following hypotheses are generated: -dr, d-r, 
dr-. They are tested by checking whether the part left of the boundary is a possible 
syllable coda, and the part right of it a possible syllable onset. If this is the case, the 
hypothesis is accepted and pushed on a stack (this is the case for -dr and d-r); if not, 
it is rejected (dr-). Note that hypotheses are generated by inserting tentative boun-
daries from left to right. This implies that the first hypothesis accepted is mostly 
equal to the boundary which would be suggested by applying the syllabification rules 
in section 4.1 (Maximal Onset Principle: 'take the longest possible right part'). An 
exception to this is the treatment of clusters of length two. In that case, the cluster is 
treated as a cohesive cluster instead of being split in the middle. E.g., the first 
hypothesis for st in pastei (paste) is pa-stei, and not pas-tei. A simple test can be 
(and has been) incorporated into the algorithm to solve this problem, so that the 
hypothesis which is pushed first on the stack always coincides with the one which 
would be suggested by the phonological syllabification rules. 

If only one hypothesis is accepted, the boundary can be predicted with certainty, 
if not, the acceptable hypothesis first pushed on the stack is the most probable, but 
its correctness cannot be guaranteed. 

Both DVP and BHG use the phonotactic data discussed in section 4.1, extended 
with lists of possible syllable-final clusters of length one, two, three and four (the 
maximum), and with a list of possible syllable-initial clusters of length one. Unfor-
tunately, anything goes in this case, so checking this list does not make very much 
sense. This additional information can be found in Table 1. As in section 4.1, the 
data are based on the statistical study by Brandt Corstius (1970), modified by our 
own data. 

Head, middle with inserted boundaries, and tail are brought together again in the 
output. Two modes are possible: in c-mode (cautious mode), only boundaries with 
absolute certainty are kept in the output, in d-mode (dare-devil mode), the most prob-
able alternative is presented if no absolute certainty can be attained. E.g.: postzegel 
(stamp) is hyphenated post-zegel in c-mode, and post-ze-gel in d-mode. The use of 
d-mode, of course, clashes with the philosophy behind CHYP, but we shall see later 
on that this mode can be profitably used in a number of applications. 



Clusters of one non-syllabic segment: 

Any non-syllabic segment except v, h, y, z , j, and qu. 

Clusters of two non-syllabic segments: 

It, Id, Is, lp, lk, If, lg, lm, mt, md, ms, mp, mb, mf, nt, nd, ns, xt, nx, 
nk, sch, ng, nc, rc, rm, rn, rt, rd, rs, rp, rk, rf, rg, pt, ps, ts, kt, 
ks, wt, wd, ws, ds, ft, fd, fs, gt, gd, gs, st, sd, cht, chs, ct, sp, sk. 

Clusters of three non-syllabic segments: 

lms, lmd, 1st, lfs, 1ft, lpt, lps, lgt, lgd, Iks, lkt, ldt, 
Ids, rmd, rms, rns, rts, rds, rdt, rst, rft, rfd, rps, rpt, 
rgs, rgd, rgt, rks, rkt, rcht, mbt, mpt, mst, ndt, nds, nts, 
net, nst, nkt, nks, ngt, ngd, ngs, gst, kst, tst, fst, chts, chst. 

Clusters of four non-syllabic segments: 

mbts, ngst, ndst, rnst, chtst, rfst, lfts, ktst. 

Table 1: Restrictions on the form and length of the coda in Dutch; 
possible syllable-final consonant clusters 

Statistical Data. In order to be practical, the probability that CHYP refuses to split 
up a word must be sufficiently low. We tested the program on all polysyllabic words 
starting with a, w and z present in the 'Uit den Boogaart corpus' (1975). The choice 
of the starting letters was random. The results are summarised in Tables 2 and 3. 

Number of Number of Predicted Wrong boundary due 
Words Boundaries Boundaries to morphology 

(in d-mode) 

A 2653 6904 2298 (33 3%) 346 (5.0%) 
W 1729 3552 1235 (34 8%) 218 (6.1%) 
Z 1164 2191 742 (33 9%) 143 (6.5%) 

Total 5546 12647 4275 (33 8%) 707 (5.6%) 

Table 2: Results of applying CHYP to a corpus of polysyllabic words. 
The letters A, W and Z of the Uit Den Boogaart corpus were used as data. 
Number of boundaries, number of these found with absolute certainty by CHYP, 
and number of errors made by CHYP in d-mode are given. 

According to these data, some 34% of all syllable boundaries can be predicted 
by means of the phonotactic restrictions mentioned, and in almost 15% of poly-
syllabic words, all hyphens could be predicted. 



Number of Number of Number of words At least one At Least two 
Syllables Words Completely Boundary Boundaries 

Predicted Predicted Predicted % % % % 

1 340 6. 13 (340 100.00) 
2 1212 21. 85 513 42.33 513 42.33 
3 1752 31. 59 215 12.27 1076 61.42 215 12.27 
4 1384 24. 95 33 2.38 971 70.16 324 23.41 
5 585 10. 55 3 0.51 456 77.95 203 34.70 
6 210 3. 79 1 0.48 180 85.71 103 49.05 
7 54 0. 97 0 0.00 51 94.44 28 51.85 
8 7 0. 13 0 0.00 7 100.00 5 71.43 
9 2 0. 04 0 0.00 2 100.00 2 100.00 

Totals: 5546 765 (14.7%) 3256 (62.5%) 880 (22%) 

Table 3: Input words separated according to number of syllables. Number 
of words for each class of syllable-length, number of words of which all 
syllable boundaries were predicted, number of words of which at least one 
syllable boundary was predicted, and number of words of which at least two 
syllable boundaries were predicted. 

Of all polysyllabic words analysed, 63% obtained at least one boundary on phonotactic grounds. This may seem a prohibitively low percentage, but 72% of words 
with a length of more than two syllables obtained at least one phonotactically 
motivated hyphen, and 82% of words with a length of more than three syllables. 

It seems reasonable to expect that these results can be improved by looking for 
further phonotactic restrictions. Besides restrictions on the length and form of 
syllable-initial (onset) and syllable-final (coda) clusters, there are also restrictions on 
the combination of nucleus and coda of a syllable and on the form of the nucleus. 
E.g., the coda ng cannot occur in combination with a nucleus consisting of a long 
vowel (*eeng, *oong etc.). And a nucleus consisting of long vowel <uu> or <aa> 
cannot co-occur with an empty coda (cp. section 4.1.1). Using this information, the 
syllable boundary in a word like maatregel (measure) can be predicted with certainty, 
because maa-tregel is excluded. Restrictions like these, which can be found with the 
help of statistical studies of the spelling syllable and phonological syllable, could be 
added to the hyphenation system. 

One important problem which confronts anyone trying to collect a set of restric-
tions is the dilemma between completeness and efficiency. In order to have a system 
which makes no mistakes, it is necessary to include only those restrictions which are 
absolutely exceptionless. On one occasion, we departed from this self-imposed guide-
line, by removing z from the list of possible codas. In practice., this means that 



whenever a z is encountered in an intervocalic cluster, a hyphen can be inserted 
before it. As far as we are aware, there is only one (loan) word in Dutch which 
violates this constraint: fez. This implies that possible compounds with fez might 
induce the program to put a hyphen in the wrong place. On the other hand, if the 
restriction were removed, the overall performance of the program would decrease 
considerably. It seems difficult to determine how far one can go in sacrificing 
theoretical purity under the pressure of efficiency. It would be foolish to lose a hun-
dred in order to save one, but this utilitarianism opens the door to ad hoc rules and 
solutions. 

Evaluation. A system like CHYP, which purports to be near to infallibility, makes 
sense only when it almost never makes a mistake. Of the 4,275 syllable boundaries 
predicted by the system in c-mode, 15 were wrong (0.35%). Four errors were not 
due to the system, but to incomplete input (the omission of a hyphen or a diaeresis). 
We list them with their faulty syllabification: zeventiendee-euwse (seventeenth-
century), zielee-enheid (unity of soul), zoe-ven (a moment ago) and aw-wuitkering 
(unemployment benefit; AWW is an abbreviation). Subtracting these cases brings the 
error rate down to 0.28%. 

The system hyphenated two other abbreviations: a-ow and ak-zo. Abbreviations 
should be entered in an exception list. Another possibility is to add a global condi-
tion to the program preventing hyphenation of words less than five characters long to 
avoid this problem. The hyphenation of short words is never very aesthetic, anyway 
(see stylistic rule number 6 in section 5.2.2). 

The remaining nine errors are all foreign words (in this case English ones): 
abortuste-ams (abortion teams), Avenu-es-hop (Avenue shop), warhe-ads, Was-
hington, whiteco-ats, wors-hip, wervingste-am (recruitment team) and weduwes-hagjes 
(little widow-shag). Four of these errors are due to the omission of sh as a possible 
syllable-initial cluster in our phonotactic data. If we add this cluster, the number of 
unavoidable errors totals five (0.12%). We believe that a success rate of 99.88% can 
be called acceptable. 

The only way to prevent the remaining mistakes is to store all frequently used 
foreign words in a lexicon with their proper hyphenation, and check this lexicon 
before applying the hyphenation rules. 



5.2.3.2 Optimising the Interaction with Analysis 
Measured in processing time, morphological analysis is an expensive operation. 
Furthermore, there is a small possibility of errors due to the faulty operation of the 
word form parser or the affix analysis. The source of these errors is mostly the 
incompleteness of the lexical database used by the parser. Therefore, it would be 
useful to avoid morphological analysis in those cases where it is not absolutely neces-
sary. This would minimise the chance of transporting errors from the morphological 
part into the syllabification part of the algorithm, and reduce the total cost in process-
ing time. 

A solution would be to build a program which first tries to find a hyphenation 
on the basis of phonotactic restrictions (using CHYP), and which transfers control to 
the main syllabification program (including morphological analysis) whenever it fails. 

Unfortunately, morphological analysis can only be avoided if all syllable boun-
daries of a word can be predicted. Whenever there is a boundary which cannot be 
predicted, the whole word must be morphologically analysed. An example is 
ont#wikkel (to develop): the first boundary cannot be predicted, only the second one 
(ontwik-kel). The whole word must be morphologically analysed to know the proper 
hyphenation. Nevertheless, on the basis of the statistical test described earlier, it was 
calculated that in some 15% of poly-syllabic words, all syllable boundaries can be 
predicted by means of a simple set of phonotactic restrictions, making morphological 
analysis superfluous. This implies a considerable gain in processing time which more 
than counter-balances the overhead of using CHYP in vain in 85% of the input. 
However, a variant of CHYP should be used in that case which gives up when the 
first non-predictable syllable boundary is encountered, instead of trying them all. 

In a superficial sense, this approach resembles a second generation expert sys-
tem (Steels, 1985; Steels and Van de Velde, 1985). Phonotactic restrictions can be 
interpreted as heuristics (shallow knowledge) which can give a solution to a problem 
quickly, but are restricted in application. Syllabification rules using morphological 
analysis, dictionary lookup and phonological knowledge, constitute deep knowledge 
on which a program can fall back whenever the heuristics fail. The main difference 
with second generation expert system technology is that in this case heuristics cannot 
be derived automatically from the deep knowledge because the deep and the shallow 
knowledge are of a qualitatively different nature. We will have more to say about 
second generation expert systems in the context of Intelligent Computer Assisted 



Instruction (chapter 7). 

5.2.3.3 CHYP as an Autonomous System 
Two variants in which CHYP could be applied as an autonomous system come to 
mind: a fully-automatic aid in text-formatting, and a semi-automatic aid in interactive 
hyphenation. 

Partial Automatic Hyphenation in Justification. In applications like automatic hyphe-
nation during justification, where not every syllable boundary needs to be computed 
— a maximum of one boundary per word is needed, and not every word must be 
hyphenated —, CHYP could be used to exclude morphological analysis altogether, 
and with it the need for a large lexical database in external memory. The data in 
Table 3 seem to offer hopeful prospects that CHYP can indeed predict enough boun-
daries to have a useful effect on justification. Long words are the most likely candi-
dates for hyphenation in a text formatting environment, and of more than 70% of 
words with more than two syllables, at least one boundary can be predicted. 

To produce an optimal effect, an intelligent interaction between the partial 
hyphenation algorithm and a justification algorithm seems necessary. We have not 
worked out such an interaction yet, but to test its usefulness we used the CHYP pro-
gram in combination with the RUNOFF formatting system of Digital Equipment Cor-
poration. RUNOFF incorporates no hyphenation algorithm, but allows the user to 
specify places in a word where it can be split (soft hyphens). The justification pro-
gram uses this information. In the test, the syllable boundaries were computed by 
CHYP. Figure 3 lists a randomly chosen paragraph of Dutch text, the result of 
applying CHYP to it, and two formatted versions; the second one uses partial hyphe-
nation. 

The success of a justification algorithm can be measured by counting the number 
of spaces in the text. Ideally, the number of spaces per line should be equal to the 
number of words (or word parts, a hyphenated word consists of two word parts, 
separated over two lines) on that line minus one (disregarding typographical nuances 
like two spaces after a full stop). Consequently, a 'spacing-index' (SI) like the one 
given in formula (1), gives an estimate of the success of the justification of a para-
graph. 



(i) Input text 

Zelfs goedkope microcomputers kunnen tegenwoordig 
uitgerust worden met programmatuur die de gebruiker 
in staat stelt de spelling van teksten automatisch te 
corrigeren. In dit verslag willen we enkele gebruikelijke 
algoritmen bespreken en evalueren, en ook nagaan hoe 
taaltechnologisch onderzoek kan bijdragen tot het 
ontwikkelen en 
perfectioneren van dergelijke algoritmen. 

(ii) Output of CHYP (16 boundaries predicted, 55.6% of polysyllabic words 
received at least one syllable boundary) 

Zelfs goed=kope microcomputers kun=nen tegen=woordig 
uit=gerust worden met program=matuur die de gebruiker 
in staat stelt de spel=ling van teksten automatisch te 
cor=rigeren. In dit verslag wil=len we enkele gebruikelijke 
algorit=men bespreken en e=valu=eren, en ook nagaan hoe 
taaltechmologisch onder=zoek kan bijdragen tot het 
ontwik=kelen en 
perfecti=oneren van dergelijke algorit=men. 

(iii) Formatted text, CHYP-output not used (spacing-index = 2.07) 

Zelfs goedkope microcomputers kunnen tegenwoordig 
uitgerust worden met programmatuur die de gebruiker in 
staat stelt de spelling van teksten automatisch te 
corrigeren. In dit verslag willen we enkele 
gebruikelijke algoritmen bespreken en evalueren, en ook 
nagaan hoe taaltechnologisch onderzoek kan bijdragen tot 
het ontwikkelen en perfectioneren van dergelijke 
algoritmen. 

(iv) Formatted text using CHYP-output (spacing-index = 1.27) 

Zelfs goedkope microcomputers kunnen tegenwoordig uit-
gerust worden met programnatuur die de gebruiker in staat 
stelt de spelling van teksten automatisch te corrigeren. 
In dit verslag willen we enkele gebruikelijke algoritmen 
bespreken en evalueren, en ook nagaan hoe taaltech-
nologisch onderzoek kan bijdragen tot het ontwikkelen en 
perfectioneren van dergelijke algoritmen. 

Figure 3: A Dutch paragraph, as entered in the editor (1), with syllable 
boundaries determined by CHYP indicated (2), in a justified version with 
Digital Runoff system (3), and in a justified version using Digital Runoff in 
combination with the output of CHYP. 

(1) SI = B/(W - L) (with W > L) 
This formula expresses the ratio of the number of blanks (B) to the number of 

word parts (W) minus the number of lines (L) in a particular paragraph. The nearer 
SI approaches one, the more successful the text-formatting. When SI equals one, 
there is exactly one blank between every two consecutive word(part)s on a line in the 
paragraph. A more sophisticated measure of white space should be used to evaluate 

- 129 -



justification in systems which work with proportional character widths (variable width 
fonts). 

A randomly chosen Dutch text, with a length of 797 words (considered here one 
paragraph) was processed with and without CHYP for 25 different line-lengths 
between 20 characters and 120 characters. The results are in Table 4 and Figure 4. 

Line-length S] (no hyphenation) SI (CHYP) Gain SI (complete) Gain 

120 1. 23 1.22 0.8 1 .12 9.0 
115 1.34 1.27 5.2 1 .12 16.4 
110 1. 26 1.21 4.0 1 .12 11.1 
105 1. 41 1.21 14.2 1 .11 21.3 
100 1. 38 1.29 6.5 1 .14 17.4 
95 1. 43 1.32 7.7 1 .15 19.6 
90 1.42 1.23 13.4 1 .15 19.0 
85 1. 45 1.34 7.6 1 .17 19.3 
80 1 53 1.26 17.7 1 .16 24.2 
75 1. 51 1.38 8.6 1 .19 21.2 
70 1. 55 1.30 16.1 1 .24 20.0 
65 1 65 1.49 9.7 1.22 26.1 
60 1 67 1.49 10.8 1 .25 25.2 
55 1 59 1.53 3.8 1 .31 17.6 
50 2 01 1.54 23.4 1 .34 33.3 
45 1 94 1.69 12.9 1 .35 30.4 
40 2 08 1.72 17.3 1 .43 31.3 
35 2 28 1.91 16.2 1 .47 35.5 
33 2 42 1.88 22.3 1 .56 35.5 
31 2 59 1.96 24.3 1 .49 42.5 
30 2 59 2.13 17.8 1 .57 39.4 
29 2 75 2.14 22.2 1.61 41.5 
27 2 95 2.23 24.4 1.67 43.4 
25 3 07 2.43 20.9 1 .69 45.0 
20 4 02 3.03 24.6 2 .01 50.0 

Average Gain: 14.1 Average Gain: 27.8 

Table 4. Spacing index SI for a random text with different line-lengths, 
without hyphenation, with CHYP, and with complete hyphenation, respectively. 
The percentages represent the gain (reduction of SI) as compared to filling 
without hyphenation. 

The average gain (measured in the reduction of SI) was 14.1%. The gain with the 
complete hyphenation system incorporating morphological analysis, described in sec-
tion 5.2.2, averaged 27.8% (this constitutes the upper bound). The minimum gain 
with CHYP was 0.8% (for line-length 120) and the maximum gain 24.6% (for line-length 20). The fact that these values are the extremes of the sequence of line-lengths 
tested seems to be coincidental since high and low values for SI occur with other 
line-lengths as well. This high standard deviation shows that the success of CHYP is 
determined partly by the words which happen to be a candidate for hyphenation. 
However, there is a clear non-coincidental tendency for the reduction of SI to be 



Figure 4. Based on Table 4: path of SI without hyphenation, SI using 
CHYP and SI using complete hyphenation as a function of line-length. 

highest with small line-lengths (between 20 and 35). This is fortunate, as most news-
papers and magazines use small column widths. Next page shows some sample out-
put of the filling algorithm: without hyphenation, using CHYP and using full hyphe-
nation, respectively. 



(c-mode) 
NIL 
(write) 
Er zijn twee soorten woordenboeken: STAMMEN-
WOORDENBOEKEN en vornenwoordenboeken. In het 
eerste geval nemen we alleen de stam van een 
woord op als trefwoord. Bij een vormenwoordenboek 
representeren we alle verbogen, vervoegde en 
samengestelde vornen van een woord als een apart 
trefwoord. Als we een stammenlexicon gebruiken, 

moet het programma alle afgeleide vormen zelf KUNNEN berekenen, anders zou de detector vele COR-
RECTE woorden aanduiden als fout. We hebben GEKO-
ZEN voor een volledig vormenwoordenboek. Een voor 
de computer leesbare versie van de nieuwe Van 
Dale voor het hedendaagse Nederlands was ons UIT-
GANGSPUNT. Op dat woordenboek hebben we een 
programma losgelaten dat automatisch alle AF-
GELEIDE vormen berekent. Het resultaat was een OPGEBLAZEN Van Dale met meer dan een half miljoen 
woordvormen. Voor een taal als het Engels zou een 
vocabularium met die omvang al meer dan voldoende 
zijn om een efficiente detector te bouwen. 
Spacing index: 
1.453125 

(d-mode) 
NIL 
(write) 

Er zijn twee soorten woordenboeken: STAMMENWOORDENBOEKEN en vormenwoordenboeken. In het eerste 
geval nemen we alleen de stam van een woord op 
als trefwoord. Bij een vormenwoordenboek REPRESENTEREN we alle verbogen, vervoegde en SAMENGESTEL-
DE vormen van een woord als een apart trefwoord. 
Als we een stammenlexicon gebruiken, moet het PROGRAMMA alle afgeleide vormen zelf kunnen BEREKE-
NEN, anders zou de detector vele correcte woorden 
aanduiden als fout. We hebben gekozen voor een 
volledig vormenwoordenboek. Een voor de computer 
leesbare versie van de nieuwe Van Dale voor het 
hedendaagse Nederlands was ons uitgangspunt. Op 
dat woordenboek hebben we een programma LOSGELA-
TEN dat automatisch alle afgeleide vormen BERE-
KENT. Het resultaat was een opgeblazen Van Dale 
met meer dan een half miljoen woordvormen. Voor 
een taal als het Engels zou een vocabularium met 
die omvang al meer dan voldoende zijn om een EFFICIENTE detector te bouwen. 
Spacing index: 
1.3100775 

Lisp Listener 2 



(hyphenation nil) 
NIL 
(write) 
Er zijn twee soorten woordenboeken: 
stammenwoordenboeken en vormenwoordenboeken. In 
het eerste geval nemen we alleen de stam van een 
woord op als trefwoord. Bij een vormenwoordenboek 
representeren we alle verbogen, vervoegde en 
samengestelde vormen van een woord als een apart 
trefwoord. Als we een stammenlexicon gebruiken, 
moet het programma alle afgeleide vormen zelf 
kunnen berekenen, anders zou de detector vele 
correcte woorden aanduiden als fout. We hebben 
gekozen voor een volledig vormenwoordenboek. Een 
voor de computer leesbare versie van de nieuwe 
Van Dale voor het hedendaagse Nederlands was ons 
uitgangspunt. Op dat woordenboek hebben we een 
programma losgelaten dat automatisch alle 
afgeleide vormen berekent. Het resultaat was een 
opgeblazen Van Dale met meer dan een half miljoen 
woordvormen. Voor een taal als het Engels zou een 
vocabularium met die omvang al meer dan voldoende 
zijn om een efficiente detector te bouwen. 
Spacing index: 1.5950413 



An Interactive Hyphenation Program. The second application of CHYP which sug-
gests itself is an interactive hyphenation program. In this case CHYP is forced to 
suggest a syllable boundary even when it is not absolutely sure (d-mode is used). 
Recall that in the latter case, the most likely position (as regards the general 
syllabification rules discussed in section 4.1) is presented. A 'normal' performance 
rate of about 95% can be expected this way, with errors due to the interference of 
morphological structure (especially word boundaries in compounds and after 
prefixes). However, the strength of CHYP is that it also keeps the alternative possi-
bilities (never exceeding three) available when it suggests an 'uncertain' hyphen. A 
human operator noticing an error, simply touches one key or clicks once with his 
mouse, and CHYP presents its second best guess. Considering the facts (a) that the 
user is only confronted with a hyphenation when the justification algorithm wants a 
word split, (b) that only in some five percent of these cases an error results, (c) that 
correction of these errors involves only minimal effort, and (d) that the system is 
extremely compact in comparison to most existing systems4, CHYP seems a good 
solution to the hyphenation problem when user feedback is available. Even more so 
when a system with morphological analysis is not possible due to storage problems or 
for reasons of efficiency. 

When using CHYP as an autonomous system, its performance can be improved 
further by incorporating probabilistic data. The various hypotheses accepted by the 
Boundary Hypothesis Generator could be provided with a probability measure based 
on statistical data. These measures could be modified further using the feedback pro-
vided by the user (whenever a suggestion by CHYP turns out to be wrong, its proba-
bility drops). This facility is not yet implemented. Another modification which we 
did implement is to comform the behaviour of CHYP in d-mode completely to the 
phonological rules of section 4.1.2 (i.e. also in the case of clusters of length two). 
This way, the success-rate of the program in d-mode can be raised to about 97%, 
but not very much higher; this coincides with the success-rate attained by current 
hyphenation programs (often using large amounts of patterns or large exception dic-
tionaries). 

4 A prototype written in Franz Lisp occupies 12K internal memory on a SUN Worksta-
tion, and splits words in real time. Most existing systems contain large exception dictionaries 
which occupy a lot of memory. 



5.2.4 Other Approaches to Dutch Hyphenation 
In what follows two traditional approaches to Dutch hyphenation, one based on list 
processing (Brandt Corstius), the other on pattern matching (Boot), will be discussed. 
We will show that Boot's approach, though it may have practical results, is not 
valid in principle. Brandt Corstius' approach on the other hand, is valid in principle, 
but invalid in elaboration. Both approaches are inferior to the ones presented earlier 
in this chapter (sections 5.2.2 and 5.2.3). 

5.2.4.1 Brandt Corstius 
The approach taken by Brandt Corstius (1970) in his SYLSPLIT system is compar-
able to the hyphenation strategy in section 5.2.2 because it includes a primitive5 form 
of affix-stripping (without dictionary). In SYLSPLIT, however, morphological 
analysis as a concept is absent, and is in practice limited to prefixes and suffixes. 
Furthermore, affixes are taken in a broad, non-linguistic sense; lexical morphemes 
like hoofd (head), land (country), and groot (great) are analysed as affixes. Suffix 
analysis precedes the syllabification rules, prefix analysis is intertwined with them. 
Due to this mixing of levels, a number of ad hoc rules is necessary to boost the per-
formance of the program. E.g., since der is a prefix, and prefix-analysis is 
intertwined with the syllabification rules, studeren (to study) is split incorrectly as 
stu-der-en. To prevent this, ren was entered in the list of suffixes although it is 
clearly not a suffix. 

The fact that there is no analysis of compounds generates other ad hoc rules and 
exceptions. E.g.: 'When s follows ng, it belongs to the same syllable'. This strange 
rule was entered to prevent the wrong syllable split of words like regeringsonderhandelingen (government negotiations). It generates new errors in words like 
lang-ste (longest). 

It is clear that in practical use, a growing number of ad hoc rules, exceptions 
and nonce-affixes will make the program opaque and its results unpredictable. A pro-
gram based on this approach will never be able to hyphenate unrestricted text with a 
performance of more than about 97% (data by Brandt Corstius), and will need con-
tinuous (manual) updating of exception lists. It is basically a list-processing ap-proach, 

5 Proper affix-analysis is impossible without a dictionary (cf. 3.2.). 



and all that can be done is adding elements to the lists and changing the ord-
er in which the program makes use of them. Fundamental improvements are impos-
sible within such a framework. 

Our own program, although following roughly the same philosophy, is much 
more surveyable. By separating morphological analysis from syllabification, a modu-
lar architecture is obtained. By following an 'only-if-needed' strategy in the interac-
tion between morphological analysis and syllabification, the intrusion of errors in the 
syllabification algorithm due to morphological analysis is minimised, and the output 
of the program is largely predictable. No ad hoc rules are necessary. Moreover, 
the distinction between cohesive and possible clusters, absent as a concept in SYL-SPLIT, proves to be effective. 

5.2.4.2 Boot 
The approach taken by Brandt Corstius has been termed 'first-generation' by Martin 
Boot (1984), and has been severely criticised by him (he describes it as a 'bite off 
and gamble' algorithm). However, most objections he raises against this approach 
(unpredictable results, ad hoc rules and affix lists) are no longer applicable to our 
variant. Indeed, we believe that our system compares favourably to the alternative 
HUPHE system he describes as being 'second generation'. 

Boot argues that people do not consult an internal dictionary to divide words 
into syllables. They would have certain expectancies instead, on the basis of which 
letter and sound patterns are recognised. For instance, in splitting up ontheologisch 
(untheological), people do not recognise the existence in their mental dictionary of the 
prefix on- (meaning not) and the word form theologisch, they rather know that no 
word in Dutch can start with the pattern heol. Accordingly, the HUPHE system uses 
no dictionary and consequently no morphological analysis is present. 

'Morphology as a descriptive system offers no reliable basis for computer 
programs for hyphenation (Boot, 1984:24) [my translation, WD].' 
We hope to have made clear in section 4.1. that this statement is plainly false; 

morphology as a descriptive system makes a crucial difference between morpheme 
and word boundaries. Boot only considers the 'innocent' type (the morpheme boun-
dary, as in lop+en, to run), which never overrules syllabification rules, and is there-
fore indeed unimportant for syllabification. 



HUPHE consists of a pattern recognition system, and a set of some 1300 pat-
terns, from which syllable boundaries can be derived. In a sense, each pattern defines 
a syllable boundary. E.g. the pattern (* (4TSN) (123 - 4) *) defines the syllable 
boundary in words containing ...ietsn..., such as nietsnut (good-for-nothing). The 
character '4' stands for the spelling string ie. The string 123-4 signifies that a hyphen 
is to be inserted between the third and the fourth character of the pattern. Maximum 
length of a pattern is six letters6 (the difference with a dictionary entry becomes 
vague here). The order in which the system searches for these patterns is sometimes 
important, too (namely for the vowel patterns). The pattern inventory was obtained 
by trial and error and seems to need continuous updating and modification, on the 
basis of test results. This is hardly surprising. Apart from the phonotactic constraints 
on onset and coda discussed earlier, and other, phonologically motivated restrictions, 
any syllable boundary predicting pattern is ad hoc and necessarily provisional. 

This is due to the fact that in Dutch the number of potential words is infinite in 
principle. The parts of a compound are concatenated in spelling. Compare Dutch 
computerprogramma to English computer program. In the latter language, the parts 
of a compound are separated by a space or by a hyphen. It follows that in Dutch any 
combination of a possible syllable-final cluster and a possible syllable-initial cluster is 
allowed, and may at any time be realised. An example (borrowed from Boot) will 
clarify this point. Take a word like klimop (ivy). In our system, this word is 
analysed by the parser (klim#op), the word boundary is replaced by a syllable boun-
dary, and a correct hyphenation is returned. In the HUPHE system, this word was 
split up wrongly (kli-mop), and consequently, a new minimal pattern was looked for. 
First -op was considered, but this would cause another error in words like katjesdr-
op (licorice). The second hypothetical minimal pattern was m-op generating errors in 
compounds with mop (joke). Next pattern was im-o, but this was impossible because 
of lim-onade (lemonade). Finally, Boot decided to use im-op as a minimal pattern. 
However, we had no difficulty in immediately finding a compound that would be hy-
phenated wrongly by this pattern: Eskim-opaar (Eskimo couple). A better minimal 
pattern might be klim-o, but again we found a counter-example in aanmaaklim-onade 
(syrup). After discarding lim-op as a pattern because of li-mop (joke about the 
Chinese linear measure li), only one solution was left: store the whole word as a 

6 It is not clear whether the term 'letters' refers to spelling symbols or to elements of a 
phoneme-like alphabet (e.g. 4 = ie), in which case patterns may actually be much longer 
than six spelling characters. 



minimal pattern! This is clearly not what Boot wanted. 
Only the phonotactic constraints described earlier can be trusted to be applicable 

to the whole of the Dutch vocabulary, because they are phonologically motivated. 
Any other restriction (be it in the form of a minimal pattern or in any other form) is 
ad hoc and has only limited usefulness. 

Systems like HUPHE can be efficient as hyphenation programs for a subset of Dutch, but not for the whole potential vocabulary; a simple theoretical investigation of intervocalic consonant clusters makes this clear. Some 2,6 * 10 9 different clusters are theoretically possible between two vocalic segments (22 1+ 22 2+ ... + 22 7). 

The general formula to calculate this number is En i =1 Ki, where K is the number of consonant phonemes and n the maximum number of consonant phonemes between two vowels (or, maximal onset length plus maximal coda length) in a language. 

Using an inventory of possible syllable coda and onset structures, the number of 
phonologically possible sequences of consonants which can occur between two sylla-
bic segments can be calculated (the number is 7841, or 0.0003% of what was 
theoretically possible)7. 

Not all these clusters are realised in any given corpus, but they are possible in 
principle, and may at any time be realised, notably in new compounds. In almost 
90% of these clusters, the syllable boundary can be predicted without morphological 
analysis. Unfortunately (but logically), the number of predictable boundaries is smal-
lest with those clusters occurring most frequently, i.e. those consisting of one or two 
non-syllabic segments. The shorter the cluster, the less predictable the syllable boun-
dary. This contradicts Boot's (1984:20) statement: 

'the more consonants between vowels, the higher the probability of errors in hyphenation' [my translation, WD]). 

Quite the contrary is true: the longer the intervocalic consonant cluster, the 
easier it is to find a unique syllable boundary. 

Table 5 and Figure 5 give some information about possible inter-vowel con-
sonant clusters. Distribution and predictability percentage for clusters from length one 

7 This number was calculated by combining all possible onsets with all possible codas 
(based on our statistical study of the spelling syllable in section 5.2.3.1 and Chapter 4). 



to seven are given in Table 5. Figure 5 pictures the relation between predictability 
and frequency. The data for frequency were obtained by analysing the intervocalic 
consonant clusters of 17,907 word forms from the top ten thousand dictionary of fre-
quent Dutch word forms. The number of cluster types was 486 (6.2% of what is 
phonologically possible), and the number of cluster tokens 35,414. 

Cluster Length Number % Number with a % 
Predictable Boundary 

1 22 0.28 5 22.72 
2 355 4.53 271 76.34 
3 1529 19.50 1255 82.08 
4 2860 36.47 2481 86.75 
5 2355 30.03 2191 93.08 
6 664 8.47 656 98.80 
7 56 0.71 56 100.00 

Table 5. For each cluster length, number of phonologically possible 
clusters is given, and the number and percentage of those the boundary of 
which can be unambiguously predicted. 

For other languages, with a different compounding mechanism (like English), 
the situation may be different. The pattern matching approach of Boot is probably 
based on the work of Frank M. Liang at the university of Stanford in the late 
seventies (quoted by Knuth, 1979). Liang developed a program which computes a 
table on the basis of a dictionary of hyphenated words. Since the hyphens can be 
reconstructed from the table by means of a pattern matching algorithm, it suffices to 
store the table. The main difference with Boot's approach seems to be that in the 
latter patterms have to be introduced by hand. 

The patterns thus collected seem to work for words which are not present in the 
dictionary as well, although an exception dictionary is needed. The system was incor-
porated in the TEX type-setting program (Knuth, 1979). Knuth claims that the same 
program can be adapted for other languages by computing new patterns. We have 
shown that this is not true, because complete dictionaries of Dutch are impossible to 
construct (this argument applies to all languages which spell compounds as single 
words, e.g. German, Swedish, Norwegian, Danish and many others, but not to En-
glish and French). 



Figure 5 

5.2.5 Some Residual Problems 
(i) There is an element of unpredictability in the morphological analysis preceding 

syllabification. This was fully discussed in section 3.2. When morphological 
analysis is not used (as in CHYP), this source of errors disappears. When it is 
used only if necessary (as in the program incorporating morphological analysis), 
its disturbing effect is minimal. 

(ii) Ambiguity cannot be resolved without semantic information. E.g.: kwartslagen 
(quarter turns) versus kwarts-lagen (quartz layers), ui-tje (little onion) versus 
uit-je (outing), and alm-achtig (like a mountain meadow) versus al-machtig (all-mighty). This ambiguity is detected during morphological analysis. Two or 



more parallel representations are kept by the system, but at the point when 
syllabification rules must apply, one possibility must be chosen. In the present 
system, this choice is made randomly. When integrated in an interactive text ed-
itor, e.g. an Author Environment, the program could ask the user for advice. 
Another possibility in some applications is to refuse hyphenation in cases of am-
biguity. In any case, the number of instances of this kind of ambiguity is not 
very disturbing, examples are difficult to find. 

(iii) When abbreviations contain vowel clusters without full stops, they are hyphenat-
ed according to the default rules. E.g., aow is hyphenated a-ow. 

(iv) The most vexing problem left is the hyphenation of foreign words, which are 
numerous in Dutch scientific and newspaper language. They could be stored in 
the lexicon with a complete syllabification, or a hyphenation program for the 
language in question could be activated. If no lexicon is used, there is no way 
they can be detected, and the regular Dutch morphological and syllabification 
rules apply. 

5.3 Conclusion 
Author Environments promise to be tools of considerable usefulness to both writers 
and editors. A morpho-phonological module such as the one described in Part II will 
be an indispensable component of the linguistic knowledge and procedures incorporat-
ed in the AE. As regards automatic hyphenation, three main points were made in this 
chapter: 
(i) Partial morphological analysis is necessary for correct syllabification of the com-

plete potential vocabulary of Dutch (all existing and possible simplex and com-
plex words). More precisely, those morphological boundaries which overrule 
syllabification rules must be recognised by morphological analysis and replaced 
by syllable boundaries, before these syllabification rules apply. This is what the 
system described in section 4.1, and taken up again in section 5.2.2, is capable 
of doing. If morphological analysis is not included, a gambling element is in-
troduced into the algorithm (with a five percent chance of losing for each com-
puted syllable boundary). 

(ii) Phonotactic restrictions can make morphological analysis superfluous in some 
cases. On this phenomenon CHYP is based, an algorithm which only hyphenates 
when it is absolutely sure (exception made for foreign words, ambiguous words 
and abbreviations). In combination with a justification algorithm this extremely 



simple algorithm improves the formatting capacities of text editors considerably. 
(iii) The methodological point, implicit in this approach to hyphenation, is that 

linguistic knowledge (in the form of a lexicon and a morphological parser) is 
necessary to attain reasonable results, but that phonotactic information, collected 
through statistical analysis, may help to make an implementation more efficient, 
or may even suffice for restricted applications like the improvement of format-
ting systems, or hyphenation of restricted corpora. Furthermore, algorithms 
which are reasonable for one language, are not always reasonable for another. 
The pattern matching approach to hyphenation, for instance, is possible for En-
glish but not for Dutch. 



CHAPTER 6 

Automatic Detection and Correction 
of Errors 

6.1 Background8 

A poet can survive everything but a misprint. 
Oscar Wilde 

An important function of the Author Environment (section 5.1) is to detect and 
correct errors, which are defined here loosely as unintentional deviations from some 
convention. Different categories of errors can be distinguished; they are listed in 
Table 1. The Author Environment outlined in 5.1. can be equipped with programs 
which are able to detect and correct some of these errors automatically. These pro-
grams will be based on the linguistic algorithms described in Chapter 3. 

There are two basic strategies possible in the development of a correction algo-
rithm:9 a knowledge-based and a statistical one. A statistical approach uses various 
quantitative techniques to correct errors; these may include frequency tables, trigram 

8 This section is based on Daelemans, 1984; Daelemans, Bakker and Schotel, 1984 and 
Daelemans, 1985. 

9 From now on we use the term correction to refer to both detection (verification) and 
subsequent correction of errors. These terms should not be interpreted in their psychology-of-writing sense. E.g. Bartlett (1982) distinguishes between detection ('there is something 
wrong here') identification (x is wrong because of y) and correction ('x should be z'). In a 
computer program the concept of identification is meaningless (if it is detected we know why, 
otherwise it would not have been detected). Similarly, the traditional distinction between 
correction (changing an evident error) and revision (changing something that was not neces-
sarily wrong in order to improve it) is vacuous in this context. 



Non-human 
Data-transmission (Modem, telephone-line noise) 
Data-input (OCR, speech input) 

Human 
(Due to ignorance or carelessness) 

Orthographical 
spelling (mostly systematic) 
typing (mostly unsystematic) 
hyphenation (solved by preventing the author to 

do it himself, see 4.1.1) 
punctuation 
lack of consistency in choice of spelling system 

(Dutch enjoys the luxury of several spelling 
systems) 

Morphological 
word-formation (e.g. transition grapheme in compounds, 

misderivations) 
Syntactic 

sentence construction 
(e.g. subject-verb agreement) 

Discourse 
paragraph and text construction, 
logical and semantic 
pragmatic (e.g. mixing of polite and familiar) 

Stylistic 
word, sentence, paragraph length 
choice of sentence constructions 

(e.g. passive versus active) 
vocabulary (e.g. abstract versus concrete) 
repetition 

Table 1. A Typology of Word-processing Errors (not intended to be 
exhaustive or definitive) 

tables, exhaustive dictionary lookup, etc. Such programs do not have any real linguis-
tic knowledge but, owing to various programming 'tricks' like hashing, dictionary 
compression, hardware filters etc., they are reasonably efficient in accuracy and 
speed. Their application, however, is largely restricted to the correction of typing 
errors. This is the strategy used in almost all commercially available spelling check-
ers. In these systems, most effort is put in achieving an optimal compromise between 
accuracy, size of lexicon, processing time and storage prerequisites. 

In a knowledge-based strategy it would be claimed that a program can only be 
sure about a mistake and how it is to be corrected if it understands the text. There-
fore, explicit linguistic knowledge, including semantic and pragmatic knowledge, 
should be integrated into it. Indeed, even the division of words into syllables and of 
compounds into words cannot be completely automated without semantic knowledge 
(E.g. compare valk#uil (a kind of owl) to val#kuil (pitfall). To detect ambiguity and 
reasoning errors, the computer should even contain enough extra-linguistic (world) 
knowledge to have at least a vague notion of the intentions and world view of the au-thor, 



and of the topic of the text. In short, a correction program would have to be a 
kind of expert system, integrating linguistic, world and domain knowledge. Such pro-
grams have not been developed yet, nor is it likely that they will be in the near fu-
ture. 

Again, as with the hyphenation problem, our approach will be knowledge-based 
(linguistic) in principle, with statistical methods to boost performance. We will res-
trict our attention to word-level correction (spelling and typing errors). Perhaps the 
most important distinction to be made among word-level errors is that between spel-
ling errors (deviations from orthography due to the temporal ignorance of the writer) 
and typing errors (due to erroneous keystrokes by the writer). Although they share 
some characteristics (both types can be detected by a single algorithm), they are 
different in important respects (they cannot always be corrected by the same type of 
algorithm). We will come back to this distinction later. 

The basic model to correct word level errors is a two-stage model. It consists 
of a detection module which takes a text as input and indicates the possible errors. A 
correction module then accepts these flagged words as input, and suggests one or 
more corrections. We will deal with these steps in turn. 

6.2 Detection 
The traditional algorithm for spelling error detection at the word level is simple. 
Every string of letters, separated by delimiter symbols ( , . ; : ? ! <space>) is inter-
preted by the program as a possible word form. If such a possible word form can be 
found in a dictionary (a list of words) it is correct, if not it is a misspelling. Two 
major shortcomings are inherent to this approach: 
[i] The problem of undershoot (failure to detect errors). A spelling error present in 

the word list is not detected. This is the case whenever a formally acceptable 
word violates semantic or syntactic restrictions, i.e., when the context deter-
mines whether a possible word is correct or wrong. For example in the phrase I 
was reading the nail (a semantic error), nail is not interpreted as an error be-
cause it is a valid English word. Similarly, with the phrase I goes (a syntactic 
error), the system again fails to detect the mistake, because there is nothing for-
mally wrong with goes. The problem of undershoot cannot be overcome by 
word-level algorithms. A simple surface syntactic parsing would suffice to cope 
with morphological and syntactic errors but the system would have to be imbued 



with world knowledge to make the detection of semantic errors possible. 
[ii] The problem of overkill (flagging correct words as errors). Nothing is more ir-

ritating than a program which makes a habit of rejecting correctly spelled 
words. This problem occurs whenever a correct word is not present in the word 
list. At first sight, it would seem that, given enough memory facilities, this 
problem can simply be solved by storing enough words and keeping track of 
new words. Actually, this is what is done in most English versions of spelling 
checkers. But as we noted in Chapter 5, languages like Dutch and German al-
low for a virtually unrestricted concatenation of words into compounds which 
are spelled as single words (without spaces or hyphen), e.g. spelfoutendetectieprogramma (spelling error detection program). Such tapeworms which are 
generated freely and in large quantity in any style of text, cannot be fully 
represented in the word list of the spelling checker, and the formation of new 
ones cannot be predicted. In English, the parts of a compound are usually 
separated by a space or a hyphen. In French, compounds are avoided by using 
prepositional noun phrases. E.g. compare English spelling error and French 
faute d'ortographe to Dutch spelfout. 

This example makes clear that natural language software must be redesigned for 
each language independently, even at this level. Spelling checkers for English 
are not readily transportable to other languages. A detection algorithm for 
Dutch should therefore combine the basic dictionary lookup strategy with a 
means of reducing compounds to their parts. To this end, the program must be 
extended with linguistic knowledge, namely knowledge about the rules which 
describe how new words can be formed from existing words (morphological 
knowledge). In section 6.2.1, we will describe a program which incorporates 
this knowledge by means of the word form parser and the lexicon of Chapter 3. 

There is a problematic relation between undershoot and overkill: the problem of 
overkill can be diminished by making the dictionary larger, but a larger dictionary 
necessarily increases the probability of undershoot. Peterson (1986) has calculated 
that the probability of undershoot in systems with long word lists may approach one 
typing error out of six. Small topic-specific word lists could minimalise the oc-
currence of undetected typing errors. 



6.2.1 DSPELL: Verification with an Unlimited Vocabulary 
DSPELL was written in Franz Lisp and runs on VAX 11/780 and SUN workstations. 
It can be used with UNIX formatting systems such as Runoff, Nroff and Troff, and 
is integrated into a screen editor (EMACS). 

The system can be regarded as the detection module in a two-stage correction 
system: it finds spelling errors in Dutch text, and outputs them to another module 
which suggests corrections. We implemented only the detection module. The detec-
tion algorithm consists of three parts: reading, detecting and displaying. In the read-
ing phase, the input text is transformed into lists of 'possible word forms'. This in-
volves using punctuation and other information to isolate word forms. Furthermore, 
special symbols (e.g., formatting codes) and numbers must be omitted as it makes no 
sense to check them for errors. In the detection phase, it is decided for each isolated 
possible word form whether it is correct or incorrect. This is done by looking it up 
in a system of dictionaries. If a word form is not found in these dictionaries, mor-
phological analysis is attempted: the system tries to break down compounds into their 
parts. If this fails as well, the word form is considered to be an error. In the 
display phase, the results of the detection are presented to the user or to an artificial 
correction module. We will go into the different phases in somewhat more detail. 

In the reading stage, the input file is read line by line. Each line is represented 
internally as a list of atoms. 1 0 The main problem in this conversion is the interpreta-
tion of special symbols. Either they are transformed into a space, e.g. auto-ongeluk 
(car accident) is interpreted as two words (auto ongeluk), or they disappear: 
*&woord\& C, & and \ are text formatting codes of the Runoff formatting system) 
becomes (woord). The fact that the hyphen '-' is transformed into a space implies 
that the two parts of a hyphenated word are interpreted by the system as two separate 
words. This often leads to errors. The problem is due to the ambiguous meaning of 
the hyphen in Dutch spelling (it indicates both hyphenation and compounding). As 
the Author Environment is equipped with a program that hyphenates automatically 
(section 5.2), the problem should not be too acute. For representing soft hyphens,1 1 

another symbol than the hyphen should be chosen. The correct interpretation of for-
matting codes boils down to the incorporation of a formatting command parser in the 

1 0 Atoms and lists are the primitive data-types of the programming language Lisp. 
1 1 Hyphens provided by the user to help the formatting system. 



part of the program doing the reading. E.g. in Troff-like formatters, lines beginning 
with a dot are simply omitted, and the program knows which escape sequences (com-
mands) are possible within words in order to remove them. 

The detection phase combines dictionary lookup with morphological analysis as 
described in section 3.2. A short overview will refresh the reader's memory: 

Morphological Analysis consists of: 
i. Segmentation (find all possible morpheme distributions), 

which implies a number of dictionary lookups, 
ii. Parsing (keep those distributions that are permitted by the 

morphological grammar or signal an error if no analysis is found). 
Morphological analysis makes the vocabulary of the detection system virtually unlim-
ited and solves the problem of 'compound overkill'. 

It is impossible to store all scientific terms of all disciplines, and all proper 
names in the dictionary. Besides, this would unnecessarily increase the probability of 
undershoot, as was pointed out earlier. To overcome the problem of the system flag-
ging these words as errors, an initially empty dictionary is available where the user 
can easily enter these and other words not present in the main dictionary. The 
efficiency of the whole detection procedure is determined largely by the presence and 
completeness of this lexicon, especially for detecting errors in scientific text. The 
user lexicon of DSPELL contains most commonly used abbreviations and a virtually 
complete list of linguistic terminology. It can be extended unrestrictedly. It suffices 
to enter the citation form and exceptional derived forms. The system then computes 
the other (regular) derived forms, asks the user whether they are correct, and if so 
adds them to the user dictionary (see section 3.1). Forms can be removed from this 
dictionary as well. The user defined lexicon is checked before the main dictionary. 
It is even possible in principle to have a 'library' of user dictionaries, one for each 
discipline or domain of discourse. The user could then make a selection of these be-
fore starting the detection procedure. (Cf. Peterson, 1980a and 1980b). 

In most texts, every word token has an almost 50 percent chance of being re-
peated at some place later in the text. Many detection algorithms therefore store 
words already processed in a separate dictionary which is checked before the others. 
In DSPELL, the same effect is obtained with Lisp property lists: each analysed word 
type gets a property 'already analysed' the value of which is + (correct the last 
time), - (flagged as an error last time), or NIL (not yet analysed). This property is 



checked before any lookup operation is performed, and if the word was already 
analysed, the same result is returned as was computed the first time. Of course, this 
is possible only in a context-free algorithm. We did not provide a separate diction-
ary with the 500 most frequent words 1 2 of Dutch for storage in internal memory (to 
improve efficiency). The main lexical database used, though in external memory, can 
be accessed fast enough for on-line verification. 

During the display stage, in the absence of a correction procedure, the system 
returns a list of hypothetical errors. The flagged words are indicated from within a 
text editor (EMACS in this case), and the user can choose between four operations 
for each element of the error list: 
[i] Replace this particular occurrence of the word with a correction suggested by 

the user (the word was wrong in this context). 
[ii] Replace this word globally (throughout the text) by a correction suggested by the 

user (the word is wrong in any context). 
[iii] Do not change the word, and do not add it to the user-defined lexicon (the word 

is normally wrong, but not in this context). 
[iv] Do not change the word, and add it with all its derived forms to the user-

defined lexicon (the word is correct in any context). 
Notice that in options [i] and [ii], an iterative verification of the input by the 

user is necessary. 
We have implemented some further features to make life easier for users of the 

system. These include a symbol which can be inserted in the source text. It notifies 
the system that the word form following it is correct and should not be looked up but 
added to the user-defined lexicon with all its derived forms. This symbol can be used 
in front of words which the user suspects to be missing from the dictionary system 
but are nevertheless correct. Another symbol makes DSPELL skip a specified 
number of lines. This way DSPELL can be forced to jump over non-Dutch text frag-
ments, bibliographies, program fragments, etc. Finally, with eacn run of the pro-
gram, some statistical information about the source text is provided: number of 
words, the most frequent content words (a primitive index), number of presumed er-rors, 

1 2 Some 500 words would cover 60% of word occurrences in English text, and 16,000 
words 95% (Data by Greanias, 1984). He does not specify whether 'words' refers to word 
forms or to paradigms. 



number of words found in each dictionary, type-token ratio, number of words 
morphologically analysed, etc. Some of this information can be used in the computa-
tion of readability scores. 

Figure 1 shows the flow of control in the detection part of the algorithm. 

Figure 1. Flow of control in the detection part of the algorithm. 

6.2.2 Evaluation of the Program 
A reasonable performance evaluation of spelling checkers would have to take 

into account processing speed and an error percentage such as (1). 



(1) (O + U)/2 where O= o/c and U= u/e 
Here, c is the number of correct word types 1 3 in the text., o the overkill (false 
alarms: number of word types incorrectly indicated as an error), e the real number 
of errors in the text, and u the undershoot (missed hits: number of errors not found). 
Our formula regards undershoot as worse than overkill, because U (which relates the 
number of undershoot errors to the total number of spelling errors) increases much 
faster than O (which relates the number of overkill errors to the number of word 
types in the text). This can be explained by the fact that there are more word types 
than errors in a text. Therefore, one spelling error missed weighs heavier than one 
correct word flagged. This was done intentionally as it reflects our opinion about the 
relative importance of both types of errors. Ignoring an incorrectly flagged word is 
easier than finding a missed error. The two error rates O and U can also be evaluat-
ed independently. 

Most published accounts of evaluation measures for spelling checkers tend to ig-
nore overkill errors, or they work with word tokens instead of types, or measure un-
dershoot in relation to the number of words in the text instead of the number of er-
rors actually made. Furthermore, accounts of time may refer to both real time and 
processing time. Both depend on the type of processor which is used to run the pro-
gram. All these facts make it difficult to compare different systems1 4. 

In the absence of comparable quantitative information, we refrained from testing 
the performance of DSPELL by computing the error percentage described above on 
sample texts. However, we did test the reduction of overshoot obtained by the incor-
poration of a morphological parser in our algorithm. DSPELL was applied to a ran-
domly chosen text containing 942 word tokens (399 types). Without morphological 
analysis the overshoot ratio (percentage of word types incorrectly indicated as an er-
ror) equaled 12%. With morphological analysis included, this error percentage was 
drastically reduced to only 2% (which is a far more acceptable ratio). Forty correct 
words which would have been flagged by a normal checker were accepted without 

1 3 We use types here instead of tokens because it is easy to introduce a facility to prevent 
the user from being confronted more than once with a correct word which is flagged. See the 
program description above. 

1 4 It would be interesting to make a 'benchmark' comparison of different spelling checkers 
(implemented in the same computer language, running on the same machine) for Dutch. To 
our knowledge, no commercially available spelling checkers developed especially for Dutch 
exist yet, but various firms (a.o. Wang, OCE and IBM) seem to be working on it. 



problem by DSPELL. 
We will conclude this section on error detection with a qualitative comparison of 

our approach to other systems. We will discuss two alternative approaches: trigram 
analysis and pattern recognition. 

The philosophy behind trigram analysis is that a text or a set of texts can be 
characterised by the letter strings which occur in them (Chudacek, 1983; Chudacek 
and Benschop, 1981; De Heer, 1982). New texts in the set, or new words in the 
text, should comform to this characterisation. Considering an alphabet of 27 charac-
ters (26 letters and a blank), 19,683 trigrams (letter strings of length three) 1 5 are 
possible. In Dutch, only 10 to 20 percent of these are possible in principle. If we 
store a table of these trigrams in memory (possibly with their frequency), we can 
proceed as follows. We analyse each word of the input text into trigrams (its 'syn-
tactic trace'). E.g. error becomes {er err rro ror or} f stands for a blank here). 
Whenever a trigram is found which is not in the table or the probability of which 
does not reach an empirically determined threshold, the word is probably an error. 
This approach was used in the SPEEDCOP project of Chemical Abstracts Service 
(Zamora, Pollock and Zamora, 1981; Zamora, 1980). For several chemical data-
bases, a characterising set of trigrams was computed, and used in error detection. 
There are two important drawbacks to this method: for each corpus a new set of tri-
grams should be computed, and the results were poor, with value pairs for U and O 
between 95/32 percent and 32/95.5 percent, depending on the setting of a trigram 
frequency threshold. Our own experiments point in the same direction: discrimina-
tion between correct and false words is not possible with trigram analysis alone 1 6; a 
trigram table sufficiently large to deal with the problem of overkill cannot handle un-
dershoot satisfactorily, and vice versa. Nevertheless, trigram analysis combined with 
a dictionary lookup approach can boost the performance of the program by restricting 
the number of dictionary lookups needed. 

1 5 There is no theoretical reason to prefer trigrams to digrams or n-grams of an order 
higher than three. The choice is based on practical considerations (available memory, search 
speed) and empirical comparisons, which made clear that digram sets are not characteristic 
enough (Chudacek and Benschop, 1981) and that, with higher order n-grams, the difference 
between n-gram analysis and dictionary lookup fades. The latter has been described as n-
gram analysis with variable n (Zamora, Pollock and Zamora, 1981). 

1 6 Notice that at this point, we are saying nothing about the usability of a trigram ap-
proach for the suggestion of corrections for errors. 



Boot's pattern recognition approach to hyphenation (discussed in section 5.2) has 
also been suggested as useful for spelling error detection (Boot, 1984). This strategy 
consists of checking the well-formedness of word-initial and word-final consonant 
clusters. Boot sees no solution for word-internal consonant clusters. Obviously, com-
pound analysis is necessary to solve this problem. As the word form parser 
described in Chapter 3 and used in the detection program makes use of morpheme 
structure conditions, and as word-internal clusters are checked in the process of mor-
phological analysis, the DSPELL program described earlier is clearly superior to the 
suggestion by Boot. In essence, morpheme structure conditions are a subset of Mar-
kov transitional probabilities (namely, transitions with either 1 or 0 probability). Mar-
kov chains have also been applied to error correction (Srihari, Hull and Choudhari, 
1983) but have proved to be insufficient if not combined with dictionary lookup. 

6.3 Correction 
The remainder of this chapter is of a more theoretical nature. We have not imple-
mented a complete correction algorithm, but we implemented parts of both similarity 
measures and error transformations in order to be able to support our theoretical ex-
position. 

Whenever a string of characters is flagged as an error, an artificial corrector 
should be able to suggest corrections for it. Two strategies are traditionally used: 
[i] Generate, by means of a set of transformations on the alleged error, all possible 

words which may have been intended by the author (an error grammar ap-
proach, e.g. Yannakoudakis and Fawthrop, 1983a and 1983b; Peterson, 1980a 
and 1980b). 

[ii] Compare the alleged error to each dictionary entry, using a similarity measure. 
The dictionary items most similar to the error are possible corrections (a simi-
larity measure approach, e.g. Angell, Freund and Willett, 1983). 
We will discuss traditional approaches of both types, and a new one based on 

phonemisation which can be adapted to belong to either type. Furthermore, a heuris-
tic solution is provided for the problem of spelling errors within compounds which 
are not listed in the dictionary. Some expected hardware developments which may 
make fast on-line correction a nearby possibility are cited; and finally, we take up the 
problem of performance evaluation again. 



6.3.1 The Error Grammar Model 
In a classic study, Damerau (1964) argued that some 80 percent 1 7 of all word level 
errors belongs to one of the following formal categories: 
[i] Deletion (one letter missing: camoufage) 
[ii] Insertion (one letter too much: camoufflage) 
[iii] Substitution (one letter wrong: camouflahe) 
[iv] Transposition (two adjacent letters transposed: camoulfage) 

Complex errors (combinations of the four categories mentioned) would account 
for the other 20 percent. The error grammar approach in its simplest form would be 
to generate all substitutions, insertions, deletions and transpositions of a suspected er-
ror, and look them up in the dictionary18. Figure 2 gives an example: appel (apple) 
is misspelled apel 

Input Generated Forms Forms Found In Lexicon 

apel pael, aepl, aple 
pel, ael, apl, ape pel 
?apel, a?pel, ap?el, ape?l, papel, kapel, lapel, 
apel? appel, ampel, aprel 
?pel, a?el, ap?l, ape? abel, adel, agel, avel, 

awel, apex 

Figure 2: Error Grammar Approach to the correction of apel. 

In the example, a question mark stands for any letter in the alphabet. All forms gen-
erated (241 in this case) were looked up in a dictionary (a computer version of the 
Van Dale dictionary; Kruyskamp, 1982). The number of generated forms (which 
means the number of lookups necessary) can be calculated with formula (2), 

(2) k(2n + 1) + 2n -1 

1 7 Ninety to 95 percent in other sources (Greanias, 1984). 
1 8 Note that in a system with unlimited resources, this technique can, theoretically, be re-

versed to prevent undershoot: if all transpositions, substitutions, and deletions of all words in 
the dictionary were stored, we could immediately check from which correct words another 
formally correct word might be a misspelling. Only when this is not the case, we can be re-
latively sure that the word is correct. A dictionary expanded this way would contain some 
100 million entries (probably a fraction of this amount if morpheme structure conditions are 
taken into account). 



where k is the number of letters in the alphabet and n the length of the word in 
letters. The long list of suggested corrections (generated forms present in the diction-
ary) confronts us with an important shortcoming of this method: such a high amount 
of possible corrections is a burden rather than a relief to the user of the system. 
Especially with short words and large lexical databases19, the problem is acute. 
Another drawback is the processing speed (or rather the lack of it). In short, the er-
ror grammar approach is terribly inefficient20. It seems clear that we need ways of 
(a) constraining the number of 'hypotheses' generated by the error grammar, and (b) 
restricting the number of hypotheses accepted after dictionary lookup. To accomplish 
(a), we could begin with refining the rules of the error grammar. It would be natur-
al to start looking for some 'systematicity in failure'. We will list here some empiri-
cal data about typing and spelling errors (Shaffer and Hardwick, 1969; Yannakoudakis and Fawthrop, 1983a; Van Nes, 1976; Glencross, Courner and Nilsson, 
1979; Grudin, 1983). 

Spelling Errors. 
(i) Relatively few errors are made in the first letter of a word. 
(ii) Doubling and singling of a letter (special cases of insertion/deletion) are com-

mon. 
(iii) Some consonants are more often substituted than others. 

More detailed rules of spelling errors can be found by studying a corpus of 
spelling errors, as was done by Yannakoudakis and Fawthrop (1983a) for English. 
However, these rules, unlike those mentioned in (i-iii), are language-specific (they 
depend on the phoneme/grapheme relationships which hold in a particular language). 

1 9 This need not surprise us, for it is basically the same issue as the undershoot problem 
in detection discussed earlier: what we do in an error grammar approach, is mutatis mutandis 
comparable to generating errors, and a large dictionary increases the probability that such an 
error is present in it. 

2 0 The error grammar approach may well be more efficient in logic programming. Berghel 
and Traudt (1986) describe a Prolog implementation of spelling error correction through 
checking the transformations specified by Damerau (1964). In Prolog, instead of a generate 
+ test sequence for each transformation, the dictionary is searched with a string containing a 
variable, collecting all forms that match this string. The unification matching necessary to do 
this is built in in Prolog. This leads to an elegant program, but we have our doubts about 
the efficiency and feasibility of the approach in a practical application: looking up k*n substi-
tutions is less costly than comparing n strings with one variable to all dictionary items, if the 
size of the dictionary is large. Furthermore, as in Prolog data and programs are not dis-
tinguished, the complete dictionary must be kept in internal memory, resulting in a serious 
overhead when the dictionary is of a normal size. 



For Dutch, the following rules can be added (based on Booij, Hamans, Verhoeven, 
Balk and Van Minnen, 1979). 
(i) Confusion between t, d and dt in verb forms (Dt-mistakes; see later this chatter 

and Chapter 7) is frequent. 
(ii) Confusion between ei and ij. The difference is only etymologically motivated. 
(iii) Spelling of loan words. A lot of confusion in this matter arises from the fact 

that two partially conflicting spelling systems exist for Dutch. One is 'permit-
ted', the other is 'preferred'. 

(iv) Grapheme for voiced obstruent instead of voiceless counterpart and vice versa 
(f,v;s,z;g,ch). 

(v) Omission or hypercorrect insertion of a word-final < n > . 
Typing Errors. 

(i) Most typing errors (from 50 to 80 percent) are due to hitting a key in the 
neighbourhood of the target key, resulting in a substitution error. 

(ii) The probability of an error increases with increasing word length and diminish-
ing word structure. 

(iii) Many typing errors (between 10 and 76 percent, depending on the source) are 
discovered by the typist him/herself.21 

(iv) Transposition (mostly across hands) is another important error category. 
(v) The difference in length between the correct form and the erroneous form is 

mostly one character, and rarely more than two characters. The error form is 
mostly shorter than the correct form. This goes for spelling errors as well. 

(vi) There is a distinct frequency effect in substitution typing errors: the most fre-
quent letter is almost without exception substituted for the less frequent. 
Systematicity in typing errors does not depend on language, but on keyboard 

and typist. However, the influence of the former is greater than the influence of the 
latter. 

These data can be used in a straightforward way to constrain the number of hy-
potheses generated by an error grammar. Using them, we can in a sense predict 

2 1 Though not really relevant in the constraining of the error grammar, this observation is 
important as it supports to some extent the position that automatic typing error correction is 
not useful. But see section 6.4. 



which errors and corrections are most probable.2 2 However, most experimental data 
are based on English, and, even for that language, they are incomplete. Reliable ad-
ditional data for Dutch are badly needed. As regards the restriction of the number of 
hypotheses accepted after dictionary lookup, the same rules, which are used to con-
strain the generation of hypotheses, can also serve to assign a probability to the hy-
potheses found in the dictionary. A probability threshold can then be used to select 
one or more possible corrections. This can also be done by keeping the dictionary to 
a reasonable size, and by using sentence-level information (syntactic structure) to re-
ject suggested corrections. A simple surface parsing could exclude hypotheses which 
belong to particular (sub)categories because they do not fit in the syntactic structure. 

6.3.2 The Similarity Measure Model 
In this approach, a detected error is compared to all entries of a dictionary, using a 
similarity measure. The dictionary entries most similar to the error are considered 
possible corrections. One useful implementation of this approach is the DWIM (Do 
What I Mean) facility of the programming language Interlisp (Teitelman, 1978). A 
detected error (an identifier unknown to the Lisp interpreter) is compared with words 
in a spelling list (dictionary). The similarity between the suspected error and an ele-
ment from the spelling list is defined as inversely proportional to the number of 
differences between them (based on a letter-by-letter comparison), and proportional to 
the length of the longest word. Transposition and doubling are not counted as 
differences, and if an element on the spelling list is much longer or shorter than the 
error, it is immediately rejected as a correction. The system works perfectly in appli-
cations with a short word list such as the DWIM facility (Lisp function and variable 
names), but it becomes expensive (in processing time) and error-prone, if a large lex-
ical database must be used. Again we can use the experimental data listed earlier to 
constrain the similarity search; e.g., we could exclude from comparison those diction-
ary entries which do not begin with the same letter as the error, and those that differ 
more than two letters in length. But this increases the possibility that errors or in-
completeness are introduced. 

Several methods exist to compute the similarity between two strings (E.g., see 
Faulk, 1964): number of identical letters (material similarity), number of letters in 

2 2 Attractive as this may seem, being a heuristic and not an algorithm, this solution brings 
with it a probability of failure. 



the same order (ordinal similarity) and number of letters in the same place (positional 
similarity). Blends are always possible. For example the computation of the intersec-
tion of the syntactic trace (the set of trigrams) of two strings boils down to comput-
ing material similarity while taking into account ordinal similarity as well (Angell, 
Freund and Willett, 1983). Sometimes abbreviations are made of the letter strings 
before comparing them, as in the SOUNDEX system (e.g. Joseph and Wong, 1979) 
and variants thereof (Boot, 1984). A typical abbreviation would be the first letter of a 
word, followed by three numerals representing a class of related consonants (e.g. m 
and n) in their order of occurrence (of double consonants, only one is kept). 

In a limited, explorative study, we tested some of these measures on fifty word 
strings with one error in each of them. The strings varied in length, in the kind of 
error present, and in the position of the error in the string. Each string was com-
pared to its error-less counterpart, using five different similarity measures: material, 
positional, trigram overlap, ordinal-1 (an abbreviation combined with positional simi-
larity measure) and ordinal-2 (an abbreviation combined with material similarity). The 
results are presented in Tables 2, 3, and 4. 

String Length 
Five Eight Twelve 

Material 85.5 91.0 93.8 
Positional 61.1 65.0 71.0 
Ordinal-1 74.8 72.5 85.0 
Ordinal-2 78.6 88.8 95.0 
Trigrams 53.1 65.4 77.3 

Table 3. Similarity between error form and correct form with different 
similarity measures relative to string length (values are mean percentages). 

Position of error in string 
Beginning Middle End 

Material 90.2 90.2 90.2 
Positional 49.1 66.4 81.6 
Ordinal-1 65.0 78.8 88.6 
Ordinal-2 85.0 88.8 88.6 
Trigrams 65.7 60.7 69.5 

Table 3. Similarity between error form and correct form with different 
similarity measures, relative to position of error in string (values are mean 
percentages). 



Error Type Transposition Substitution Insertion Deletion 
Material 100.0 86.4 88.1 86.4 
Positional 72.8 36.4 49.9 53.8 
Ordinal-1 90.7 61.5 66.8 90.7 
Ordinal-2 96.3 77.6 82.4 93.5 
Trigrams 50.9 65.0 76.3 69.0 

Table 3. Similarity between error form and correct form for different 
similarity measures, relative to kind of error (values are mean percentages). 

Similarity tended to be higher with increasing word length for all types of simi-
larity measure. Material similarity yielded consistent results for all types of error 
transformation, and was insensitive to the place of the error in the string. But two 
strings which are anagrams of each other are equal in this approach. Positional simi-
larity performed badly whenever an insertion, deletion or transposition occurred at 
the beginning of a word. In fact it was only suited to correct substitution errors. The 
performance of ordinal similarity proved unreliable when combined with positional 
similarity. But, when combined with material similarity, it was a serious rival to ma-
terial similarity alone. A trigram overlap similarity measure performed badly with 
transposition errors. In conclusion, of all similarity measures checked, material simi-
larity came out best. 

6.3.3 The Phonemisation Model 
The rationale behind this model is the expectation that people will be confused and 
likely to make mistakes when spelling and pronunciation differ. Whenever they are 
unsure about the spelling image of a word, they will write what they hear (phonolog-
ical or phonetic spelling). Therefore, we could develop a system that transliterates the 
erroneous spelling form into a phonological representation. We can use the phonemi-
sation algorithm of section 4.2 to do this. This phonological representation is looked 
up in a dictionary with a phoneme representation as entry and spelling(s) as diction-
ary information. 

Some frequent systematic spelling errors (as listed in Booij et al., 1979): e.g. 
double versus single consonants and vowels, omission or hypercorrect insertion of a 
final < n > , confusion about (de)voicing of < z > , < v > , < s > , and < f > , can be 
detected and corrected by this model. As such, the approach could be useful in a 
computer-assisted instruction environment, if it is extended with an algorithm to 



detect and correct dt-mistakes23. The latter type of mistake cannot always be 
corrected or even detected in a phonemisation approach. Figure 3 shows some exam-
ples. 

Input Phoneme Representation Alternative Spellings after 
Dictionary Lookup 

vermoort /vdrmort/ vermoord, vermoordt 
beil /beil/ bijl 
lope /lopd/ lopen 
lige /ll7d/ liggen 

Figure 3. Some examples of a phonemisation approach to correction. 

We believe that this architecture has a limited use in general spelling error 
correction; typing errors can (in general) not be corrected by it, and the problem of 
multiple corrections suggested by the system remains. It can however be applied in 
some applications involving a restricted vocabulary or in combination with an algo-
rithm for typing error correction. 

A first attempt at such a correction system (for the correction of proper names) 
was made at the university of Nijmegen (Van Berkel, 1986). Her system involves 
the transformation of each (spelled) dictionary item to a network relating all possible 
pronunciations. E.g. chrysant (chrysantemum) is stored as the network ((X k) r (I y) 
(s z) Ant). This transformation is based on the phonological knowledge base and the 
syllabification and phonemisation algorithms discussed in Chapter 4. A suspected er-
ror is transformed into a phonological code via the same algorithm, and the resulting 
pattern is matched to the networks in the dictionary. This system is roughly compar-
able to a similarity measure approach. 

A variant of the error grammar approach which should be considered in this 
context, is an algorithm that (a) transliterates the error into a phoneme representation, 
(b) generates different spelling images by a reverse application of the rules in Chapter 
4. E.g. phoneme /d/ can be realised as (among others) < e > , < i > or < i j> in 

2 3 Confusion between < t > , < d > and <dt> in the formation of present participle, past 
participle and singular simple present forms of verbs. Number and person of the subject of 
the sentence determine the form of the verb. E.g. ik word (I become), je wonk (you be-
come), word je (do you become; inversion), hij wonk (he becomes), etc. The problem 
derives from the fact that the pronunciation of the highlighted word endings is always / t / . 
See also Chapter 7. 



spelling, these possibilities should all be generated, and (c) looks up the generated 
forms in a normal spelling dictionary. Those which exist are possible corrections. It 
remains to be seen if such a system can avoid a combinatorial explosion of computed 
spelling images, which would prevent its being used in real time. 

A promising new variant of the phonemisation approach, announced in Van 
Berkel (1986), is the combination of phonemisation with trigram analysis (or rather 
triphone analysis). In this variant the following steps are taken: 
(i) All words in the lexicon are transformed into one or more phoneme representa-

tions. 
(ii) The phoneme representations are transformed into sets of triphones. 
(iii) Each triphone contains pointers to all spelling forms of which the phoneme 

representation(s) contain(s) this triphone (i.e., an inverted file is created). Each 
triphone is assigned an information value, relative to the number of pointers it 
contains. 

(iv) Of an input form to be corrected, the phoneme representation(s) are first com-
puted, and then the associated triphone representations. Those triphones which 
are most selective (i.e. have the highest information value), are used to collect 
possible candidates for the correction of the input form (by using the inverted 
file). The candidate most similar to the input form (using a similarity measure), 
is then selected. 
The most important advantage of this approach is that it (theoretically) allows 

spelling errors and typing errors to be corrected by a single algorithm. 

6.3.4 New Hardware 
Whichever method is applied, correction is prohibitively expensive in processing 
time. New hardware may provide a solution to this problem. Recently, a new chip 
(PF-474) which can compare strings of letters or words, and compute a similarity 
measure was announced by Proxemics Technology (Yianilos, 1983). It works by 
purely statistical methods, but a phonetic or orthographic similarity can be simulated 
by chosing a proper alphabet, and by programming the three parameters determining 
the similarity measure differently for each element of the alphabet. It keeps in store 
sixteen pairs with the highest similarity-value for later processing. The main advan-
tage of this new chip is its speed: the relation between string length and processing 
time is linear instead of exponential. Furthermore, several PF-474s can be arranged 



in parallel, which makes the searching of large databases in fractions of seconds pos-
sible. 

Another useful hardware development to be expected soon, is the availability of 
large dictionaries on optical disk. The fact that these storage media are read-only is 
not really a disadvantage, because updating can be delegated to a modifiable user-defined lexicon which acts as a shell around the main dictionary on disk. Dic-
tionaries stored in 'firmware' may also be helpful to improve storage capacity and 
decrease access time. 

The value of these hardware developments lies in the fact that the introduction 
of heuristics, of which the main purpose is to save search time and memory space, 
might become superfluous. These heuristics often introduce a probability of errors. 
An algorithmic, complete solution should always be preferred to a heuristic solution, 
if the former is feasible in terms of efficiency. 

6.3.5 A Note on the Correction of Spelling Errors in Compounds 
Misspelled compounds the correct forms of which are not present in the dictionary 
confront us with a problem. Consider a compound which is not present in the dic-
tionary, with an error in one of its parts; e.g.: onderwjisprogramma (onderwijspro-
gramma, education program; a transposition error). This string is correctly flagged 
as an error by the detection module, but correction is not possible with a similarity 
measure or an error grammar approach as these algorithms are based on comparison 
of the complete string with all or a subset of the dictionary entries and on lookup of 
the complete string in the dictionary, respectively. The most straightforward method 
to overcome this problem in an error grammar approach, would be to include mor-
phological analysis in the process of looking up suggested corrections, but this would 
mean an explosive increase in the number of dictionary lookups as analysis presup-
poses a large number of lookup actions. 

Another possible solution — this time in the context of a similarity measure ap-
proach — would be to resort to an algorithm in which morphological analysis and 
correction are intertwined. This integration of analysis and correction can be 
achieved by using the similarity measure method as a general dictionary lookup pro-
cedure in the detection phase. During morphological analysis, each dictionary lookup 
produces a similarity measure. If the similarity measure denotes equality, a 'normal' 
dictionary lookup occurs; if an identical string is not present in the dictionary, those 



dictionary items of which the similarity measure exceeds an empirically determined 
threshold are selected as corrections of the original string. This method is extremely 
expensive since all dictionary items must be checked each time a dictionary lookup is 
necessary, which may be many times for each word morphologically analysed. In 
fact, both methods proposed up to now are only feasible if search is sufficiently fast 
(based on a hardware implementation of the search algorithm, preferably in a parallel 
architecture) and if the number of selected dictionary items for each lookup is 
sufficiently low. Otherwise, the parsing part of the algorithm would have to deal with 
too many alternative segmentations, and the probability of false parses would in-
crease. 

Yet another alternative possibility involves a special segmentation procedure dur-
ing analysis. This procedure consists of a relaxation of the constraint that the subparts 
found in a string should fill this string completely.24 In short: holes would be al-
lowed in the segmentation. E.g.: onder#xxxx#programma. This 'hole' could then be 
corrected by one of the correction methods described earlier (with error grammar or 
similarity measure). In practice this approach leads to many problems as well. The 
example above would be treated as onder#xx#is#programma, leading to an unneces-
sary correction attempt of wj. The solution (a heuristic, rather) is to analyse a string 
for either the largest left or the largest right part found in the dictionary, and to 
make the rest a hole. In the example: xxxxxxxxx#programma (largest right part, be-
cause it is larger than the largest left part, which is onder). The probability that the 
hole is listed in the dictionary is sufficiently high, because most compounds consist of 
two parts, which are either simplex words or compounds listed in the dictionary. 

An additional advantage of this approach is that the number of suggested correc-
tions can be constrained during the parsing phase of the analysis. The parser can pro-
duce information about the possible parts of speech of the 'hole'. Only words in the 
dictionary which belong to these categories have to be checked during correction. A 
short overview of our adaptation of the two stage correction algorithm is given in 
Figure 4. 

2 4 A similar relaxation in the parsing part of analysis, allowing combinations of segmented 
word forms normally not allowed by the compound grammar, would make possible the 
correction of errors resulting from the accidental concatenation of different words. E.g. He 
worked veryhard. Unfortunately, it is not evident under which conditions the constraint 
should be relaxed. 



1. DETECTION, which consists of: 
a. Dictionary lookup of the complete string (also in user-defined 

dictionary and document dictionary) 
b. (if not found) Morphological Analysis, which consists of: 

i. Segmentation-1 (find all possible morpheme distributions), 
which implies a number of dictionary lookups. 

ii. Segmentation-2 (if segmentation-1 fails); 
look for largest dictionary entry in the string, starting from 
either left or right. Declare the rest a hole, 

iii. Parsing, keep those distributions that are allowed by the 
morphological grammar, or signal error if no analysis is found. 
If a hole is present, determine the possible parts of speech 
for it. 

2. (If error is signaled or hole is detected) CORRECTION, 
Either: 

a. Generate all possible modifications by means of 
(i) an error grammar or 
(ii) a phonemisation algorithm, 

and look them up in the dictionary (those that are found are 
corrections). 

Or: 
b. Compare the flagged string or hole to all dictionary items using a 

similarity measure. In the case of holes, dictionary lookup is 
constrained by part-of-speech information. 

Figure 4. Adapted two-stage model for word level correction. 

In the example, onderwjisprogramma would be input, and not found in the dic-
tionary (1.a). During morphological analysis, segmentation strategy One fails (1.b.i) 
which implies that a hole is created; in this case xxxxxxxxx#programma (1.b.ii). 
During parsing (1.b.iii), it is determined that the hole can be N, V or A. In the 
correction part, either an error grammar approach (generate modifications of onderwjis and look them up; 2.a) or a similarity measure can be used to correct onderwjis. In 2, only dictionary entries with category N, V or A are considered. 

6.3.6 Performance 
The remarks we made about performance of spelling error detectors hold for correc-
tion as well: results cannot be compared easily. One has to be careful with perfor-
mance descriptions. For instance, Angell, Freund and Willett (1983) do not count un-
dershoot errors of their program, nor errors due to the incompleteness of their dic-
tionary. When you do take these into account, the success-rates decrease from 75 
percent and 90 percent to 67 percent and 84 percent, respectively. Similarly, Yannakoudakis and Fawthrop (1983b), dismiss 'cases where the algorithm searched the 
wrong part of the dictionary, and cases where the error form was not in the diction-
ary' as unimportant. When considering these cases important, the success rate drops 
from 90 to 68 percent. Even more doubtful is the fact that they tested the perfor-mance 



of the program on data (misspellings) which they used to extract the rules on 
which their algorithm is based. Only 10 percent of the data used was new. The high 
performance of their algorithm is therefore not surprising. Performance on the new 
data alone is only 62 percent. The performance of a correction program should be 
judged from the percentage of alleged spelling errors it can correct, the processing 
time needed to do this, and the mean number of possible corrections it suggests. 

6.4 Conclusion 
We continued our presentation of a knowledge-based approach to language technolo-
gy. The linguistic knowledge in Part II (morphological analysis and phonemisation) 
was proved to be indispensable for the development of high-quality spelling and typ-
ing error checkers and correctors. We presented DSPELL, a spelling checker for 
Dutch which takes into account the morphological structure of word forms, thereby 
reducing the rate of overkill errors with 10 percent. 

As regards automatic correction, it will have become clear that no single stra-
tegy can handle the correction of all word-level mistakes. Typing errors and spelling 
errors share some features, but are different when we try to describe their systematicity in a set of rules. For some spelling errors such as dt-mistakes, special correction 
routines can be developed. Other spelling errors (e.g. doubling and singling of con-
sonants and vowels) can be corrected with correction procedures developed for typing 
errors. The main problem is that both kinds of errors are usually present in the same 
text. The approach taken is also dependent on hardware possibilities and on the size 
of the dictionary. A similarity measure can only be used with small dictionaries. An 
integrated approach to word-level correction would take into account text characteris-
tics (the subject matter of the text might determine the set of dictionaries used), chan-
nel characteristics (spelling errors, typing errors and transmission errors have a 
different systematicity), and author characteristics (programs which remember the er-
rors a specific user often makes can be developed). 

Is spelling error correction useful? It could be argued (as was done by Prescott 
Loui, 1981) that, however sophisticated the program, humans would still be needed 
to proofread documents because there is always a small percentage of errors which is 
not detected (consistency, semantics, omitted words and paragraphs, undershoot). 
Therefore, automatic error detection is useless and even disadvantageous, because hu-
man correctors perform better when the number of errors is large (if an error is 



found only sporadically, they will become bored or deluded, because there is no re-
ward for their attention). We think this is a debatable position (even leaving aside 
the pseudo-psychological explanation of the behaviour of proofreaders), because spel-
ling verification should be seen in the context of an Author Environment; an interac-
tive environment in which writers develop text. Any help they can get at this stage 
to keep their mind from mundane typographical conventions and to prevent that they 
get stuck in grammar 2 5 will be time saved to work on the ideas they want to ex-
press. 

2 5 The phenomenon of getting stuck in syntactic and spelling matters while writing has 
been termed downsliding by Collins and Gentner (1980). 



CHAPTER 7 
Intelligent Tutoring Systems 

7.1 Introduction 
ICAI systems cannot be AI systems warmed 
over. 
J.S. Brown 

The principal aim of computer assisted instruction is (or should be) the individualisation of education. Learners should be able to acquire and practice knowledge and 
skills at their own pace and the knowledge presented should be adapted at all times to 
their current level of expertise. Computer programs can be helpful to achieve this. 
Rather than replacing ordinary class teaching (which is indispensable to acquire social 
skills), computer aided instruction should supplement and amplify the former. 

In this chapter, traditional and Artificial Intelligence approaches to computer as-
sisted instruction will be contrasted, and an example of the latter will be presented. A 
problematic aspect of Dutch spelling education (verbal inflections) was chosen as the 
domain of an Intelligent Tutoring System (ITS) which incorporates expert knowledge 
about the teaching domain (based on the model of morpho-phonology outlined in Part 
II of this dissertation), a module to present and practice domain knowledge, a module 
to automatically diagnose the mistakes a learner makes, and an interactive user inter-
face. 



7.2 CAI versus ITS 
Traditional CAI programs (programmed instruction systems) consist of a series of 
three steps, presented in a linear fashion and repeated a number of times. 
(i) First, a chunk of subject matter programmed by the teacher is presented to the 

learner. Languages specifically suited for this purpose (author-languages) exist. 
Advanced CAI systems may even automatically produce teaching material (ex-
amples) for a restricted number of domains (e.g. arithmetic). 

(ii) Second, a number of tests (questions and exercises) on the subject matter im-
parted during the first step is presented. 

(iii) Finally, the answers to the tests provided by the learner are analysed. This 
stage may invoke corrective feedback, i.e. repetition of teaching material adapt-
ed to the learner's response, omission of subject matter considered known, addi-
tional tests etc. 
Major shortcomings of this approach are the absence of expert knowledge about 

the domain being taught (making flexible reactions by the system to input from the 
learner impossible) and the absence of the ability to make a sufficiently detailed diag-
nosis of the learner's problems, and to provide explanatory feedback. Finally, the 
burden of supplying the chunks of knowledge in step (i) is completely on the should-
ers of the teacher or programmer (see also Kempen, Schotel & Pijls, 1984). 

Intelligent Tutoring Systems (also Intelligent Computer Assisted Instruction), try 
to repair some of the shortcomings of CAI systems. Most existing systems are proto-
typical and experimental (see Sleeman and Brown, 1982 for descriptions of a number 
of systems, and Yazdani, 1986 for a recent overview), yet some kind of 'methodolo-
gy', largely based on the work of John Anderson and collaborators (e.g. Anderson 
and Reiser, 1985) has already been established. An ITS system consists of at least 
the following two modules: 
(i) A knowledge-based domain expert. This module can solve problems about the 

subject matter in a human-like way. This means that e.g. an arithmetic expert 
does not add or subtract by manipulating strings of binary numbers, but by 
simulating the rules followed by human beings having expertise in the task. 
These rules may correspond to both implicit ('tacit') and explicit knowledge 
(rules learned at school). 



(ii) Didactic module. This module includes a number of sub-modules. E.g. a model 
of the learner (his level of knowledge about the domain, the rules he uses), a 
diagnosis system (to refine the model of the learner on the basis of answers to 
questions or exercises), a bug catalogue (a list of frequent mistakes to guide the 
diagnosis procedure, error expectancies), a tutoring module (knowledge about 
what knowledge to impart to a particular learner and how to do it) and an exer-
cise generator. Different ITS systems can be distinguished by the presence or 
absence of (sub-)modules, or by the emphasis put on them. 

7.3 TDTDT: An ITS for Dutch Conjugation 
In the remainder of this chapter TDTDT (Tdtdt Diagnoses Trouble with DT) will be 
described. TDTDT is an experimental ITS which teaches an aspect of Dutch spelling 
in which a lot of effort (on the part of both teacher and learner) is traditionally in-
vested without very much result: the spelling of the conjugated forms of verbs. These 
poor results are typical of Dutch grammar and spelling teaching in general (see Pijls, 
Daelemans & Kempen, 1987 for a discussion of possible reasons for this). 

7.3.1 The Problem 
Dutch spelling is guided by two main principles: the phonological principle (write a 
word as it is pronounced in standard Dutch) and the morphological principle (spell 
related forms the same way). The former treats spelling as a (very) broad phonetic 
transcription of sound, the latter results in a transcription which is closer to the al-
leged lexical representation of the word form (Van Heuven, 1978). 

Unfortunately for learners of Dutch, these principles are partially conflicting. 
Especially in the case of some verbal inflectional endings, a lot of confusion arises 
(Figure 1). Generally, mistakes involve an improper application of the phonological 
principle instead of the morphological principle in the spelling of verbal inflectional 
endings. E.g. learners are often at a loss whether a conjugational ending sounding 
like ltl is written <d t> , < d > or < t > . The correct solution involves the applica-
tion of a number of syntactic, morphological, phonological and spelling rules. A first 
prerequisite for an ITS for this subject is therefore that it be able to apply these rules 
correctly. 



Phonological Lexical Spelling Gloss Principle 
Transcription Representation 
1 /bl«if/ blijv blijf I stay Phon 
2 /lat/ laad laad I load Morph 
3 /lat/ laad+t laadt he loads Morph 
4 /ladd/ laadtfde laadde I loaded Morph 
5 /gdlcH/ ge#leid+d geleid led Phon+Morph 

Figure 1. Phonological transcription, lexical representation, spelling, 
gloss and governing principle in a few conjugations. 

7.3.2 The Domain Expert 
This module contains the necessary linguistic knowledge, implemented as a system of 
KRS concepts, to conjugate any Dutch verb 2 6 . The system was described in detail in 
Chapters 3 and 4. For the purpose of the present application, explanatory information 
was attached to various concepts, and a rule-history subject was added to the word 
form concept. This slot lists the different decisions taken and rules applied to produce 
a particular word form. 

7.3.3 Presentation of Domain Knowledge 
Different pedagogical methods have been devised and introduced in education to teach 
this difficult aspect of Dutch spelling (see Assink, 1984 for an overview). A recent 
development is the algorithmic rule method (Assink, 1983 and 1984; Van Peer, 
1982), which seems to have favourable results. In this method, an easily manipulatable algorithm is devised, pictured on a card, which allows quick and easy decisions 
on the spelling of verb forms. First, the learner is introduced to a number of con-
cepts playing a role in the solution of the problem and featuring on the card (tense, 
finiteness, person, number etc.). Next, these concepts are related to spelling rules by 
means of the algorithmic decision scheme on the card. Exercises are made with the 
help of the card until the algorithm is internalised and the card becomes superfluous. 

We have automated the second part of this teaching method (practicing the algo-
rithmic decision scheme). We assume that learners working with our system have received 

2 6 At present, syntactic knowledge (relevant for the controlling of subject-verb agreement) 
is absent in our system, but we are working on an integration with the syntactic parser 
developed by Konst (1986). An alternative we consider is to develop a special-purpose 
superficial syntactic parser for this problem. 



class room teaching about the different linguistic concepts used in the algo-
rithm. For each specific conjugation problem, a decision tree is pictured on the 
screen (Figure 2). The terminology used in this picture does not necessarily coincide 
with the terminology presented to the learner. E.g. Tense=Past? could be presented 
as did the action happen in the past etc. The top part of Figure 2 shows the hierar-
chy of decisions to be taken. The shaded part represents the morphological rules to 
be applied and the spelling modifications to be made. We refer to Chapter 3 for a 
detailed account of these rules and modifications. 

The solution of a specific conjugation problem is represented as a walk through the 
decision tree. Each node represents a question (e.g. is it an action in the past?) to 
which the learner answers by clicking on a menu item (see section 7.3.5 below). If a 
wrong choice is made this is explained to the learner. Teaching material (exercises) 



This sequence fills the rule-history slot of the redt verb form after computation of 
this form by the domain expert. 

Rules can be uniformly represented as consisting of a number of conditions and 
a number of actions, performed if the conditions apply in a particular context. The 
source of mistakes can now exhaustively be characterised as follows: 
(i) At the macro-level: the omission or insertion of rules or the muddling up of the 

correct sequence of the rules. 
(ii) At the micro-level: the omission of conditions or actions, the insertion of condi-

tions or actions or the muddling up of the correct application order of conditions 
or actions. In our case, conditions are either decisions in the decision tree or 
conditions based on the form of the verb to be conjugated. 
It will be clear from this that if we want to check all possible sources of an er-

ror, a combinatorial explosion of alternative possibilities results, even for relatively 
simple forms. Furthermore, the insertion of extraneous rules, conditions or actions 
is open-ended, and therefore unpredictable in se. This proves that an approach in-
volving exhaustive diagnosis (like BUGGY for arithmetic; Brown and Burton, 1978) 
cannot be transported to more complex domains. 

A solution to this problem commonly adopted is the compilation of a bug catalo-
gue (e.g. Anderson and Reiser, 1985), based on an empirical study of the errors 
learners make, and on the relation of the results of this study to the different rules 
used by the domain expert. By means of the information thus acquired, it is possible 
to construct heuristic rules which guide the diagnosis process. However, compiling 
such a list is a time-consuming activity, and we believe that it can be automated to a 
large extent through progressive refinement of heuristic diagnosis rules acquired 
through interaction with learners. 

Heuristics always treat a number of potentially relevant aspects of the problem 
(in this case diagnosis) as irrelevant. This can be justified if the number of things that 
actually go wrong in practice is considerably smaller than the number of things that 
can go wrong in principle. We believe this to be the case in the diagnosis of mis-
takes by learners in general and in the conjugation of verbs in particular. 

We start from the rule history computed by the system. As a first hypothesis, 
the system assumes that the mistake is due to a wrong decision somewhere. All de-
cisions in the list are negated in turn, and the effect of this on the computation of the 



verb form is considered. Those decisions, which — when negated — result in the 
same mistake as was made by the learner, may possibly have caused the mistake. 
Note that the computation of the effect of the negation of a decision often involves 
the postulating of other decisions. E.g. negating past=no generates some new deci-
sions such as weak=yes (or no). The system assumes the correct decisions to be tak-
en. If several possible causes remain, the system tries to choose one by asking addi-
tional questions (E.g. is it a weak verb?) or by generating additional exercises. 
These additional questions and exercises are by no means unnatural to the learner be-
cause they take the same form as the 'normal' questions and exercises while interact-
ing with the system. 

The number of possibilities can then be constrained by computing the intersec-
tion (if the answer was again wrong) or the difference (if the answer was correct) of 
the relevant lists of decisions. If no hypotheses remain, i.e. all decisions taken by 
the learner are considered correct, the bug must be due to a mis-application of one of 
the rules. Roughly the same method can then be used to identify the rule in question. 

From such a diagnostic interaction, a heuristic rule is derived. I.e. the associa-
tion of a symptom (the wrong answer) with a diagnosis (a wrong decision or wrong-
ly applied rule). Symptoms should be expressed at a suitable level of abstraction: it 
would not be very useful to have a specific verb as symptom. Rather the symptom is 
expressed in terms of the category of the verb (regular, semi-irregular or irregular 
classes) and the ending of the stem. In additional interactions with the same learner, 
already existing heuristic rules are gradually refined. 

Our approach to rule-refinement is based on the approach to learning in second 
generation expert systems (Steels, 1985; Steels and Van de Velde, 1985). Second 
generation expert systems consist of a heuristic rule system (much the same as tradi-
tional expert systems) called the surface model, and an additional deep model which 
provides an understanding of the complete search space over which the heuristics 
operate. A second generation expert system can fall back on deep reasoning when its 
heuristic rules fail. The most important advantage of this architecture lies in the fact 
that it allows automatic learning of new heuristic rules. Rule learning happens by 
refinement (non-monotonically): a new heuristic rule is abstracted (in our case from 
an interaction with the learner), and is integrated into the already existing rule-base. 
This integration does not make the previous rules superfluous, but may restrict their 
application. 



Two options are open in the use of heuristic rules: either a new rule base is 
constructed for each learner, or the same is used for all learners. In the latter case, 
the identity of the learner may be added to the list of symptoms. 

7.3.5 User Interface 
We used the full functionality of the Symbolics Lisp Machine mouse-menu-window 
system in the development of our interface to the learner. It has been shown (Schotel and Pijls, 1985) that children have no problem with such an interface and are 
motivated to work with it. 

The decision tree is built up in interaction with the learner. At each node, a 
question is asked, and the answer (mostly yes or no) is given by clicking with the 
mouse on a menu of options. If the answer is correct, a branch and new node is 
drawn, and a new question is asked. If the answer is wrong, the learner is told so, 
and some explanation is given. 

In an exercise (the computation of the correct form of a verb), the infinitive of a 
verb is presented in a syntactic context. The generating of these contexts is still a 
problem. Only limited information about the case frame associated with the verb is 
available from the lexical database, and no semantic information at all. Contexts are 
therefore very simple and canned phrases designed to be applicable to (almost) all 
verbs. The problem can be partly overcome by providing a more detailed and natural 
context and letting the learner choose an applicable verb himself (this limits his free 
choice, but not to a point where only one or a few possibilities are left open). 

An alternative solution would be to explicitly ask for a specific form (e.g.: What 
is the inflected past participle of the verb werken, to work). In the latter case, a lot 
of the decisions that must be taken in the real-life computation of verb forms are 
given in the question, which diminishes the functionality of the tutoring environment 
considerably. 

7.4 Conclusion 
Intelligent Tutoring Systems are an important step in the liberation of class teaching 
from the less interesting aspects of the subject matter and in the adaptation of teach-
ing to the needs and pace of individual learners. We have shown that an ITS can be 
developed even for subject matter traditionally considered 'complex'. It should be 



emphasised that the system described relies on sophisticated hardware and software 
resources, presently out of reach for most schools. However, we are confident that 
the evolution of the microcomputer market will make possible the implementation of 
similar programs on cheap and small systems. 



CHAPTER 8 
Miscellaneous Applications 

8.1 Rule Testing Devices 

8.1.1 Background 
One of the advantages of computer models of linguistic phenomena we mentioned in 
Chapter 1 is the framework they present for implementing, testing and evaluating 
linguistic theories. The construction of a working program forces the researcher to 
make all his assumptions explicit, and holes in his theory are inevitably brought to 
light. But there is also a more practical advantage. Developing a rule system which 
describes some kind of phenomenon is an intricate business. Small changes in rule-
ordering or in conditions on rules can have enormous side-effects, and beyond a cer-
tain level of complexity the output of a set of interacting rules becomes unpredict-
able. It is therefore of considerable interest to the linguist to be able to test his rules 
and their interaction on a large amount of data. Apart from being a useful tool in de-
bugging complex rule systems, a rule testing device can also be helpful in teaching 
linguistics because it makes visible the effect of the different rules and their interac-
tions. 

A system for developing and testing rule systems should conform to at least the 
following requirements: easy modification of rules should be possible, and traces of 
rule application should be made visible. The system described in the following sec-
tion was developed with these goals in mind. 



8.1.2 GRAFON27 

GRAFON is a grapheme-to-phoneme transliteration and phonological rule testing sys-
tem based on the syllabification and phonematisation algorithms described extensively 
in sections 4.1 and 4.2. In this chapter we will concentrate on the merits of the pro-
gram as a tool in the development of phonological rule systems. The system takes 
words and sentence fragments as its input and transforms them into a phonological 
representation by applying a set of phonological and spelling rules. The level of 
phonological/phonetic detail can be adjusted2 8 by adding or deleting rules. 

The program does not take the form of a rule compiler for some specific for-
malism like generative phonology (see Fromkin and Rice, 1969; Kerkhoff, Wester 
and Boves, 1984 for examples of the compiler approach), as this would restrict the 
possibilities of the researcher to only that formalism. This implies, however, that the 
rules are implicit in the code of the program and that the researcher must be able to 
program in a sub-dialect of Lisp to use the system 2 9. 

The program uses the three stage phonematisation algorithm described earlier 
(section 4.2): 
(i) Syllabification (section 4.1) and word stress assignment (computation of syllable 

structure and retrieval of word stress) 
(ii) Transliteration (transforming spelling syllables into phonological syllables) 
(iii) Phonological rule application. 

Stage (iii) is particularly important in rule testing. The functionality of 
GRAFON includes that phonological rules present in the system can be easily 
modified both at the macro level (reordering, removing and adding rules) and the mi-
cro level (adding, reordering and removing conditions and actions of rules). The 
domain (or scope) of a rule can be varied as well. Possible domains which can be 

2 7 This section is based on parts of Daelemans 1985b. The system is not to be confused 
with the GRAPHON system developed at the Technische Universität Wien (Founder and 
Kommenda, 1986) which is a grapheme-to-phoneme conversion system for German. 

2 8 Since it is not clear where exactly the boundary lies between a phonological and a 
phonetic representation, we will consistently use the term phonological here, even when the 
phenomenon described could be called phonetic. 

2 9 This approach is comparable to the the METAL translation system developed at LRC 
(University of Texas) and exploited by Siemens. In this system, too, the algorithmic and 
computational components are separated from the linguistic ones (Gebruers, 1986) but a 
minimal knowledge about Lisp functions is still necessary. 



selected are syllable, morpheme, word and sentence. Furthermore, the application of 
various rules to an input text-string (its derivation) is automatically traced and can be 
made visible. For each phonological rule, GRAFON keeps a list of all input words to 
which the rule applies. This is advantageous when complex rule interactions must be 
studied. 

Rules can be reordered and deleted by manipulating the elements of a simple 
rule list through menus. A new rule can be added by defining its conditions and the 
actions to be undertaken if the conditions apply. This can be achieved easily by using 
primitive Lisp functions like and, or and not in conjunction with predefined Lisp 
functions and predicates accessing the phonological data present in the system: E.g. 
(high-p x), (bilabial-p x), (syllabic-p x) etc. (see section 4.2.2). Another way the 
rules can make use of the phonological data is by means of simple self-explanatory 
transformation functions. E.g.: (make-voiced x), (make-short x) etc.. The precise 
manner in which the answer to these 'questions' and 'requests' is computed need not 
concern the user. 

The motivation for this relatively independent interface to the phonological 
knowledge base is twofold: First, it allows us to model different theoretical formal-
isms using the same knowledge (e.g. the formalism of generative phonology can be 
modeled at the level of the user interface without having to modify the knowledge 
base). Second, the user is relieved from the burden of remembering how a particular 
piece of knowledge is represented (through default inheritance, computation, subject 
association or hierarchical relations). Furthermore, the flexibility in representing data 
(discussed in section 4.2.2) makes the system suitable as a tool box for researchers 
because the efficacy of different formalisms and categorisations can be easily com-
pared. 

The system is not exceedingly large or complicated, and the same architecture 
can be tuned to different natural languages and dialects. Due to its modularity, it can 
also be integrated into larger systems, e.g. morphological and syntactic analysis and 
synthesis systems, which opens up possibilities of studying rule interactions on a 
larger scale. 

Apart from the fact that some knowledge about Lisp programming is necessary, 
there is one serious restriction on the system: no syntactic analysis is available at 
present, and therefore no intonation patterns and sentence stress can be computed. 
Moreover, it is impossible to experiment with the phonological phrase as a domain 



for phonological rules. It is feasible in principle to integrate GRAFON with an 
object-oriented syntactic parser and with a program which computes intonation con-
tours (Van Wijk and Kempen, 1985). If this were done, the phonological phrase, 
which restricts sandhi processes in Dutch, would become available as a domain for 
phonological rules, and the phoneme transcription of the input could be enriched with 
intonation contours. 

On the next page, the environment in which a linguist working with GRAFON 
finds himself is pictured. The system has phonemised the phrase halfvolle melk 
(half-cream milk). The first line is the output of the syllabification algorithm. Stress 
is indicated by ' + ', internal word boundaries by ' = a n d external word boundaries 
by ' = = ' . The derivation following the computed form lists for each syllable the 
rules which were applied to it. The central menu lists the options available within the 
GRAFON toplevel. Stop exits the toplevel and Zuid (south) and Noord (nord) select 
the rule-set associated with these variants of Dutch. The Derivation option prevents 
or causes the printing of a derivation for each computed form. Clicking with the 
mouse on Rules, causes the 'Phonological Rules' menu to appear (top right). This 
menu lists all rules known by the system. Clicking on the 'no' option after rules 
makes them inactive. That way, the overall effect of the presence or absence of a 
rule or set of rules can be examined. The Examples option makes the 'Give examples 
of:' menu appear (bottom right). 3 0 By clicking on the name of one of the rules the 
user gets a list of all inputs known by the system to which this rule was applied. Ex-
amples of hiatus-filling known to the system are printed bottom left of the picture. 
The examples obtained in a particular session with GRAFON can be stored in a file 
and loaded again during another session. Finally, the Flush option deletes all exam-
ples present in the system. 

3 0 Note that the picture is edited in the sense that in actual use, only one menu is present 
at the same time. We compressed three bitmaps of the Symbolics screen into one picture. 



"half" 
(1 SCHWA-INSERTION) 
(2 PROGRESIVE-ASSIMILATION) 
(3 DEGEMINATION) 
"melk" 
(4 SCHWA-INSERTION) 
» m 

Options within the GRAFON toplevel 
Examples 

Rules 

Flush 
Derivation 

Zuid 

Noord 

Stop 

Phonological Rules 

PROGRESSIVE-ASSIMILATION 
REGRESSIVE-ASSIMILATION 
INITIAL-DEVOICING 
PLOSIVE-TO-FRICATIVE 
NASAL-ASSIMILATION 
DEGEMINATION 
FINAL-DEVOICING 
N-DELETION 
PALATALISATION 
HIATUS-FILLING 
SCHWA-INSERTION 
CLUSTER-REDUCTION 
INTERVOCALIC-VOICING 
VOWEL-DIPHTHONGISATION-1 
VOUIEL-DIPHTHONGISATION-2 

Examples for rule #<HIATUS-FILLING 33743134> 
rij in (+LO PEN == +DRIE ==+RIJ EN == +TEE == +EL == +BUI ZEN) 
rij in (+AAN == DE == +WIT TE == +WAND == +HAN GEN == +TWEE == SCHIL DE +RIJ EN) 
ZO in (+ZO +ALS == +DIE == +VRIEND == +DAT == +TROU WENS == +OOK == +AL TIJD == +HEEFT) 
ZO in (+ZO == +ALS == EN == PU +BLIE KE == +RUIM TE == +PAST) 
po in (+WANT == PO E +ZIE == +KAN == MIS +SCHIEN == EN == +LEEG TE == +WAT == +VUL LEN) 
rij in (DE == SCHIL DE +RIJ EN) 
zo in (+ZO == +ALS == JE == +HEM == +HEBT == VER +LA TEN) 

Give e x a m p l e s o f : 
INITAL-DEVOICING 
FINAL-DEVOICING 

PLOSIVE-TO-FRICATIVE 
N-DELETION 

PALATALISATION 
HIATUS-FILLING SCHWA-INSERTION 

INTERVOCALIC-VOICING 
VOWEL-DIPHTHONGISATION-1 
VOWEL-DIPHTHONGISATION-2 
PROGRESSIVE-ASSIMILATION 
REGRESSIVE-ASSIMILATION 

NASAL-ASSIMILATION 
CLUSTER-REDUCTION 

DEGEMINATION 

Lisp Listener 2 



Some (verbal) descriptions of rules are presented in Appendix A.8, with some 
examples, a transcription computed by GRAFON, and the rule derivation as it would 
be presented to the user. The rules are listed in the order in which they are applied 
by the system. Alternative orderings with the same effect are possible. Not all restric-
tions and conditions are described for each rule. As the rules evolve continuously 
while experimenting with the system, the output should not be interpreted as a 
definitive position on phonological problems. 

8.2 Automatic Dictionary Construction 

8.2.1 Background 
Although they play a central role in any working natural language processing system, 
lexical databases have been largely neglected in research. Theoretical accounts of 
parsing and generation mostly assume the existence of a lexicon with the relevant 
data, while the manual compilation of lexical databases (LDBs, machine-readable dic-
tionaries) for practical applications still is an expensive and time-intensive drudgery. 
In the worst case, a LDB has to be built up from scratch, and even if one is avail-
able, it often does not come up to the requirements of a particular application. 

We have developed a tool which helps both in the construction (extension and 
updating) of LDBs and in creating new LDBs on the basis of existing ones. Two lev-
els of representation are distinguished: a static storage level and a dynamic 
knowledge level. The latter is an object-oriented environment containing linguistic and 
lexicographic knowledge. At this level, constructors and filters can be defined. Con-
structors are objects which extend the LDB both horizontally (new information) and 
vertically (new entries) using linguistic knowledge. Filters are objects which derive 
new LDBs from existing ones thereby optionally changing the storage structure. 
Filters use lexicographic knowledge. We will call a system coming up to these 
specifications a Flexible Dictionary System. 

8.2.2 The Flexible Dictionary System 
Levels of Representation. The main idea is to distinguish two representation levels: a 
static storage level and a dynamic knowledge level. At the storage level, lexical en-
tries are represented simply as records (with fields for spelling, phoneme transcrip-
tion, lexical representation, categorial information etc.) stored in text files for easy 



portability. The knowledge level is an object-oriented environment, representing 
linguistic and lexicographical knowledge through a number of objects with attached 
information and procedures, organised in generalisation hierarchies (such as the KRS 
programs described in Part II). Records at the storage level are lexical objects in a 
'frozen' state. When accessed from the knowledge level, these records 'come to life' 
as structured objects at some position in one or more generalisation hierarchies. In 
this process, record fields are interpreted as slot fillers. That way, a number of pro-
cedures and defaults becomes accessible (through inheritance) to these lexical objects. 
Figure 1 shows a static record and its associated KRS concept. 

tafels ta=f31+s 102 

(defconcept tafels 

(a noun-form 
(number [number plural]) 

(stress [position 2]) 

(spelling [string "tafels"]) 

(lexical-representation [string "ta=fdl+s"]))) Figure 1. A static record structure and the corresponding KRS concept. 

Constructors. For the creation and updating of dictionaries, constructors can be 
defined: objects at the knowledge level which compute new lexical objects 
(corresponding to new records at the storage level) and new information attached to 
already existing lexical objects (corresponding to new fields of existing records). To 
achieve this, constructor objects make use of information already present in the LDB 
and of primitive procedures attached to linguistic objects represented at the knowledge 
level. E.g. when a new citation form of a verb is entered at the knowledge level, 
constructors exist to compute the inflected forms of this form, the phonological tran-
scription, syllable and morphological boundaries of the citation form and the inflected 
forms, and of the forms derived from these inflected forms, and so on recursively 
(see Part II). Our knowledge about Dutch morpho-phonology has not yet advanced 
to such a level of sophistication that an undebatable, exceptionless set of rules can be 
provided, making fully automatic extension of this kind possible. Therefore, the out-
put of the constructors should be checked by the user. To this end, a cooperative 
user interface was built, reducing initiative from the user to a minimum. After 
checking by the user, newly created or modified lexical objects can be transformed 
again into 'frozen' records at the storage level. 



Filters. Filters are another category of objects at the knowledge level. They use an 
existing dictionary to create a new one automatically (with filters, user intervention is 
not necessary). During this transformation, specified fields and entries are kept, and 
others are omitted. The storage strategy used may be changed as well. E.g. an 
indexed-sequential file of phoneme representations could be derived from a dictionary 
containing this as well as other information, and stored in another way (e.g. as a 
sequential text file). Filters use the lexicographic knowledge specified at the 
knowledge level to achieve this transformation. Lexicographic knowledge consists of 
a number of sorting routines and storage strategies (sequential, indexed-sequential, 
trees). We will call a lexical database obtained by means of a filter a daughter dic-
tionary (DD) and the source a mother dictionary (MD). The MD incorporates our 
ideas about redundancy in lexical databases expressed in section 3.3; namely that 
current and forthcoming storage and search technology allow the construction, 
maintenance and use of large LDBs containing as much information as possible (see 
Byrd, 1983 for a similar argument). Constructors can be developed to assist in creat-
ing, extending and updating such a MD, thereby reducing its cost. Compact and 
efficient LDBs for specific applications or purposes can be derived from it by means 
of filters. The basic architecture of our Flexible Dictionary System is given in Figure 
2. 

Interactive User Interface. The aim of this interface was to reduce user interaction to 
a minimum. It fully uses the functionality of the mouse, menu and window system of 
the Symbolics Lisp Machine. When due to the incompleteness of the linguistic 
knowledge new information cannot be computed with full certainty, the system 
nevertheless goes ahead, using heuristics to present an 'educated guess' and notifying 
the user of this. These heuristics are based on linguistic as well as probabilistic data. 
A user monitoring the output of the constructor only needs to click on incorrect items 
or parts of items in the output (which is mouse-sensitive). This activates diagnostic 
procedures associated with the relevant linguistic objects. These procedures can delete 
erroneous objects already created, recompute them or transfer control to other ob-
jects. If the system can diagnose its error, a correction is presented. Otherwise, a 
menu of possible corrections (again constrained by heuristics) is presented from 
which the user may choose, or in the worst case (which is exceptional), the user has 
to enter the correct information himself. 

An example of such a heuristic is the syllable boundary hypothesis generator of 
CHYP (section 5.2), which produces a best guess when not sure, while at the same 



Figure 2. Architecture of the Flexible Dictionary System. 

time keeping other possibilities available in decreasing order of probability. Another 
example, discussed in section 3.1, presents a best guess in the computation of vowel 
changes in irregular verb forms and in the interpretation of grapheme < e > as /d/, 
/e/ or /e/, while again keeping track of alternative possibilities. 

8.2.3 Construction of a Rhyme Dictionary 
Automatic dictionary construction can be easily done by using a particular filter (e.g., 
a citation form dictionary can be filtered out from a word form dictionary). Other 
more complex constructions can be achieved by combining a particular constructor or 
set of constructors with a filter. For example, to generate a word form lexicon on the 
basis of a citation form lexicon, we first have to apply a constructor to it (morpho-logical 



synthesis), and afterwards filter the result into a suitable form. In this section, 
we will describe how a rhyme dictionary can be constructed on the basis of a spel-
ling word form lexicon in an attempt to point out how the FDS can be applied ad-
vantageously in lexicography. 

First, a constructor must be defined for the computation of a broad phonetic 
transcription of the spelling forms. This involves primitive linguistic procedures for 
syllabification (section 4.1), phonemisation and stress assignment or stress retrieval 
(section 4.2). The phonemisation algorithm should be adapted in this case by remov-
ing a number of irrelevant phonological rules (e.g., assimilation rules). The result of 
applying this constructor is the extension of each entry in the source dictionary with 
an additional field (or slot at the knowledge level) for the transcription. Next, a filter 
object is defined working in three steps: 
(i) Take the broad phonetic transcription of each dictionary entry and reverse it. 
(ii) Sort the reversed transcriptions first according to their rhyme determining part 

and then alphabetically. The rhyme determining part consists of the nucleus and 
coda of the last stressed syllable and the following weak syllables if any. For 
example, the rhyme determining part of wérvelen (to whirl) is er-ve-len, of 
versnellen (to accelerate) el-len, and of overwérk (overwork) erk. 

(iii) Print the spelling associated with each transcription in the output file. The result 
is a spelling rhyme dictionary. If desirable, the spelling forms can be accom-
panied by their phonological transcription. 
Using the same information, we can easily develop an alternative filter which 

takes into account the metre of the words as well. Although two words rhyme even 
when their rhythm (defined as the succession of stressed and unstressed syllables) is 
different, it is common poetic practice to look for rhyme words with the same metre. 
The metre frame can be derived from the phonetic transcription. In this variant, step 
(ii) must be preceded by a step in which the (reversed) phonetic transcriptions are 
sorted according to their metre frame. 

8.2.4 Related Research 

The presence of both static information (morphemes and features) and dynamic infor-
mation (morphological rules) in LDBs is also advocated by Domenig and Shann 
(1986). Their prototype includes a morphological 'shell' making possible real time 
word analysis when only stems are stored. This morphological knowledge is not 



used, however, to extend the dictionary and their system is committed to a particular 
formalism while ours is notation-neutral and unrestrictedly extendible due to the 
object-oriented implementation. 

The LDB model outlined in Isoda, Aiso, Kamibayashi and Matsunaga (1986) 
shows some similarity to our filter concept. Virtual dictionaries can be created using 
base dictionaries (physically existing dictionaries) and user-defined Association Inter-
preters (AIPs). The latter are programs which combine primitive procedures (pattern 
matching, parsing, string manipulation) to modify the fields of the base dictionary 
and transfer control to other dictionaries. This way, for example, a virtual English-
Japanese synonym dictionary can be created from English-English and English-
Japanese base dictionaries. In our own approach, all information available is present 
in the same MD, and filters are used to create base dictionaries (physical, not virtu-
al). Constructors are absent in the architecture of Isoda et al. (1986). 

Johnson (1985) describes a program computing a reconstructed form on the 
basis of surface forms in different languages by undoing regular sound changes. The 
program, which is part of a system compiling a comparative dictionary 
(semi-)automatically, may be interpreted as related to the concept of a constructor in 
our own system, with construction limited to simple string manipulations, and not ex-
tensible unlike our own system. 

8.2.5 Conclusion 
We see three main advantages in our approach. First, the theoretical distinction 
between a dynamic linguistic level with a practical and user-friendly interface and a 
static storage level allows us to construct, extend and maintain a large MD quickly, 
conveniently and cost-effective (at least for those linguistic data of which the rules are 
fairly well understood). Obviously, MDs of different languages will not contain the 
same information: while it may be feasible to incorporate inflected forms of nouns, 
verbs and adjectives in it for Dutch, this would not be the case for Finnish. Second, 
the linguistic knowledge necessary to build constructor objects can be tested, optim-
ised and experimented with by continuously applying it to large amounts of lexical 
material. Third, optimal LDBs for specific applications (e.g. hyphenation, spelling er-
ror correction etc.) can be easily derived from the MD due to the introduction of 
filters which automatically derive DDs. 



It may be the case that our approach cannot be easily extended to the domain of 
syntactic and semantic dictionary information. It is not obvious how constructors 
could be built, for instance, for the (semi-)automatic computation of case frames for 
verbs or of semantic representations for compounds. Yet, our heuristics-driven 
cooperative interface could be profitably used in these areas as well. 

8.3 More Applications 
In the remainder of this chapter, we will indicate some additional practical systems in 
which our morpho-phonological model or applications already described may feature. 
The Lexical Analyser. A lexical analyser is a pre-processor for natural language in-
terpreting systems (parsers, retrieval systems, text-to-speech systems etc.). It 
transforms 'raw text' containing special symbols, punctuation, dates, numbers, 
names, addresses etc. into a representation which is convenient for further process-
ing. 

To achieve this effect, the lexical analyser should incorporate a spelling and typ-
ing error detection module (Chapter 6), and several special-purpose parsers whose 
task it is, on the one hand, to filter out potentially dangerous text features (e.g. 
idioms and spelling errors) and on the other hand to provide early semantic informa-
tion to help the 'higher' interpretation processes in difficult cases. 

Special purpose parsers should be defined for at least the following text features: 
(i) Dates: Dates in different formats (January the third, Third of January, 3/1) 

should be transformed into the same format, intelligible to the semantic interpre-
tation component. 

(ii) Names: Names provide a lot of information for semantic interpretation (mostly, 
they are linked to a concept to which information is attached). In some cases, 
names can be detected early. 

(iii) Formatting codes: These codes are special symbols which are often concatenated 
to the words (e.g. for bolding or italicising). A parser cannot recognise words 
if these codes are still added to them. We therefore need a special purpose 
parser to remove them. 

(iv) Punctuation: Punctuation can be concatenated to words as well. It is easy enough 
to strip punctuation marks from words and forget about them. A better solution, 
however, would be to keep them in the internal representation for use by the 



syntactic parser. 
Recent versions of our spelling checker incorporate (iii) and (iv). By way of 

example, an input sentence (1) would obtain an internal representation like (2) before 
being passed on to the syntactic analysis. 

(1) Ever since 4/4/1983 Jones had been missign, but the third of June he 
turned up again. 

(2) (icapital ever since :date 04041983 :capital :name jones had been :error 
missign :comma but :date 03061983 he turned up again :fullstop) 
The importance of a lexical analyser should not be underestimated. Any practical 

system which takes text as input should incorporate one, and the development of 
some special-purpose parsers is far from trivial. 
Text-to-Speech Systems. The phonemisation system (section 4.2) can be used as a 
module in a general text-to-speech (speech synthesis) system. Such a system consists 
of a number of stages (cp. Hill, 1980; Allen, 1980; Simon, 1980). The linguistic 
part (i and ii) is the hardest if high-quality speech from unrestricted text is needed. 
The phonetic/technological part (iii and iv) is much better understood. Figure 3 illus-
trates the interrelations between the different linguistic sub-modules. The shaded 
boxes represent modules which we have implemented and described in earlier 
chapters. 
(i) Text pre-processing', numbers and abbreviations are expanded, spelling checked, 

and exception dictionaries consulted (cf. the description of the lexical analyser 
earlier in this chapter). 

(ii) Phonemisation: a system like ours, augmented with information about syntactic 
structure, would be able to achieve high-quality transliteration. As was pointed 
out in section 4.2, phonemisation requires the activation of the morphological 
analyser (detection of internal word boundaries) and the syllabification module 
(syllable structure is necessary if not essential in phonemisation). Syntactic 
structure (not implemented in our system) is necessary to constrain some phono-
logical processes and to compute intonation contours. 

(iii) Parametric representation: individual phonemes must be transformed into sets of 
parameters. Typical parameters include voicing frequency, voicing amplitude, 
fricative amplitude, aspiration amplitude, formant frequency and main frequency 
peak for fricative energy. 



Figure 3. Modules in a text-to-speech system. 

(iv) Waveform construction: by means of a synthesiser, waveforms must be generat-
ed on the basis of the parametric phoneme representations and additional intona-
tion and stress information. 
Applications for a text-to-speech system abound: they are a crucial component in 

the production part of natural language interfaces (e.g. to data-bases and computer 
systems). Speech interfaces make the computer accessible to handicapped and 
(computer-)illiterate persons. Other obvious applications (in descending order of im-
portance) include reading machines for the blind, teaching machines, security warning 
systems, talking calculators, talking washing machines, talking cars etc. 



8.4 Conclusion 
In this chapter, the applicability of our morpho-phonological model in the construc-
tion of rule-testing systems, lexicographical environments, lexical analysers and text-
to-speech systems was described. We could have added sections on the role of a 
model like ours in machine translation, dialogue systems, typing aids, quantitative 
linguistics etc., but we have restricted ourselves to applications we have experimented 
with. 



GENERAL CONCLUSION 

A relation of mutual influence exists between programming and writing about programs. 
Writing a text about a program inspires modifications to the program. When these 
modifications are implemented, several shortcomings in the text are brought to light. This 
calls for a new version of the text which inspires new modifications to the program and 
so on ad infinitum. This loop can only be ended by a deadline. 

A central claim in this dissertation was that algorithms and heuristics for language 
technology should be based on a computer model which is motivated by 
(psycho)linguistic research. Restricted linguistic knowledge is indispensable for the 
construction of even the most simple language technological applications. Further-
more, it was argued that text processing algorithms developed for one language can-
not be simply transferred to other languages without essential modifications. We have 
gathered evidence for these theses in Chapters 5 and 6. We noted there that the spel-
ling behaviour of Dutch compounds makes necessary a level of morphological 
analysis in both automatic hyphenation and automatic spelling and typing error detec-
tion and correction. Incidentally, it may be a good idea to return to a version of 17th 
century Dutch spelling, in which internal word boundaries were indicated with a 
hyphen (for example Ont-werp der Neder-duitsche letter-konst of Johannes Troost, 
1649). Such a spelling change would make word processing software for Dutch a lot 
simpler. 

Throughout the text, the position was implicitly defended that when weighing the 
different aspects which constitute the concept 'computationally efficient': speed, 
memory requirements and accuracy, most attention should be paid to accuracy, as 
hardware possibilities evolve at such a rate that it would be foolish to make theoreti-
cal decisions on the basis of temporary physical limitations. This made us look for 
principled solutions to language technological problems rather than concentrate on 
efficiency boosting heuristics. 



We also stressed the importance of user-friendly interfaces to applications and of 
error recovery heuristics (this position was particularly defended in the sections on 
the rule testing device, the lexicographic environment and the Intelligent Tutoring 
System). 

In the course of building an application layer around the morphophonological 
module, several prototypes of programs were built. We will finish by reviewing them 
here concisely. 
(i) A (nameless) automatic syllabification program using morphological analysis 

divides words into syllables with nearly perfect accuracy (99.99% in a limited 
test, more experimentation is necessary). In principle, this approach allows the 
correct hyphenation of all existing and possible Dutch words. Remaining errors 
are due to limitations of the morphological parsing algorithm. A serious draw-
back of this program is the fact that it needs a complete word form dictionary 
in external memory. 

(ii) CHYP (for cautious hyphenation program) was based on a statistical study of 
syllable structure and on phonotactic restrictions. The program is small and 
efficient. In one mode, its accuracy equals that of current hyphenation programs 
which often include large amount of patterns or dictionary items, and makes the 
same mistakes. In another mode, it fails to insert a syllable boundary when not 
absolutely sure (with nearly perfect accuracy: 99.88%). CHYP is able to pro-
vide a full hyphenation (all boundaries) in 15% of polysyllabic words, at least 
two boundaries in 22% of polysyllabic words, and at least one in 63% of 
polysyllabic words. When applied to text-formatting, the average gain (measured 
with a spacing index) by using CHYP was 14% as opposed to 28% with a full 
hyphenation. The use of CHYP in optimising (i) and as an interactive hyphena-
tion system was also argued. 

(iii) DSPELL is a word level spelling and typing error detection program using mor-
phological analysis to reduce overkill (flagging correct words as an error). This 
reduction was 10%. Undershoot was not measured. 

(iv) TDTDT is a prototype of an ITS for teaching verbal inflections. The system is 
able to provide exercises, to react cooperatively to errors by the learner and to 
perform an elementary diagnosis of errors. 

(v) GRAFON is an interactive phonological rule-testing devise, designed to help the 
phonologist in developing and debugging complex rule systems. 



(vi) The Flexible Dictionary System is an environment in which lexicographers can 
create, extend and maintain lexical databases. 



APPENDICES 

Numbers of appendices refer to the Chapter in the text to which they belong. For 
example, A.3.1 is the appendix to Chapter 3 section 1. 



APPENDIX A.3 

A.3.1 Morphological Synthesis 
We present here an overview of the concept hierarchy we use for morphological syn-
thesis. This overview is split up in four diagrams (Figures A.1 to A.4). Black boxes 
indicate that there are sub-types of this concept which are not shown. These boxes 
are opened up in other diagrams. Figure A.5 provides an impression of the user 
interface which can be used by the linguist working with the synthesis program to 
inspect the different concepts in the system. The top frame of the window shows part 
of the concept hierarchy. The bottom right frame allows the user to compute forms. 
In the example, the spelling of laten (to let) and the lexical representation of werken 
(to work) are computed. The bottom left frame shows the internal structure of the 
verb form laten. The different subjects (attached to laten or inherited) are listed with 
their fillers. The structure of one of these fillers (verb-form #4) is shown in the bot-
tom middle frame. 





VERB-PARADIGM-REGULAR-VERB-LEXEME 

SEMI-IRREGULAR-2-VERB-LEXEM 

SEMI-IRREGULAR-3-VERB-LEXEME 

SEMI-IRREGULAR-1-VERB-LEXEME 

WREKEN 
IRREGULAR-2-VERB-LEXEMEZWIJGEN 

IRREGULAR-1-VERB-LEXEME 

BAKKEN 

LOPEN 
BLAZEN 
LATEN 



LINGUISTIC-OBJECT LINGUISTIC-RULE 

Irregular-verb-mixin 

PARADIGM 

SPELLING-RULE 

MORPHOLOGICAL-RULE 

CONSONANT-DEGEMINATION-RULE 
-GE-DELETION-RULE 
SCHWA-REDUCTION-RULE 
VOWEL-DOUBLING-RULE 
ZV-DEVOICING-RULE 
SPELLING-ASSIMILATION-RULE 

CHANGE-ROOT-PAST-PARTICIPLE-RULE 
PAST-PARTICIPLE-RULE 
EN-PAST-PARTICIPLE-RULE 
ADJECTIVAL-FORM-RULE 
PLURAL-RULE 
-PAST-SINGULAR-RULE 

PRESENT-PARTICIPLE-RULE 

PRESENT-SINGULAR-THREE-RULE 
MORPHEME 
BOUNDARY 



irregular-verb-mixin Paradigm Linguistic-rul 

PAST-PARTICIPLE-SUFFIX 
eN-PAST-PARTICIPLE-SUFFIX 

-ADJECTIVAL-FORM-SUFFIX 
-PRESENT-SINGULAR-SUFFIX 
PRESENT-PARTICIPLE-SUFFIX 
PAST-SINGULAR-SUFFIX 
PLURAL-SUFFIX 

pREFIXP AST-PARTICIPLE-PREFIX 
FREE-MORPHEME-WORD-FORMVERB-FORM 

BOUNDARY 

LINGUISTIC-OBJECT SUFFIX 
MORPHEME 

BOUND-MORPHEME 



SEMI-IRREGULRR-3-VERB-LEXEME 

-SEMI-IRREGULRR-2-VERB-LEXEM 

PARADIGM-VERB-PARADIGM-REGULAR-VERB-LEXEMZ 

WREKEN 

SEMI-IRREGULAR-1-VERB-LEXEME 

IRREGULRR-2-VERB-LEXEME-ZWIJGEN 

BAKKEN 

LATEN 

IRREGULRR-1 -VERB-LEXEME -BLAZEN 

-LOPEN 

Top of object <LATEN> 
META-CONCEPT-TYPE: <META-CONCEPT> 

ROOT: <MORPHEME #1> 

ADJECTIVAL-FORM: <VERB-FORM #2> 

PAST-PARTICIPLE: <VERB-FORM #3> 

PAST-PLURAL: <VERB-FORM #4> 

PAST-SINGULAR: <VERB-FORM #5> 

PRESENT-PARTICIPLE: <VERB-FORM #6> 

PRESENT-PLURAL: <VERB-FORM »?> 

PRESENT-SINGULAR-THREE: <VERB-FORM #8> 

PRESENT-SINGULAR-TWO: <VERB-FORM #9> 

PRESENT-SINGULAR-ONE: <VERB-FORM #10> 

PARADIGM: <CONCEPT-LIST (<VERB-FOR 

PAST-ROOT: <STRING liet> 

CITATION-FORM: <STRING laten> 

TYPE: <IRREGULRR-1-VERB-LEXEME 

Bottom of object 

Krs system1 

Top of object <VERB-FORM #4> 
META-CONCEPT-TYPE: <META-CONCEPT> 

SPELLING: <STRING lieten> 

LEXICAL-REPRESENTATION: <STRING liet+ 

GRAMM-NUMBER: 

<PLURAL> 

TENSE: 

<PAST> 

FINITENESS: 

<FINITE> 

LEXEME: 

<LATEN> 

TYPE:<VERB-FORM> 

Bottom of object 

(>> referent spelling 

past-plural of laten) 

"lieten" 

(defconcept werken 

(a regular—verb-lexeme 

(citation-form [string "werken"]))) 

<CONCEPT-NAME 11> 

(>> referent lexical-representation 

past-participle of werken) 

"g@#werk+D" 

[10:21:01 Hardcopy of Lisp Frame 1 has been 

bitmapped to RGFR] 

lisp1 



Next, we show some verb forms computed by our morphological synthesis system. 
For each form, the output of those spelling rules which modified the lexical represen-
tation are also given. Of each form, first the lexical representation is given, then the 
spelling rules applied to it (if any) and finally the spelling. Forms computed are 
present-singular-first, present-singular-third, present-singular-plural, present-participle, 
past-singular, past-plural and past-participle, in that order. 
BAKKEN (to bake) 

... bakk CONSONANT-DEGEMINATION-RULE: bak ... bak 

... bakk+t 
CONSONANT-DEGEMINATION-RULE: bak+t 

... bakt 

... bakk+dn 

... bakken 

... bakk+dnd 

... bakkend 

... bakk#Dd 
SPELLING-ASSIMILATION-RULE: bakk#td 
CONSON ANT-DEGEMIN ATION-RULE: bak#td 

... bakte 

... bakk#Dd + dn 
SPELLING-ASSIMILATION-RULE: bakk#td+dn 
CONSONANT-DEGEMINATION-RULE: bak#td+dn 
SCHWA-REDUCTION-RULE: bak#td+n 

... bakten 

... gd#bakk + dn 

... gebakken 

HERSTELLEN (to repair) 

... herstell 
CONSONANT-DEGEMINATION-RULE: herstel 

... herstel 

... herstell+t 
CONSONANT-DEGEMINATION-RULE: herstel+t 



herstelt 

herstell+dn 
herstellen 

herstell+dnd 
herstellend 

herstell#Dd 
... SPELLING-ASSIMILATION-RULE: herstell#dd 
... CONSONANT-DEGEMINATION-RULE: herstel#dd 
herstelde 

herstell#Dd+dn 
... SPELLING-ASSIMILATION-RULE: herstell#dd+dn 
... CONSONANT-DEGEMINATION-RULE: herstel#dd+dn 
... SCHWA-REDUCTION-RULE: herstel#dd+n 

...herstelden 
... gd#herstell+D 

SPELLING-ASSIMILATION-RULE: gd#herstell+d 
CONSONANT-DEGEMINATION-RULE: gd#herstel+d 
GE-DELETION-RULE: herstel+d 

... hersteld 

LATEN (to let) 

... lat 
VOWEL-DOUBLING-RULE: laat 

... laat 

.... lat+t 
. ... VOWEL-DOUBLING-RULE: laat+t 
. ... 

CONSONANT-DEGEMINATION-RULE: laa+t 

... laat ... lat+dn 

... laten 
... lat+dnd 

... latend 
... liet 

... liet 
... liet+dn 

... lieten 



... gd#lat+dn 

... gelaten 
POTTEN (to pot) 

... pott 
CONSONANT-DEGEMINATION-RULE: pot 

... pot 

... pott+t 
CONSONANT-DEGEMINATION-RULE: pot+t 
CONSONANT-DEGEMINATION-RULE: po+t 

... pot 

... pott+dn 

... potten 

... pott+dnd 

... pottend 

... pott#Dd 
SPELLING-ASSIMILATION-RULE: pott#td 
CONSONANT-DEGEMINATION-RULE: pot#td 

... potte 

... pott#Dd+dn 
SPELLING-ASSIMILATION-RULE: pott#td+dn 
CONSONANT-DEGEMINATION-RULE: pot#td+dn 
SCHWA-REDUCTION-RULE: pot#td+n 

... potten 

... gd#pott+D 
SPELLING-ASSIMILATION-RULE: gd#pott+ 
CONSONANT-DEGEMINATION-RULE: gd#pot+ 

... gepot 

VERVELEN (to bore) 

... vervel VOWEL-DOUBLING-RULE: verveel 

... verveel 

... vervel+t 
VOWEL-DOUBLING-RULE: verveel+t 

... verveelt 

... vervel+dn 



...vervelen 

... vervel+dnd 

... vervelend 

... vervel#Dd 
SPELLING-ASSIMILATION-RULE : vervel#dd 
VOWEL-DOUBLING-RULE: vervee ld 

... verveelde 

... vervel#Dd+dn 
SPELLING-ASSIMILATION-RULE : vervel#dd+dn 
VOWEL-DOUBLING-RULE: verveel#dd+dn 
SCHWA-REDUCTION-RULE: verveel#dd+n 

... verveelden 

The next form is wrong; ver has not been detected as a prefix, which 
results in the non-application of the ge-deletion-rule 

... ge#vervel+D 
SPELLING-ASSIMILATION-RULE: gd#vervel+d 
VOWEL-DOUBLING-RULE: gd#verveel+d 

... geverveeld 

VERVELLEN (to peel) 

... vervell 
CONSONANT-DEGEMINATION-RULE : vervel 

... vervel 

... vervell+t 
CONSONANT-DEGEMINATION-RULE : vervel+t 

... vervelt 

... vervell+dn 

... vervellen 

... vervell+dnd 

... vervellend 

... vervell#Dd 
SPELLING-ASSIMILATION-RULE: vervell#dd 
CONSONANT-DEGEMINATION-RULE: vervel#dd 

... vervelde 

... vervell#Dd+dn 
SPELLING-ASSIMILATION-RULE: vervell#dd+dn 



CONSONANT-DEGEMINATION-RULE: vervel#dd+dn 
SCHWA-REDUCTION-RULE: vervel#dd+n 

... vervelden 

The remark made earlier about the computation of the past 
participle of vervelen applies here as well. 

... gd#vervell+D 

... ... SPELLING-ASSIMILATION-RULE: gd#vervell+d 
CONSONANT-DEGEMINATION-RULE: gd#vervel+d 

... geverveld 



A.3.2 Trace of Segmentation and Lookup 
The following traces show the input and output for the functions segment-string and 
lookup for some input strings. Note that possible word forms which do not conform 
to the phonotactic restrictions of Dutch (e.g. sdeursleutel in the first example) are 
not looked up in the dictionary. 
Output of (segment-string "huisdeursleutel"); 
SEGMENT-STRING and LOOKUP are traced. 

1 Enter SEGMENT-STRING "huisdeursleutel" 
| 1 Enter LOOKUP "huisdeursleutel" 

| 1 Exit LOOKUP -
| 1 Enter LOOKUP "uisdeursleutel" 

| 1 Exit LOOKUP -
| 1 Enter LOOKUP "isdeursleutel" 
| 1 Exit LOOKUP -

| 1 Enter LOOKUP "deursleutel" 
| 1 Exit LOOKUP -

| 1 Enter LOOKUP "eursleutel" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "ursleutel" 

| 1 Exit LOOKUP -
| 1 Enter LOOKUP "sleutel" 
| 1 Exit LOOKUP (NOUN) 

| 2 Enter SEGMENT-STRING "huisdeur" 
| 1 Enter LOOKUP "huisdeur" 

| 1 Exit LOOKUP -
| 1 Enter LOOKUP "uisdeur" 

| 1 Exit LOOKUP -
| 1 Enter LOOKUP "isdeur" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "deur" 

| 1 Exit LOOKUP (NOUN) 
| 3 Enter SEGMENT-STRING "huis" 

| | 1 Enter LOOKUP "huis" 
| | 1 Exit LOOKUP (NOUN) 
| 3 Exit SEGMENT-STRING ("huis") 
| 2 Exit SEGMENT-STRING ("huis" "deur") 
1 Exit SEGMENT-STRING ("huis" "deur" "sleutel") 

Output of (segment-string "vermogensbelasting"); 
SEGMENT-STRING and LOOKUP are traced. 

1 Enter SEGMENT-STRING "vermogensbelasting" 
| 1 Enter LOOKUP "vermogensbelasting" 



| 1 Exit LOOKUP -
| 1 Enter LOOKUP "ermogensbelasting" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "mogensbelasting" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "ogensbelasting" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "gensbelasting" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "ensbelasting" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "belasting" 
| 1 Exit LOOKUP (NOUN) 
| 2 Enter SEGMENT-STRING "vermogens" 
| 1 Enter LOOKUP "vermogens" 
| 1 Exit LOOKUP (VERB NOUN) 
| 2 Exit SEGMENT-STRING ("vermogens") 
1 Exit SEGMENT-STRING ("vermogens" "belasting") 

Output of (segment-string "huisvuilvernietigingsfabriek"); 
SEGMENT-STRING and LOOKUP are traced. 

1 Enter SEGMENT-STRING "huisvuilvernietigingsfabriek" 

| 1 Enter LOOKUP "huisvuilvernietigingsfabriek" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "uisvuilvernietigingsfabriek" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "isvuilvernietigingsfabriek" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "vuilvernietigingsfabriek" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "uilvernietigingsfabriek" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "ilvernietigingsfabriek" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "vernietigingsfabriek" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "ernietigingsfabriek" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "nietigingsfabriek" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "ietigingsfabriek" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "etigingsfabriek" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "tigingsfabriek" 
| 1 Exit LOOKUP -



| 1 Enter LOOKUP "igingsfabriek" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "gingsfabriek" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "ingsfabriek" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "sfabriek" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "fabriek" 
| 1 Exit LOOKUP (NOUN) 
| 2 Enter SEGMENT-STRING "huisvuilvernietigings" 

| 1 Enter LOOKUP "huisvuilvernietigings" 
| 1 Exit LOOKUP -

| 1 Enter LOOKUP "uisvuilvernietigings" 
| 1 Exit LOOKUP -

| 1 Enter LOOKUP "is vuil vernietigings" 
| 1 Exit LOOKUP -

| 1 Enter LOOKUP "vuilvernietigings" 
| 1 Exit LOOKUP -

| 1 Enter LOOKUP "uilvernietigings" 
| 1 Exit LOOKUP -

| 1 Enter LOOKUP "ilvernietigings" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "vernietigings" 

| 1 Exit LOOKUP (NOUN) 
| 3 Enter SEGMENT-STRING "huisvuil" 
| | 1 Enter LOOKUP "huisvuil" T 
| | 1 Exit LOOKUP (NOUN) 

| 3 Exit SEGMENT-STRING ("huisvuil") 
| 2 Exit SEGMENT-STRING ("huisvuil" "vernietigings") 
1 Exit SEGMENT-STRING ("huisvuil" "vernietigings" "fabriek") 

Output of (segment-string "boeredochtersavondgebed"); 
SEGMENT-STRING and LOOKUP are traced. 

1 Enter SEGMENT-STRING "boeredochtersavondgebed" 
| 1 Enter LOOKUP "boeredochtersavondgebed" 

| 1 Exit LOOKUP -
| 1 Enter LOOKUP "oeredochtersavondgebed" 

| 1 Exit LOOKUP -
| 1 Enter LOOKUP "eredochtersavondgebed" 

| 1 Exit LOOKUP -
| 1 Enter LOOKUP "redochtersavondgebed" 

| 1 Exit LOOKUP -
| 1 Enter LOOKUP "edochtersavondgebed" 

| 1 Exit LOOKUP -
| 1 Enter LOOKUP "dochtersavondgebed" 



| 1 Exit LOOKUP -
| 1 Enter LOOKUP "ochtersavondgebed" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "tersavondgebed" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "ersavondgebed" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "savondgebed" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "avondgebed" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "vondgebed" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "ondgebed" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "gebed" 
| 1 Exit LOOKUP (NOUN) 
| 2 Enter SEGMENT-STRING "boeredochtersavond" 
| 1 Enter LOOKUP "boeredochtersavond" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "oeredochtersavond" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "eredochtersavond" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "redochtersavond" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "edochtersavond" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "dochtersavond" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "ochtersavond" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "tersavond" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "ersavond" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "savond" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "avond" 
| 1 Exit LOOKUP (NOUN) 
| 3 Enter SEGMENT-STRING "boeredochters" 
| | 1 Enter LOOKUP "boeredochters" 
| 1 Exit LOOKUP -
| 1 Enter LOOKUP "oeredochters" 
| | 1 Exit LOOKUP -
| 1 Enter LOOKUP "eredochters" 
| 1 Exit LOOKUP -



| | 1 Enter LOOKUP "redochters" 
| | 1 Exit LOOKUP -
| | 1 Enter LOOKUP "edochters" 
| | 1 Exit LOOKUP -
| | 1 Enter LOOKUP "dochters" 
| | 1 Exit LOOKUP (NOUN) 
| | 4 Enter SEGMENT-STRING "boere" 
| | 1 Enter LOOKUP "boere" 
| | 1 Exit LOOKUP (NOUN VERB) 
| | 4 Exit SEGMENT-STRING ("boere") 
| 3 Exit SEGMENT-STRING ("boere" "dochters") 
| 2 Exit SEGMENT-STRING ("boere" "dochters" "avond") 
1 Exit SEGMENT-STRING ("boere" "dochters" "avond" "gebed") 



APPENDIX A.4 

A.4.1 Source Text 
(By Kees Fens, from KUZIEN, Summer 1985) 
Houd ik van mijn kamer? Twee glaswanden met luxaflex, een grijze muur van ruwe 
stenen en een witte wand van even ruwe stenen. Dat vertedert niet. Over het 
lattenplafond lopen drie rijen Tee-El-buizen, en alleen in de zwartste tijd van het jaar 
neemt het licht ook bezit van de kamer; meestal houdt het zich op koele afstand. Er 
staan in de kamer drie kasten van beige-grijs metaal; ze zijn altijd gesloten. Ik heb 
met hen in een kleine drie jaar geen relatie kunnen opbouwen. Er zijn een bureau en 
en vergadertafel, beide voortgebracht door de lege geest van een 
kantoormeubelfabrikant. Dan zijn er twee planten, introverten, met misschien fraaie 
groene gedachten, maar ze laten ze niet blijken. Het waait nooit in de kamer, de 
twee weten al lang niet meer dat ze tot de natuur horen. Aan de witte wand hangen 
twee schilderijen: Holbeins getekende portret van Thomas More; More kijkt peinzend 
voor zich uit, soms denk ik met hem mee, en dan belanden we in Charterhouse, 
want daar is hij het gelukkigst geweest, tot hij in de cel van de Tower kwam. 
Daarnaast hangt een zeer kleurrijk abstract schilderij van een goede vriend van mij; 
het is zo uitbundig dat het veel plezier in zichzelf moet hebben, zoals die vriend dat 
trouwens ook altijd heeft. Aan de grijze muur hangt een vooroorlogse tekening van 
een straatje in Amsterdam-oud-west. Door dat straatje ging ik zes jaar lang naar de 
lagere school, dagelijks zeer gelukkig: het was de mooiste tijd van mijn leven, omdat 
het leren tot niets diende. Op de voorgrond loopt een bakkertje achter een kar, ik 
heb hem gekend. Hij is in een plas graangestookte jenever verdronken. Op het 
bureau ligt bijna, op de tafel in het geheel niets. Ik houd niet van papier. Aan het 
opbouwen van een rijk gevoelsleven werkt de kamer niet mee. Hij is een 
onpersoonlijke ruimte, koud zelfs, zoals een publieke ruimte past. Een privé-kamer 



vereist afsluiting. Maar sloten zijn in dit gebouw verboden. Ik houd niet van mijn 
kamer. Maar ik heb er drie weken van gehouden. Op donderdag achttien april, 's 
middags om drie uur kwamen er twee jongemannen mijn kamer binnen met een zin 
die ik veertig jaar geleden voor het laatst had gehoord: 'Dit gebouw is bezet. U 
dient deze kamer binnen een half uur te verlaten.' Ik begreep de onweerstaanbare 
kracht van de democratie en een uur later stond ik buiten. De al zo lege kamer liet 
ik leger achter. Vanaf de volgende dag stond de kamer drie weken in mijn hoofd. 
Ik zat aan de andere kant van het land, wat mijn betrokkenheid misschien groter 
maakte. Ik zag voortdurend de kamer, leeg, achtergelaten op een doodstille gang. 
En ik maakte er, in de geest, steeds een reis door heen. De grijze muur, de witte 
muur, zouden ze elkaar kunnen onderhouden? Op de negende dag zag ik op de witte 
muur een beurse plek, ontstaan door de tegen de muur slaande deur. Steen kan 
vertederen. Het licht was uit, natuurlijk, zou More nog iets zien? Met de lampen 
aan kan hij in het vrolijke schilderij kijken, hij ziet nu slechts grijsheid. En zijn 
peinzen is overgegaan in een lichte melancholie. De bakker duwt zijn karretje het 
duister in en niet langer in de richting van de glorieuze brug waarachter mijn school 
lag. En de planten? Ik kreeg medelijden met hen. De een is een wat onnozele, hij 
lijkt ook niet te groeien, hij zal van de leegte niets begrijpen, maar de andere, die 
een boom probeert te zijn, die moet lijden onder de stilte van de dood die elke 
bezetting meebrengt. Ik trachtte de kamer te bewonen. Ik ging achter het lege 
bureau zitten en keek naar de kasten. Ze kunnen zich bezig houden met de boeken 
die erin staan, ik gaf ze toe: woordenboeken en naslagwerken zijn moeilijk te lezen 
bij slecht licht en opwindend zijn ze ook niet. Een kon zich vermaken met 
jaargangen van vele tijdschriften. Maar de derde. Die had niet veel anders dan 
aanzetten van scripties en daar kom je lege weken niet mee door. 'De telefoon slaapt 
op de lessenaar' dacht ik op de twaalfde dag, want poëzie kan misschien een leegte 
wat vullen. Hoe breng ik een teken van leven over naar ginds, naar de planten, de 
schilderijen, de kasten en de tafels? Ik heb twee keer het nummer van mijn kamer 
gebeld, laat in de avond, wanneer de verlatenheid het grootst moet zijn geweest. Ik 
hoopte dat de deur zou openstaan en de bel door de hele gang te horen zou zijn. 
Een collega mocht op de vijftiende dag van de bezetters iets van zijn kamer halen, 
onder geleide. Hij bewoont de kamer naast de mijne. De volgende dag belde hij 
mij: je kamer staat er bij zoals je hem hebt verlaten. Ik durfde niet te vragen naar 
de toestand van de meubels, de planten, More en het straatje (het kleurrijke schilderij 
gaf mij geen zorgen: die heeft genoeg aan zijn eigen geluk), want ik droeg mijn leed 
in stilte. Na drie weken kende ik van de kamer elke centimeter en elke vlek in de 



vloerbekleding en op het tafelblad. Op maandag dertien mei kwam er een einde aan 
de bezetting. Om half twaalf in de morgen kwam ik de kamer binnen. Alles had 
zich weer op zichzelf teruggetrokken, de leegte was weer tot zijn oorspronkelijk 
gedaante gevuld. In de hoek achter een kast vond ik een paraplu. Die had ik 
helemaal vergeten. Met hem had ik nu het grootste medelijden. Ik ben mijn 
schuldgevoelens tegenover hem nog niet kwijt. Een voormalige bezetter komt vragen 
naar de datum van een college. Dat hij de kamer die hij zo deed lijden, zo maar in 
durfde, heeft mij het meest verbijsterd. 

Kees Fens 

A.4.2 Syllabification and Stress Assignment 
##*houd##*ik##* van##*mijn##*ka=mer## 
##*twee##*glas#*wan=den##*met##*lu=xaf = lex## 
##en##*grij=ze##*muur##*van##*ru=we##*ste=nen##*en## 
##en##* wit=te##*wand##*van##*e=ven##*ru=we##*ste=nen## 
##*dat##ver#*te=dert##*niet## 
##*o=ver##et##*lat=ten#*pla=fond## 
##*lo=pen##*drie##*rij=en##*tee##*el##*bui=zen## 
##*en##al=*leen##*in##de##*zwart=ste##*tijd##*van##et##*jaar## 
##*neemt#^et##*licht##ook##be#*zit##* van##de##*ka=mer## 
##*mee=stal##*houdt##et##*zich##*op##*koe=le##*af#stand## 
##er##*staan##*in##de##*ka=mer##*drie##*kas=ten## 
##*van##*bei=ge##*grijs##me=*taal## 
##ze##*zijn##*al=tijd##ge#*slo=ten## 
##*ik##*heb##*met##*hen##*in##en##*klei=ne##*drie##*jaar## 
##*geen##re= *la=tie##*kun=nen##*op#*bou=wen## 
##er##*zijn##en##bu=*reau##*en##en##ver#*ga=der#*ta=fel## 
##*bei=de##*voort#ge=*bracht##*door##de##*le=ge##*geest## 
##*van##en##kan=*toor#*meu=bel#fa=bri=*kant## 
##*dan##*zijn##er##*twee##*plan=ten## 
##in=tro=* ver=ten## 
##*met##mis=*schien##*fraai=e##*groe=ne##ge#*dach=ten## 
##*maar##ze##*la=ten##ze##*niet##*büj=ken## 
##et##* waait##*nooit##*in##de##*ka=mer## 
##de##*twee##*we=ten##*al##*lang##*niet##*meer## 
##*dat##ze##*tot##de##na=*tuur##*ho=ren## 
##*aan##de##* wit=te##* wand##*han=gen##*twee##schil=de=*rij=en## 
##*Hol=beins##ge#*te=ken=de##por=*tret##*van##*tho=mas##*mo=re## 
##*mo=re##*kijkt##*pein=zend##*voor##*zich##*uit## 
##*soms##*denk##*ik##*met##*hem##*mee## 
##*en##*dan##be#*lan=den##we##*in##*char=ter=hou=se## 



##*want##»daar##*is##*hij##et##ge#«luk=kigst##ge#* weest## 
##*tot##*hij##*in##de##*cel##* van##de##*to=wer##*kwam## 
##*daar#*naast##*hangt##en##*zeer##*kleur#1,trijk## 
ab=*stract##schil=de=*rij## 
##*van##en##*goe=de##*vriend##* van###mij## 
##et##*is##*zo##uit#*bun=dig## 
##*dat##et##* veel##ple=*zier##*in##*zich#*zelf##*moet##*heb=ben## 
##*zo= *als##*die##*vriend##*dat##*trou=wens## 
*ook##*al=tijd##*heeft## 
##*aan##de##*grij=ze##*muur##*hangt##en## 
*voo=roor=log=se##*te=ke=ning## 
##* van##en##*straat#je##*in##*am=ster=dam##*oud##* west## 
##*door##*dat##*straat#je##*ging##*ik##*zes##*jaar##*lang## 
##*naar##de##*la=ge=re##*school## 
##*da=ge=lijks##*zeer##ge=*luk=kig## 
##et##* was##de##*moois=te##*tijd##*van##*mijn##*le=ven## 
##om= *dat##et##*le=ren##*tot##*niets##*dien=de## 
##*op##de##*voor=*grond##*loopt##en##*bak=ker#tje## 
##*ach=ter##en##*kar## 
##*ik##*heb##*hem##ge=*kend## 
##*hij^*is##*in##en##*plas##*graan#ge#*stook=te##je=*ne=ver## 
##ver#*dron=ken## 
##*op##et##bu=*reau##*ligt##*bij#na## 
##*op##de##*ta=fel##*in##et##ge=*heel##*niets## 
##*ik##*houd##*niet##*van##pa=*pier## 
##*aan##et##op#*bou=wen##*van##en##*rijk##ge=*voels#*le=ven## 
##* werkt##de##*ka=mer##*niet##*mee## 
##*hij##*is##en##on#per=*soon=lij=ke##*ruim=te## 
##*koud##*zelfs## 
##*zo#*als##en##pu=*blie=ke##*ruim=te##*past## 
##en##pri=*ve##*ka=mer##ver = *eist##*af = slui=ting## 
##*maar##*slo=ten##*zijn##*in##*dit##ge=*bouw##ver=*bo=den## 
##*ik##*houd##*niet##*van##*raijn##*ka=mer## 
##*maar##*ik##*heb##er##*drie##*we=ken##van##ge=*hou=den## 
##*op##*don=der=dag##*acht#*tien##a=*pril## 
##*smid=dags##*om##*drie##*uur## 
##*k wa=men##er##*twee##*jon=ge#*man=nen##*mijn##*ka=mer##*bin=nen## 
##*met##en##*zin##*die##*ik##* veer=tig##*jaar##ge=*le=den## 
##*voor##et##*laatst##*had##ge=*hoord## 
##*dit##ge=*bouw##*is##be=*zet## 
##*u##*dient##*de=ze##*ka=mer##*bin=nen## 
en##*half##*uur##te##ver=*la=ten## 
##*ik##be=*greep##de##on=weer#*staan=ba=re##*kracht## 
##* van##de##*de=mo=era=tie## 
##*en##en##*uur##*la=ter## 
##*stond##*ik##*bui=ten## 
##de##*al##*zo##*le=ge##*ka=mer## 



##*liet##*ik##*le=ger##*ach=ter## 
##*van=*af##de##*vol=gen=de##*dag##*stond##de##*ka=mer## 
##*drie##*we=ken##*in##*mijn##*hoofd## 
##*ik##*zat##*aan##de##*an=de=re##*kant##* van##et##*land## 
##*wat##*mijn##be=*trok=ken=heid##mis=*schien## 
##*gro=ter##*maak=te## 
##*ik##*zag##* voort#*du=rend##de##*ka=mer## 
##*leeg## 
##*ach=ter#ge=*la=ten##*op##en##*dood#*stil=le##*gang## 
##*en##*ik##*maak=te##er## 
##*in##de##*geest## 
##*steeds##en##*reis##*door##*heen## 
##de##*grij=ze##*muur## 
##de##* wit=te##*muur## 
##* zou=den##ze##*el=kaar##*kun=nen##*on=der#*hou=den## 
##*op##de##*ne=gen=de##*dag## 
##*zag##*ik##*op##de##*wit=te##*muur## 
##en##*beur=se##*plek## 
##ont = *staan##*door##de##*te=gen##de##*muur##*slaan=de##*deur## 
##*steen##*kan##ver=*te=de=ren## 
##et##*licht##*was##*uit## 
##na=*tuur=lijk## 
##*zou##*mo=re##*nog##*iets##*zien## 
##*met##de##*lam=pen##*aan## 
##*kan##*hij## 
##*in##et##*vro=lij=keMschil=de=*rij##*kij=ken## 
##*hij##*ziet##*nu##*siechts##*grijs=heid## 
##*en##*zijn##*pein=zen##*is##*o=ver#ge=*gaan## 
##*in##en##*lich=te##*me=lan=cho=lie## 
##de##*bak=ker##*duwt##*zij n##*kar=re#tje## 
##et##*duis=ter##*in## 
##*en##*niet##*lan=ger##*in##de##*rich=ting## 
##*van##de##*glo=rieu=ze##*brug## 
##*waa=rach=ter##*mijn##*school##*lag## 
##*en##de##*plan=ten## 
##*ik##*kreeg##*me=de#*lij=den##*met##*hen## 
##de##en##*is##en##*wat##on=*no=ze=le## 
##*tój##*lijkt##*ook##*niet##te##*groei=en## 
##*hij##*zal##* van##de##*leeg=te##*niets##be=*grij=pen## 
##*maar##de##*an=de=re## 
##*die##en##*boom##pro=*beert##te##*zijn## 
##*die##*moet##*lij=den## 
##*on=der##de##*stil=te##*van##de##*dood## 
##*die##*el=ke##be=*zet=ting##*mee# *brengt## 
##*ik##*tracht=te##de##*ka=mer##te##be = *wo=nen## 
##*ik##*ging##*ach=ter##et##*le=ge##bu= *reau##*zit=ten ## 
##*en##*keek##*naar##de##*kas=ten## 



##ze##*kun=ncn##*zich##*be=zig#*hou=den## 
##*met##de##*boe=ken## 
##*die##*er#*in##*staan## 
##*ik##*gaf##ze##*toe## 
##* woor=den#*boe=ken##*en##na#*slag#* wer=ken## 
##*zijn##*moei=lijk##te##*le=zen## 
##*bij##*slecht##*licht## 
##*en##op#*win=dend##*zijn##ze##*ook##*niet## 
##en##*kon##*zich##ver#*ma=ken## 
##*met##*jaar#*gan=gen## 
##*van ##*ve=le##*tijd#*schrif= ten## 
##*maar##de##*der=de## 
##*die##*had##*niet##* veel##*an=ders## 
##*dan##*aan#*zet=ten##*van##*scrip=ties## 
##*en##*daar##*kom##je##*le=ge##* we=ken##*niet##*mee##*door## 
##de##*te=Ie=foon##*slaapt##*op##de##*les=se=naar## 
##*dacht##*ik##*op##de##*twaalf = de##*dag## 
##*want##po=e=*zie##*kan##mis=*schien## 
en##*leeg=te##* wat##* vul=len##= 
##*hoe##*breng##*ik##en##*te=ken##*van##*le=ven## 
##*o=ver##*naar##*ginds## 
##*naar##de##*plan=ten## 
##de##schil=de=*rij=en## 
##de##*kas=ten##*en##de##*ta=fels## 
##*ik##*heb##*twee##*keer## 
##et##*num=mer##* van##*mijn##*ka=mer##ge#*beld## 
##*laat##*in##de##*a=vond## 
##wan=*neer##de##ver = *la=ten=heid## 
##et##*grootst##*moet##*zijn##ge=*weest## 
##*ik##*hoop=te## 
##*dat##de##*deur##*zou##*o=pen#*staan## 
##*en##de##*bel##*door##de##*he=le## 
*gang##te##*ho=ren##*zou##*zijn## 
##en##col= *le=ga##*mocht##*op##de##* vijf#*tien=de##*dag## 
##*van##de##be=*zet=ters## 
##*iets##*van##*zijn##*ka=mer##*ha=len## 
##*on=der##ge= *lei=de## 
##*hij##be=* woont##de##*ka=mer##*naast##de##*mij=ne## 
##de##*vol=gen=de##*dag##*bel=de##*hij##*mij## 
##je##*ka=mer##*staat##*er#*bij## 
##*zo#*als##je##*hem##*hebt##ver=*la=ten## 
##*ik##*durf= de##*niet##te##*vra=gen## 
##*naar##de##*toe#*stand##*van##de##*meu=bels## 
##de##*plan=ten## 
##*mo=re##*en##et##*straat#je## 
##et##*kleur#*rij=ke##schil=de=*rij## 
##*gaf##*mij##*geen##*zor=gen## 



##*die##*heeft##ge=*noeg##*aan##*zijn##*ei=gen##ge=*luk## 
##»want##*ik##*droeg##*mijn##*leed##*in##*stil=te## 
##*na##*drie##* we=ken## 
###ken=de##*ik##* van##de##*ka=mer## 
## *el=ke##*cen=ti#=*me=ter## 
##*en##*el=ke##*vlek##*in##de##* vloer#be#*kle=ding## 
##*en##*op##et##*ta=fel#*blad## 
##*op##*maan=dag##*der=tien##*mei## 
##*k wam##er##en##*ein=de##*aan##de##be#*zet=ting## 
##*om##*half##*twaalf## 
##*in##de##*mor=gen## 
##*kwam##*ik##de##*ka=mer##*bin=nen## 
##*al=les##*had##*zich##*weer## 
##*op##*zich#*zelf##te=*rug#ge#*trok=ken## 
##de##*leeg=te##* was##* weer## 
##*tot##*zijn##oor = *spron=ke=lijk##ge=*daan=te## 
##ge=*vuld## 
##*in##de##*hoek##*ach=ter##en##*kast## 
##*vond##*ik##en##pa=ra= *plu## 
##*die##*had##*ik##*he=le=maal##ver = *ge=ten## 
##*met##*hem##*had##*ik##*nu## 
##et##*groot=ste##*me=de#*lij=den## 
##*ik##*ben##*mijn##*schuld#ge=* voe=lens## 
##*te=gen#*o=ver##*hem## 
##*nog##*niet##*kwijt## 
##en##* voor#*ma=li=ge##be=*zet=ter## 
##*komt##*vra=gen##*naar##de##*da=tum##*van##en##col=*le=ge## 
##*dat##*hij##de##*ka=mer## 
##*die##*hij##*zo##*deed##*lij=den## 
##*zo##*maar##*in##*durf= de## 
##*heeft##*mij##et##*meest##ver= »bij=sterd## 
##*kees##*fens## 

A.4.3 Phonemisation 
(Flemish variant) 



' ik ' f a ' m e l o ' k a m a r 
' t f l a s . w a n d a ' m e t ' l y k s a f l a k s dij ' t f re l za 'my:r ' v a n ' r y w a ' s t e n a 'en 

* i t a ' w a n t ' f a n ' eva ' r y w a ' s t e n a 
f a r ' t e d a r t 'nut 

* a t T a t a m . p l a v o n t ' l o p a ' d r l ' r e l j a ' t e ' e l 'boesza 'en a ' l e n ' i n da ' z w a r s t a 
' f a n a t ' j a r ' n e m t a t ' l i x t o g b a ' z i t ' f a n da ' k a m a r 
t a l 'hDut a t ' s i x 'ap ' k u l a ' a f s t a n t 
t a n ' i n da ' k a m a r ' d r l ' k a s t a ' v a m ' b e ^ a ' t fre l s m a ' t a l za ' ze l n ' a l t e l t x ^ ' s l o t a 
i e p ' m e t 'hen ' i n ari ' k l e l n a ' d r l ' j a r '^en r a ' l a s l ' k œ n a 'o ,bo u wa 
e l n am b y i ' r o 'en an^ v a r ' ^ a d a r . t a f a l 'be l da ' v o r t x a , b r a ^ ' d o r da ' l e ^ a ' s e s t 
ar) k a n ' t o r l m 0 b a l f a b r l , k a n t 
' ze l n a r ' t w e ' p l a n t a i n t r o ' v e r t a ' m e t m i ' s x l r g ' f r a j a ' t fruna ^ a ' d a x t a 

• za ' l a t a za ' n l d ' b l e l k a 
v a j t ' n o j t ' i n da ' k a m a r da ' t w e ' w e t a ' a ' l a q ' n l t ' m e r ' d a t sa ' to da n a ' t y : r 

da ' w i t a ' w a n t ' h a q a n ' t w e s x i l d a ' r e ' - j a 'holbe'-ns x s ' t e k a n d a p o r ' t r e t ' f a n 
a s 'mora 
a 'ke l kt ' p e l n z a n t ' f o r ' z i x 'oeyt ' s a m z 'degk ' ik ' m e t 'he 'me 
d a m b a ' l a n d a w a 'irç ' x a r t a r h a a s a ' w a n ' d a r ' i s 'he1 a t x ^ T o e k i x s t x s ' w e s t 
'he l ' in da ' s e l ' v a n da ' t o w a r ' k w a m 
, n a s t 'harçt an ' z e r ' k l 0 , r e l k a p ' s t r a k t s x i l d a ' r e 1 ' v a n aq ' t fuda ' v r l n t ' f a 'me1 

' so oe«d'boendax ' d a t a t ' f e l p l a ' z l : r ' in ' z i x . s e l a f ' m u t 'heba 
^ a l z ' d l ' v r l n ' d a ' t r o u w a n s 'ok ' a l t e l t ' h e f t 
da '^re l za 'my:r ' h a ^ t arrj ' v o r o r l o x s a ' t e k a n i q ' v a n an ' s t r a t j a ' in ' a m s t a r d a m 
' w e s t 
' d a t ' s t r a t j a 'tfiri ' ik ' s e s ' j a r Tar i ' n a r da ' l a b a r a ' s x o l ' d a ^ a l a k ' s e r tfa'lcekax 

v a z da ' m o j s t a ' t e l t ' f a 'me l n ' l e v a o m ' d a t a t ' l e r a ' t o t ' n l d z ' d l n d a 
ja ' v o r ^ r a n t ' l o p t am ' b a k a r c a ' a x t a r ari ' k a r ' ik 'hep 'hem ^ a ' k e n t 
' i s ' i n am ' p l a s ' x r a r i ^ a . s t o k t a j a ' n e v a r v a r ' d r a q k a 
)d byr ' ro ' l i t f d ' b e l n a 'ab da ' t a f a l ' i n a t x a ' h e l ' n l t s 
hDut ' n l t ' f a m pa 'pL:r 
a t o ' b o u w a ' v a n an 're -̂k x s ' v u - l s . l e v a ' w e r a g da ' k a m a r ' n l t 'me 
' i s an o m p a r ' s o n l a k a 'roeymta 'ka u t ' s e l a f s ' z o , w a l s am p y ' b l l k a 'roe^mta ' p a s t 
Drl 've ' k a m a r v a r ' e l s t ' a f s l o e ^ t i Q ' m a r ' s l o t a ' ze l n ' i n ' d i t x9 'bo u w v a r ' b o d a 
ho u t ' n l t ' f a 'me l o ' k a m a r ' m a r ' ik 'hep a r ' d r l ' w e k a varç tfa'hauda 
d o n d a r d a x ' a x . t l n a ' p r i l ' s m i d a x s 'am ' d r l 'y :r 
ima ar ' t w e ' j a o a . m a n a ' m e l o ' k a m a r ' b i n a 
- an ' z i n ' d l ' ik ' f e r t a x ' j a r ^ a ' l e d a ' v o r a t T a t s t ' h a t x s ' h o r t 

[Fundanental) fenszuid.out >walterd>old>grafon SYM1: (2) Font: R (PHONEME) * [More bel 



t xa 'bD u w '12 b a ' z e t 
d i n ' d e z a ' k a m a r ' b i n a an ' h a l a f ' y : r t a v a r ' l a t a 
b a ' ^ r e b da a r g w e r ' s t a m b a r a ' k r a x t ' v a n da ' d e m o k r a s l 'en an 'y :r ' l a t a r 

:>nt ' i g 'bceHa 
' a l ' zo ' l e ^ a ' k a m a r ' l i t ' ik ' l e ^ a r ' a x t a r 
n , a v da ' v a l ^ a n d a ' d a x ' s t a n da ' k a m a r ' d r l ' w e k a ' i 'me l n ' h o f t 
' s a t ' a n da ' a n d a r a ' k a n t ' f a n a t ' l a n t ' w a t 'me l m b a ' t r o k a n h e l t m i ' s x l n 

a t a r ' m a k t a ' ik ' s a x ' f o r , d y : r a n da ' k a m a r ' l e x ' a x t a r ^ a . l a t a 'ap an ' d o t . s t i l a ' t faq 
' ik ' m a k t a ar ' in da ' $ e s t ' s t e t s an ' re l z ' d o r ' h e n 

' t f re l za 'my:r da ' w i t a ' m y : r ' za u da za ' e l k a r 'koena ' a n d a r , h a u d a 
da ' n e ^ a n d a ' d a x ' z a x ' ik ' s b da ' w i t a 'my:r am ' b o r s a ' p l e k 

s t a n ' d o r da ' t e ^ a da ' m y : r ' s l a n d a ' d o r ' s t e q 'karg v a r ' t e d a r a 
' l i X t ' w a s 'oest n a ' t y : r l a k 
* ' m o r a 'nax 1 tt- ' s i n 'me da T a m p a 'an ' k a n 'he1 ' i n a t ' f r o l a k a s x i l d a ' r e 1 'ke l ka 
" ' z l t 'ny ' s l e x s ' x r e l s h e l t 'en ' ze l m ' p e l n z a ' i s ' o v a r ^ a . ^ a n ' i n an ' l i x t a ' m e l a q t f o l l 
' b a k a r 'doewt ' s e l o ' k a r a c a a ' d c e s s t a r ' i n 'e 'nut T a r i a r ' i n da ' r i x t i r i 
n da ' t f l o r l z a 'broex ' w a r a x t a r 'me l n 'sxo ' l a x 
da ' p l a n t a ' i ' krex ' m e d a , l e l d a ' m e t 'hen da an ' i s arri ' w a t a ' n o z a l a 

> T e l k t 'ok ' n l t a ' ^ r u j a n 'he 1 ' z a l ' v a n da ' l e x t a ' n l d z ba'^re'-pa 
ir da ' a n d a r a 'dL am 'bom p r o ' b e r ta ' ze l n 'dL ' m a t ' l e l d a 
d a r da ' s t i l t a ' v a n da ' d o t 
' e l k s b a ' z e t i q ' m e . b r e o t 
' t r a x t a da ' k a m a r ta b a ' w o n a ' ik 'x in ' a x t a r a t T e ^ a b y : ' r o 

:a 'eo 'kek ' n a r da ' k a s t a 
'koena 'zitf ' b e z i x , h a u d a 'me da ' b u k a 'dL ' e r , i n ' s t a n ' ik ' x a f sa 'tu. 
»rdam.buka 'e n a ' s l a x . w e r k a ! z e l ' m u j l a k ta ' l e z a 'be 1 ' s l e x t T i x t 
a p ' w i n d a n t ' se l n za 'ok ' n i t 

'kan ' z i x f a r ' m a k a ' m e t ' j a r ^ a q a n 'varri ' v e l a ' t e l t , s x r i f t a ' m a r da ' d e r d a 
' h a t ' n i t ' f e l ' a n d a r s ' d a n ' a n . z e t a ' v a n ' s k r i p s l s 
' d a r 'kam ja T e ^ a ' w e k a ' n i t 'me ' d o r 

' t e l a f o n ' s l a p t 'ab da ' l e s a n a r ' d a x t ' ik 'ab da ' t w a l a v d a ' d a x 
m t p o w a ' z l ' k a m i ' s x l n an ' l e x t a ' w a t ' f o e l a 

' b r e q ' ik an ' t e k a ' v a n ' l e v a ' o v a r ' n a r ' t f ins ' n a r da ' p l a n t a da s x i l d a ' r e l j a 
' k a s t a 'en da ' t a f a l s 
'hep ' t w e ' k e r a t 'noemar ' v a 'meliQ ' k a m a r ^ a ' b e l t T a t ' i n da ' a v a n t 
' n e r da v a r T a t a n h e l t a t ' x r o t s t ' m u t 'se lr) ^ a ' w e s t 
' h o p t a ' d a da ' d 0 r 'zou ' o p a n , s t a n 'en da ' b e l ' d o r da ' h e l a ' s a g ta ' h o r a ' za u ' z e l n 
k a ' l e ^ a ' m a x t 'ab da ' v e l f , t l n d a ' d a x 'vein da b a ' z e t a r s ' I t s ' f a n ' z e l o ' k a m a r ' h a l a 

(Fundamental) fenszuid.out >walterd>old>grafon SYM1: (2) Font: fl (PHONEME) * [More ab 
3:00 Hardcopy of Znacs Frane 1 has been bitmapped to AGFA] 



'andar tfa'lelda 'he1 ba'won da 'kamar 'naz da 'melna 
da 'val^anda 'da^ 'belda 'he1 'me1 ja 'kamar 'stat 'er,bel ' 
zo,wals ja 'hem 'hept far'lata 
'ig 'doeravda 'nl ta 'vra#a 'nar da 'tu.stant 'fan da 'm0bals da 'planta 
'mora 'en at 'stratja 
at 'kl0,reLka sxilda're1 '^af 'meL '^en 'zor^a 'dt 'heft xa'nux 'an 'z.eln 'e'^a tfa'loek 
'want 'ig 'drux 'meln 'let 'in 'stilta 
'na 'drl 'weka 'kenda 'ik 'fan da 'kamar 'elka 'sensl.metar 
'en 'elka 'vlek 'in da 'vlu:rba,kledio 'en 'ap a 'tafal.blat 
'op 'mandas 'dertl 'me1 'kwam ar an 'elnda 'an da ba'zetiq 
'am 'halaf 'twalaf 'in da 'mar^a 'kwam 'ig da 'kamar 'bina 
'alas 'hat 'six 'wer 'op 'six,selaf ta'roex^.troka da 'lexta 'was 'wer 
'tot 'seln or'sprot^kalak x^'dsinta ^a'voelt 
'in da 'huk 'axtar aq 'kast 'vont 'ik a m para'ply 'dl 'hat 'ik 'helamal var'^eta 
'met 'hem 'hat 'ik 'ny at 'xrotsta 'meda.le'-da 
'ig 'be 'me^n 'sxoeltxa.vulans 'tejjan.ovar 'hem 'nox 'nit 'kwelt 
arg 'vor,mall^a ba'zetar 'kamt 'fra^a 'nar da 'datoem 'van 313 ka'le^a 
'dat 'he1 da 'kamar 'dl 'he1 'zo 'det 'le^da 'zo 'mar 'in 'dceravda 
'heft 'me1 at 'mest far'belstart 

'kes 'fens 

ICS (Fundamental) fenszuid.out >wa1terd>o!d>grafon SYtll: (2) Font: fl (PHONEME) * [More ab 
. :13:48 Hardcopy of Znacs Frane 1 has been bitmapped to AGFA] 



A.4.4 Phonemisation 
(Dutch variant) 

' h o u t ' ik ' f a 'me lQ ' k a m a r 
'twe*- ' x l a s , w a n d a ' m e t ' l y k s a f l a k s 313 ' x r e ^ a 'my*r ' f a n ' r y w a ' s t e l n a 'en 
arç ' w i t a ' w a n t ' f a n 'e^-fa ' r y w a ' s t e L n a 
' d a t f a r ' t e l d a r t ' n i t 
' o u f a r a t T a t a m . p l a v o n t ' l o u p a ' d r l ' r e l j a ' t e 1 ' e l 'bce ssa 'en a T e l n ' i n da ' s w a r s t a 
' t e l t ' f a n a t ' j a r ' n e l m t a t ' l i x t o u g b a ' s i t ' f a n da ' k a m a r 
' m e l s t a l 'ho u t a t ' s i x 'op ' k u l a ' a f s t a n t 
ar ' s t a n ' i n da ' k a m a r ' d r l ' k a s t a ' f a m 'beLx9 'xreLs m a ' t a l 
sa ' se l n ' a l t e l t x o ' s l o u t a 
' ik 'hep ' m e t 'hen ' in aq ' k l e l n a ' d r l ' j a r 'xe l n r a ' l a t s l 'koena 'o ,bo u wa 
ar ' se l n am b y 3 ' r o u 'en arç f a r ' x a d a r , t a f a l ' b e l d a ' f o w r t x a , b r a ^ ' d o a r da ' l e l x a ' x e l s t 
' f a n aq k a n , t o u r , m 0 y b a l f a b r l , k a n t 
' d a n ' se l n a r ' t w e 1 ' p l a n t a 
i n t r o u l f e r t a 
' m e t mi'sxlrr) ' f r a j a ' x r u n a x ^ ' d a x t a ' m a r sa T a t a sa ' n i d ' b l e l k a 
a t ' w a j t ' n o u j t ' i n da ' k a m a r da ' t w e 1 ' w e l t a ' a T a o ' n i t 'men* 
' d a t sa 'to da n a ' t y ' r 'ho u ra 
' a n da ' w i t a ' w a n t 'harçan ' t w e 1 s x i l d a ' r e l j o 
' h o l b e l n s x a ' t e l k a n d a p o r ' t r e t ' f a n ' t o u m a s 'mo u ra 
'mo u ra ' k e l k t ' p e l n s a n t ' f o u r ' s i x ' œ a t 
' s o m z 'deqk ' ik ' m e t 'he 'me 1 'en ' d a m b a ' l a n d a w a '113 ' x a r t a r h o u s a 
' w a n ' d a r ' i s 'he1 a t x o ' l o e k i x s t X 3 ' w e l s t ' t o : 'he 1 ' i n da ' s e t ' f a n da ' t o u w a r ' k w a m 
' d a r , n a s t ' h a r j t an ' s e l r ' k l 0 y , r e l k a p ' s t r a k t s x i l d a ' r e 1 ' f a n 313 'xuda ' f r l n t ' f a 'me1 

a t '1 'sou oe y d'bœndax ' d a t a t ' f e L l p l a ' s l 3 r ' i n ' s i x . s e l a f ' m u t ' h e b a 
' s o u , w a l 2 ' d l ' f r l n ' d a ' t r o u w a n s 'ouk ' a l t e l t ' h e l f t 
' a n da ' x r e l s a ' m y 9 r ' h a g t air) ' f o u r o u r l o x s a ' t e l k a n i o ' f a n an ' s t r a t j a ' i n 
' a m s t a r d a m 'out ' w e s t 
'do u r ' d a t ' s t r a t j a ' x i o ' ik ' s e s ' j a r ' l a g ' n a r da ' l a x a r a ' s x o u l 
' d a x a l a k ' s e l r xo ' loekax 
a t ' w a z da ' m o u j s t a ' t e l t ' f a 'meLn T e l f a o m ' d a t a t ' l e l r a ' t o t ' n l d z ' d l n d a 
'ob da ' f o u r , x r o n t T o u p t am ' b a k a r c a ' a x t a r ary ' k a r 
' ik 'hep 'hem x s ' k e n t 
'heL ' i s ' in am ' p l a s ' xrar)x9 ,s t0 u kta j a ' n e l f a r far 'drorçka 
'op ad b y 3 ' r o u T i t f d ' b e l n a 'ob da ' t a f a l ' in a t xs 'he'- l ' n i t s 
' ik 'ho u t ' n i t ' f a m p a ' p l 3 r 
' a n a t o ' b o u w a ' f a n an 're l k x s ' f u l s . l e ^ f a ' w e r a g da ' k a m a r ' n i t 'me 1 

'heL ' i s an o m p a r ' s o u n l a k a ' r œ a m t a 'ko u t ' s e l a f s ' s o u , w a l s am p y ' b l l k a 'rce«mta ' p a s t 
am p r l ' f e 1 ' k a m a r far 'e ' -st ' a f s l o e ^ t i n ' m a r ' s l o u t a ' s e l n ' i n ' d i t xo 'bo u w f a r ' b o u d a 

[MACS (Fundamental ) fensnoord.out >ualterd>old>grafon SYM1: (2) Font: fl (PHONEME) * [More 



' h o u t ' n l t ' f a 'me l o ' k a m a r ' m a r ' ik 'hep ar ' d r l ' w e l k a f a g x a ' h a u d a 
' d o n d a r d a x ' a x . t l n a ' p r i l ' s m i d a x s 'am 'drL ' y 8 r 

a r ' t w e 1 ' j a q a . m a n a 'me'-g ' k a m a r ' b i n a 
z t an ' s i n ' d l ' i k ' f e l r t a x ' j a r x a ' l e l d a ' f o u r a t ' l a t s t ' h a t x a ' h o u r t 
t xa 'bD u w ' i z b a ' s e t 'y ' d l n ' d e l s a ' k a m a r ' b i n a an ' h a l a f ' y 9 r t a f a r ' l a t a 

b a ' x r e l b da a r r i w e ' r ' s t a m b a r a ' k r a x t ' f a n da ' d e L m o u k r a t s l 
i an ' y 3 r ' l a t a r ' s t a n t ' i g 'boeyta da ' a l ' so a ' l e l x a ' k a m a r ' l l t ' ik ' l e l x a r ' a x t a r 
.n,av da ' f o l x a n d a ' d a x ' s t o n da ' k a m a r ' d r l ' w e l k a ' i 'meLn ' h o u f t 

' s a t ' a n da ' a n d a r a ' k a n t ' f a n a t ' l a n t ' w a t 'me'-m b a ' t r a k a n h e l t m i ' s x l n 
o u t a r ' m a k t a ' ik ' s a x ' f o u r , d y 3 r a n da ' k a m a r ' le L x ' a x t a r x a , l a t a 'ap an ' d o u t , s t i l a 
.0 'sn ' ik ' m a k t a ar ' i n da ' x e l s t ' s t e l t s an ' re l z ' d o u r 'he<-n 
' x r e l s a 'my 9r da ' w i t a ' m y 3 r ' s a u d a sa ' e l k a r 'kcena ' a n d a r , h a u d a 

• da ' n e l x a n d a 'dax ' s a x ' ik 'ob da ' w i t a ' m y 3 r am 'b0«rsa ' p l e k 
' s t a n ' d o u r da ' t e l x a da ' m y 9 r ' s l a n d a 'd0 ö r ' s t e L o 'karri f a r ' t e l d a r a 
' l i x t ' w a s 'oeyt n a ' t y 3 r l a k 

u 'mo u ra 'nax ' l t ' s i n 
£ da ' l a m p a ' a n ' k a n 'he l ' i n a t ' f r o u l a k a s x i l d a ' r e 1 'ke l ka 
:l ' s l t 'ny ' s l e x s ' x r e l s h e l t 'en ' s e l m ' p e l n s a ' i s ' o u f a r x a , x a n ' i n an ' l i x t a ' m e l l a o ^ o a l l 

' b a k a r ' d o e w t 'seli3 ' k a r a c a a ' d c e y s t a r ' in 'e ' n l t ' l a q a r ' i n da ' r i x t i g 
m da ' x l o u r l s a 'brcex ' w a r a x t a r 'me l n 'sxou ' l a x 
i da ' p l a n t a ' i 'kreLx ' m e l d a , l e l d a ' m e t 'hen 

an ' i s arq ' w a t a ' n o u s a l a ' h e l ' l e L k t 'ouk ' n l ta ' x r u j a n 
' s a l ' f a n da ' le^xts ' n l d z b a ' x r e l p a ' m a r da ' a n d a r a ' d l am 'bo u m p r o u , b e l r ta ' se l n 

- ' m u t ' l e l d a ' a n d a r da ' s t i l t a ' f a n da ' d o u t ' d l ' e l k a b a ' s e t i Q ' m e L , b r e o t 
' t r a x t a da ' k a m a r ta b a ' w o u n a ' ik 'xir) ' a x t a r a t ' l e l x a b y 3 ' r o u ' s i t a 

I 'keLk ' n a r da ' k a s t a sa 'koena 'sitf ' b e l s i x , h a u d a 'me da ' b u k a ' d l ' e r , i n ' s t a n 
' x a f s a ' t u ' w o u r d a m , b u k a 'e n a ' s l a x . w e r k a 'se 1 ' m u j l a k t a ' l e L s a 'be l ' s l e x t ' l i x t 

i a p ' w i n d a n t ' se l n sa 'ouk ' n l t aq 'kan ' s i x f a r ' m a k a ' m e t ' j a r ^ a q a n 
irr) ' f e l l a ' t e l t , s x r i f t a ' m a r da ' d e r d a ' d l ' h a t ' n l t ' f e l l ' a n d a r s 
in ' a n . s e t a ' f a n ' s k r i p s l s 'en ' d a r 'kam j a ' l e l x a 'we L ka ' n l t 'me 1 'do u r 

' t e l l a f o u n ' s l a p t 'ab da ' l e s a n a r ' d a x t ' ik 'ab da ' t w a l a v d a ' d a x 
a n t p o u w a ' s l ' k a m i ' s x l n an ' l e l x t a ' w a t ' f o e l a 
j. ' b r e o ' ik an ' t e l k a ' f a n ' l e l f a ' o u f a r ' n a r ' x i n s ' n a r da ' p l a n t a da s x i l d a ' r e l j 9 

' k a s t a 'en da ' t a f a l s ' ik 'hep ' t w e 1 ' k e l r a t 'noemar ' f a ' m e l g ' k a m a r x a ' b e l t 
i t ' i n da ' a f a n t w a ' n e l r da f a r ' l a t a n h e L t a t ' x r o u t s t ' m u t 'se^-g xs 'we ' -s t 

' h o u p t a ' d a da 'd0 y r ' sa u ' o u p a n , s t a n 'en da ' b e l ' d o u r da ' h e L l a ' x a g ta 'ho u ra 
»u ' s e l n 

k a ' l e l x c i ' m a x t 'ab da ' f e l f , t l n d a ' d a x ' f a n da b a ' s e t a r s ' l t s ' f a n ' s e l o ' k a m a r ' h a l a 
ïdar X9'le lcla 'he l b a ' w o u n da ' k a m a r ' n a z da 'me'-na 

> (Fundanental) fensnoord.out >walterd>old>grafon SYM1: (2) Font: fl (PHONEME) * [More ab 
16:14 Hardcopy of Znacs Frane 1 has been bitnapped to RGFfi] 



' f a l x a n d a ' d a ^ ' b e l d a 'he l 'me 1 j a ' k a m a r ' s t a t 'er,beL ' s o u , w a l s j a 'hem ' h e p t 
r ' l a t a 
I 'doeravda ' n l ta ' f r a x a ' n a r da ' t u . s t a n t ' f a n da ' m 0 a b a l s da ' p l a n t a 
o u ra 'en a t ' s t r a t j a 
' k l 0 y , r e l k a s x i l d a ' r e 1 ' x a f 'me 1 'xe l n ' sorxa ' d l ' h e l f t x s ' n u x 'an 'seLn 'e lxa x^Toek 

a n t ' i g 'drux 'me ln ' l e L t ' i n ' s t i l t a 
i ' d r l ' w e l k a 'kenda ' ik ' f a n da ' k a m a r ' e l k a ' s e n t s t , m e L t a r 
) ' e l k a ' f l e k ' i n da ' f l u 3 r b a , k l e l d i i 3 'en 'ap a ' t a f a l , b l a t 
) ' m a n d a g ' d e r t l 'me 1 ' k w a m ar an 'e l nda ' a n da b a ' s e t i q 
n ' h a l a f ' t w a l a f ' i n da 'morxa ' k w a m ' i g da ' k a m a r ' b i n a 
•as ' h a t ' s i x ' w e l r 'op ' s i x . s e l a f t a ' r o e x ^ t r a k a da ' l e l x t a ' w a s ' w e l r 
>t ' se l n o V s p r o q k a l a k x ^ ' d a n t a x ^ ' f o e l t 
i da 'huk ' a x t a r ag ' k a s t ' f o n t ' ik am p a r a ' p l y ' d l ' h a t ' ik ' h e l l a m a l f a r ' x e l t a 
e t 'hem ' h a t ' ik 'ny a t ' x r o u t s t a ' m e t d a l l e t d a ' i g 'be 'me'-n ' s x o e l t x a . f u l a n s 
: lX9n,ou far 'hem 'nax ' n l t ' k w e l t 
) ' f o u r , m a l L x 3 b a ' s e t a r ' k a m t ' f r a x a ' n a r da ' d a t o e m ' f a n ar) k a ' l e l x 3 
i t 'he l da ' k a m a r ' d l 'he l ' so u ' d e l t ' l e l d a 'so u ' m a r ' i n 'doeravda 
; L f t 'me1 a t 'me'-st f a r ' b e l s t a r t 

>ls ' f e n s 

i (Fundanental) fensnoord.out >walterd>old>grafon SYM1: (2) Font: fi (PHONEME) * [More 
18:28 Hardcopy of Znacs Frane 1 has been bitnapped to flGFfl] 



APPENDIX A.8 

A.8 Sample Phonological Rule Applications 
For each rule, a short verbal description is given, and some examples with the 
solution computed by GRAFON and a derivation for each syllable. 



FINAL-DEVOICING 

Voiced obstruents are devoiced in the coda of syllables. The effect 
of this rule may be undone by assimilation rules following it. E.g.: 
bezorgd (worried), zoogdier (mammal), word (become). 

b e z o r g d "zorgd" 
(1. FINAL-DEVOICING) 
(2. SCHWA-INSERTION) 

z o o g d i e r 
"zoog" 
(1. FINAL-DEVOICING) 
(2. REGRESSIVE-ASSIMILATION) 
"dier" 
(3. VOWEL-DIFTONGISATION-1) 

word 
"word" 
(1. FINAL-DEVOICING) 

INITIAL-DEVOICING 

In our opinion, this rule is restricted to northern variants of 
standard Dutch. Voiced fricatives (/&/ /z/ and /v/) become voiceless 
in syllable-initial position. Initial devoicing must apply before 
intervocalic voicing because the latter can undo the effect of the 
former. E.g.: zegevuur (victory fire), meegaand (compliant). 

z e g e v u u r 
"ze" 

(1. INITIAL-DEVOICING) 
(2. VOWEL-DIFTONGISATION-2) 
"ge" 
(3. INITIAL-DEVOICING) 
"vuur" 
(4. INITIAL-DEVOICING) 
(5. VOWEL-DIFTONGISATION-1) 



meegaand 
"mee" 
(1. VOWEL-DIFTONGISATION-2) 
"gaand" 
(2. FINAL-DEVOICING) 
(3. INITIAL-DEVOICING) 
(4. INTERVOCALIC-VOICING) 

INTERVOCALIC-VOICING 

Voiceless fricatives between stressable vowels (all vowels except /d/) 
or liquids are voiced. Domain of this rule is the word 
(operationalized as the syllable string between two internal, two 
external, or an internal and an external word boundary). E.g.: 
televisie (television), basis (base), Israël, mensa. 

televisie 
"sie" 
(1. INTERVOCALIC-VOICING) 

basis 
"sis" 
(1. INTERVOCALIC-VOICING) 

Israël 
"is" 
(1. INTERVOCALIC-VOICING) 
"ra" 
(2. HIATUS-FILLING) 

mensa 

"sa" (1. INTERVOCALIC-VOICING) 



PLOSIVE-TO-FRICATIVE 

In some cases, plosive /t/ is pronounced /s/ or /ts/. The /t/ must 
occur word-internally in a variant of the affix -tie. After a vowel, 
/n/ or /r/, /t/ becomes /s/ in the southern dialects, and /ts/ in the 
northern dialects. After /s/, /t/ remains /t/, and after other 
consonants /t/ becomes /s/ in both dialects. It must be ordered after 
intervocalic voicing to , avoid the voicing of the /s/. E.g.: 
suggestie (suggestion), administratie (administration), actie 
(action),politie (police). 

suggestie 

actie 
"tie" 
(1. PLOSIVE-TO-FRICATIVE) 

administratie 
"ad" 
(1. FINAL-DEVOICING) 
"tie" 
(2. PLOSIVE-TO-FRICATIVE) 

politie 
"po" 
(1. VOWEL-DIFTONGISATION-2) 
"tie" 
(2. PLOSIVE-TO-FRICATIVE) 

N-DELETION 

If a syllable-rhyme is equal to / a n / , /n/ can be deleted if an 
internal or external word boundary follows. One restriction on the 
rule cannot be integrated in the system without syntactic knowledge: 
the inflected forms ending in /dn/ of verbs with an infinitive ending 
in /enan/, resist n-deletion. E.g. ik open (I open) —> /Ik o p e n / . 
Examples: lopen (run), opendoen (make open), houten (wooden). 



lopen 

"pen" 
(1. N-DELETION) 

opendoen 

"pen" 
(1. N-DELETION) 

houten 

"ten" 
(1. N-DELETION) 

VOWEL-DIPHTHONGIZATION-1 

The name of this rule refers to the shifting of /i/ /y/ and /u/ in the 
direction of /d/ before /r/ in northern Dutch. In southern Dutch, 
these vowels are lengthened in that position, but not diphthongized. 
E.g.: muur (wall), voert (feeds), wierp (threw) 

muur 

"muur" 
(1. VOWEL-DIFTONGISATION-1) 

voert 

"voert" 
(1. VOWEL-DIFTONGISATION-1) 

wierp 

"wierp" 
(1. VOWEL-DIFTONGISATION-1) 
(2. SCHWA-INSERTION) 

muur 

"muur" 
(1. VOWEL-DIFTONGISATION-1) 

voert 

"voert" 
(1. INITIAL-DEVOICING) 
(2. VOWEL-DIFTONGISATION-1) 



VOWEL-DIPHTHONGIZATION-2 

This rule is restricted to northern standard Dutch. High vowels (/#/, 
/o/ and /e/) are diphthongized into the direction of /y/,/u/ and /i/ 
respectively, if they are not followed by /r/. E.g.: deuk (dent), zo 
(so), thee (tea). 

zo 

" z o " 

(1. INITIAL-DEVOICING) 
(2. VOWEL-DIFTONGISATION-2) 

thee 
"thee" 
(1. VOWEL-DIFTONGISATION-2) 

deuk 
" d e u k " 

(1. VOWEL-DIFTONGISATION-2) 

HIATUS-FILLING 

Whenever two vowels follow each other immediately (i.e. when the coda 
of one syllable is empty and the onset of the next, too), the 
transition is filled by /j/ after front vowels or diphthongs, by /w/ 
after back vowels or diphthongs, and by a /?/ after /a/, fa/ and / 9 / , 
E.g.: duo, Israel, zeettn (seas), beamen (confirm). 



duo 
"du" 
(1. HIATUS-FILLING) 

I s r a ë l 
'is' 
(1. INTERVOCALIC-VOICING) 
"ra" 
(2. HIATUS-FILLING) 

zeeën 
"zee" 
(1. HIATUS-FILLING) 
"en" 
(2. N-DELETION) 
beamen 

"be" 
(1. HIATUS-FILLING) 
"men" 
(2. N-DELETION) 

SCHWA-INSERTION 

If in the coda of a syllable a liquid is followed directly by a 
bilabial, labiodental or velar consonant, a schwa is inserted between 
them. E.g.: wierp (threw), wurgt (strangles), alp, herfst (autumn). 

wierp 
"wierp" 
(1. VOWEL-DIFTONGISATION-1) 

(2. SCHWA-INSERTION) 
wurgt 

"wurgt" 
(1. FINAL-DEVOICING) 

(2. SCHWA-INSERTION) 

a l p 

"alp" 
(1. SCHWA-INSERTION) 



h e r f s t 

"herfst" 
(1. SCHWA-INSERTION) 

CLUSTER-REDUCTION 

In some cases, /t/ is deleted when surrounded by consonants. At 
present the domain of the rule is defined to be the word; the rule is 
blocked over external word boundaries. E.g.: herfststorm (autumnal 
tempest), vondst (discovery), lichts (light), vruchtbaar (fertile), 
kastje (little cupboard). 

herfststorm 
"herfst" 
(1. SCHWA-INSERTION) 
(2. CLUSTER-REDUCTION) 
(3. DEGEMINATION) 
"storm" 
(4. SCHWA-INSERTION) 

vondst 
"vondst" 
(1. FINAL-DEVOICING) 
(2. CLUSTER-REDUCTION) 

lichtst 
"lichtst" 
(1. CLUSTER-REDUCTION) 

vruchtbaar 
"vrucht" 
(1. CLUSTER-REDUCTION) 
(2. REGRESSIVE-ASSIMILATION) 

kastje 
"kast" 
(1. CLUSTER-REDUCTION) 
"je" 
(2. PALATALISATION) 



PALATALIZATION 

the combination of /t/ and semi-vowel /j/ is palatalized to 
palato-alveolar plosive /c/. The combination of /s/ with /j/ results 
in a palato-alveolar fricative /ƒ/. This assimilation process occurs 
mainly in Dutch diminutives. E.g.: mandje (little basket), meisje 
(girl), matje (little mat), tasje (little bag). 

mandje 

"mand" 
(1. F I N A L - D E VOICING) 

(3. NASAL-ASSIMILATION) 

"je" 
(2. PALATALISATION) meisje 
"je" 
(1. PALATALISATION) 

matje 
"je" 
(1. PALATALISATION) 

tasje "je" 
(1. PALATALISATION) 

PROGRESSIVE-ASSIMILATION 

Voiced fricatives in the onset of a syllable are made voiceless, if 
the last phoneme in the coda of the preceding syllable is a voiceless 
obstruent. This rule also applies across word-boundaries (it is 
restricted by the phonological phrase). This rule never applies in 
the northern variant of Dutch because initial-devoicing is ordered 
before it. E.g.: de kat zit (the cat sits), loopgraaf (trench), AKZO 
(company name). 



de kat zit 
"kat" 
(1. PROGRESIVE-ASSIMILATION) 

loopgraaf 
"loop" 
(1. PROGRESIVE-ASSIMILATION) 

AKZO 
"ak" 
(1. PROGRESIVE-ASSIMILATION) 

REGRESSIVE-ASSIMILATION 

Voiceless obstruents in the coda of a syllable are made voiced if the 
first phoneme in the onset of the following syllable is a voiced 
plosive. Again, the rule applies across word boundaries and is 
restricted by the phonological phrase. E.g.: liedboek (song-book), 
zakdoek (handkerchief), liefde (love) , herfstdag (day in autumn). 

liedboek 

"lied" (1. FINAL-DEVOICING) (2. REGRESSIVE-ASSIMILATION) 
zakdoek 

"zak" (1. REGRESSIVE-ASSIMILATION) 
liefde 

"lief" (1. REGRESSIVE-ASSIMILATION) 
herfstdag 

"herfst" 
(1. SCHWA-INSERTION) 
(2. CLUSTER-REDUCTION) 
(3. REGRESSIVE-ASSIMILATION) 
"dag" 
(4. FINAL-DEVOICING) 



NASAL-ASSIMILATION 

The alveolar nasal /n/ assimilates the place of articulation of the 
following consonant, within and across word boundaries. E.g.: 
onbepaald (indefinite), ongewoon (unusual), onjuist (incorrect), 
onvrij (not free), zink (zinc), mandje (little basket). 

onbepaald 

"on" 
(1. NASAL-ASSIMILATION) 

"paald" (2. FINAL-DEVOICING) ongewoon 

"on" (1. NASAL-ASSIMILATION) 
onjuist 

"on" (1. NASAL-ASSIMILATION) 

onvrij 

"on" (1. NASAL-ASSIMILATION) 

zink 

"zink" (1. NASAL-ASSIMILATION) 
mandje 

"mand" 
(1. FINAL-DEVOICING) 

(3. NASAL-ASSIMILATION) 

"je" 
(2. PALATALISATION) 



DEGEMINATION 

Whenever two identical consonants follow each other immediately, the 
cluster is reduced to one consonant, within and across word 
boundaries. E.g.: in mijn (in my), postzegel (stamp). 

in mijn 
"in" 
(1. NASAL-ASSIMILATION) 

(2. DEGEMINATION) 

postzegel 
"post" 
(1. CLUSTER-REDUCTION) 
(2. PROGRESIVE-ASSIMILATION) 

(3. DEGEMINATION) 



REFERENCES 
Adriaens, G. Process Linguistics: the theory and practice of a cognitive-scientific 

approach to natural language understanding. Dissertation Katholieke Universiteit 
Leuven, 1986. 

Allen, J. 'Speech Synthesis from Text.' In: Simon, J.C. (Ed.) Spoken Language 
Generation and Understanding. Dordrecht: Reidel, 1980, p. 3 - 39. 

Anderson, J.R. and Reiser, B.J. 'The Lisp Tutor.' Byte, 10 (4), 1985. 
Angell, R.C., G.E. Freund and P. Willett. 'Automatic spelling correction using a trigram similarity measure.' Information Processing and Management, 19.4 (1983), 

255-261. 
Aronoff, M. Word Formation in Generative Grammar. Cambridge Mass.: MIT-Press, 1976. 

Aronoff, M. 'Lexical representations.' In D. Farkas, W.M. Jacobsen, K.W. Todrys 
(eds.) Papers from the parasession on the lexicon. Chicago, 1978. 

Assink, E.M.H. Leerprocessen bij het spellen. Diss. Rijksuniversiteit Utrecht, 1983. 
Assink, E.M.H. 'Het in kaart brengen van spellingproblemen.' Tijdschrift voor spellingbeheersing 6, 1984, 264-276. 

Bakel, J. van, Fonologie van het Nederlands. Utrecht: Bohn, Holkema en Scheltema, 
1976. 

Bakel, J. van, 'Methodologie van de computerlinguistiek.' Gramma 7, 1983, 175-
188. 

Bakker, J.J.M. Constant en Variabel, de fonematische structuur van de Nederlandse 
woordvorm. Assen, 1971. 

Ballard, D.H. 'Cortical connections and parallel processing: structure and function' 
The Behavioral and Brain Sciences 9, 1986, 67-120. 

Bartlett, E.J. 'Learning to Revise: Some Component Processes.' In: M. Nystrand 
(Ed.). What Writers Know. New York: Academic Press, 1982, p. 345-363. 

Barton, G.E. 'The Computational Complexity of Two-level Morphology.' MIT AI-Memo 856, 1985. 

Berg, B. van den, Foniek van het Nederlands. Den Haag: Van Goor, 1972. 
Berkel, B. Van, Spelterapuit: een algoritme voor spel- en typefoutcorrectie gebaseerd 

op grafeem-foneemomzetting. MA-thesis, Department of Psychology, University 
of Nijmegen, 1986. 



Berko, J. 'The child's learning of English morphology.' Word 14, 1958, 1590-177. 
Bobrow, D.G. and T. Winograd. 'An overview of KRL, a knowledge representation 

language.' Cognitive Science. 1(1), 1977, 3-46. 
Booij, G.E., Dutch Morphology. Dordrecht: Foris Publications, 1977. 
Booij, G.E. (ed.) Morfologie van het Nederlands. Amsterdam: Huis aan de drie gra-

chten, 1979. 
Booij, G.E., Generatieve fonologie van het Nederlands. Utrecht: Spectrum, 1981. 
Booij, G.E. 'Lexical Phonology, Final Devoicing and Subject Pronouns in Dutch.' In 

Bennis, H. and F. Beukema (eds.) Linguistics in the Netherlands. Dordrecht: 
Foris Publications, 1985. 

Booij, G.E., C. Hamans, G. Verhoeven, F. Balk, Ch. H. van Minnen. Spelling. 
Groningen: Wolters-Noordhoff, 1979. 

Boot. M., Taal, tekst, computer. Katwijk: Servire, 1984. 
Brandt Corstius, H. Exercises in Computational Linguistics. Amsterdam: Mathemati-

cal Centre Tracts 30, 1970. 
Brandt Corstius, H. 'Wat is computer-taalkunde?' Inaugurale rede, University Press 

Rotterdam, 1974. 
Brandt Corstius, H. Computer/taalkunde. Muiderberg: Coutinho, 1978. 
Brandt Corstius, H. 'Weg met de Computer!'. Kennis en methode 1, 1981. 
Breuker, J. and S. Cerri. 'A New Generation of Teaching Machines: intelligent and 

rather-intelligent computer assisted instruction discussed and exemplified.' In: E. 
Van Hees and A. Dirkzwager (Eds.) Onderwijs en de nieuwe media. Lisse: 
Smets & Zeitlinger, 1982. 

Brown, J.S. and Burton, R.R. 'Diagnostic models for procedural bugs in basic 
mathematical skills. Cognitive Science 2, 1978, p. 155-192. 

Butterworth, B. 'Lexical Representation.' In: B. Butterworth (ed.) Language Produc-
tion, vol 2, London: Academic Press, 1983, 257-294. 

Byrd, J.R. (1983) 'Word Formation in Natural Language Processing Systems.' 
Proceedings UCAI-83, 704-706. 

Cannon, H.I. 'A non-hierarchical approach to object-oriented programming.' Cam-
bridge Mass.: MIT AI-Lab, 1982. 

Charniak, E. and D. McDermott. Introduction to Artificial Intelligence. Reading, 
Mass.: Addison-Wesley, 1985. 



Cherry, L. 'A Toolbox for Writers and Editors.' In Proceedings Office Automation 
Conference, 1981. 

Chomsky, N. Aspects of the theory of syntax. Cambridge Mass.: MIT-Press, 1965. 
Chomsky, N. 'Remarks on Nominalisation.' In Jacobs, R. and P. Rosenbaum (eds.) 

Readings in English Transformational Grammar, 1970. 
Chomsky, N. Lectures on Government and Binding. Dordrecht: Foris, 1981. 
Chomsky, N. The Generative Entreprise. A Discussion with Riny Huybregts and 

Henk van Riemsdijk. Dordrecht: Foris Publications, 1982. 
Chudacek, J. 'Statistische en combinatorische eigenschappen van trigrammen.' IWIS-TNO rapport (1983), Den Haag. 

Chudacek, J. en C.A. Benschop. 'Reconstructie van tekstdelen uit hun syntactische 
sporen.' IWIS-TNO rapport (1981) Den Haag. 

Cohen, A. Fonologie van het Nederlands en het Fries. Den Haag: Nijhoff, 1961. 
Collier, R., Nederlandse Grammatica-1. Leuven: Acco, 1981. 
Collier, R. and F.G. Droste, Fonetiek en Fonologie. Leuven: Acco, 1977. 
Collins, A. and D. Gentner. 'A Framework for a Cognitive Theory of Writing.' In: 

Gregg and Sternberg (eds.) Cognitive Processes in Writing. New Jersey: 
Lawrence Erlbaum Ass., 1980. 

Cutler, A., J.A. Hawkins, G. Gilligan. 'The suffixing preference: a processing expla-
nation.' Linguistics 23 (1985), 723-758. 

Daelemans, W. 'Automatische detectie en correctie van spellingfouten.' Internal 
Report University of Nijmegen, 84FU10, 1984. 

Daelemans, W., 'Automatic Spelling Error Detection with an Unlimited Vocabulary 
for Dutch.' Memo, University of Nijmegen, 1985a. 

Daelemans, W. 'GRAFON: An Object-oriented System for Automatic Grapheme to 
Phoneme Transliteration and Phonological Rule Testing.' Memo, University of 
Nijmegen, 1985b. 

Daelemans, W. 'Two syllabification algorithms for Dutch.' Memo, University of 
Nijmegen, 1985c. 

Daelemans, W. 'Dutch verbal inflections: an object-oriented implementation.' Memo, 
University of Nijmegen, 1986. 

Daelemans, W., D. Bakker and H. Schotel. 'Automatische detectie en correctie van 
spelfouten.' Informatie, 26(12), (1984), 952-956. 



Daelemans, W., G. Kempen and L. Konst. 'Natural Language Facilities for the Intel-
ligent Office Workstation.' Interim report of ESPRIT project OS-82, 1985. 

Damerau, F.J. 'A technique for computer detection and correction of spelling errors.' 
Communications of the ACM, 7(3),(1964), 171-176. 

Desain, P. 'TREE DOCTOR: A software package for graphical manipulation and 
animation of tree structures.' K.U.Nijmegen, Psychology Department, Internal 
Report 86 CW 01, 1986. 

Domenig, M. and P. Shann (1986) Towards a Dedicated Database Management Sys-
tem for Dictionaries.' Proceedings COLING-86, 91-96. 

Droste, F.G. Vertalen met de computer. Mogelijkheden en moeilijkheden.Groningen: 
Wolters-Noordhoff, 1966. 

Droste, F.G. 'Reflections on metalanguage and object-language.' Linguistics 21, 
1983, 675-699. 

Droste, F.G. 'Language, Thought and Mental Models.' Semiotica 56, 31-98. 
Droste, F.G. (Ed.) Stromingen in de hedendaagse linguistiek. Leuven: Universitaire 

Pers Leuven, 1985. 
Eynde, F. Van. Betekenis, vertaalbaarheid en automatische vertaling. Dissertatie 

Katholieke Universiteit Leuven, 1985. 
Faulk, R.D. 'An inductive approach to language translation.' Communications of the 

ACM, 1 (1964), 647. 
Flesch, R. Helder schrijven, spreken, denken. Van Loghum/Slaterus, 1976. 
Fodor, J.A. The Modularity of Mind. Cambridge, Mass.: MIT Press, 1983. 
Friedman, J. A computer model of transformational grammar. New York: Elsevier, 

1971. 
Fromkin, V. (Ed.). Speech Errors as Linguistic Evidence. The Hague: Mouton, 

1973. 
Fromkin, V.A. and D.L. Rice, 'An interactive phonological rule testing system'. In: 

Coling, Preprints of the International Conference on Computational Linguistics, 
1969. 

Garrett, M.F. 'The analysis of sentence production.' In: Bower, G.H. (Ed.) The 
psychology of learning and motivation. Vol 9. New York: Academic Press, 
1975, 133-177. 



Gazdar, G. 'NLs, CFLs and CF-PSGs.' In: Sparck Jones, K. and Y. Wilks (Eds.) 
Automatic Natural Language Parsing. New York: Wiley, 1983. 

Gazdar, G. 'Computational Tools for Doing Linguistics: Introduction'. Linguistics 
23, 1985, 185-187. 

Gazdar, G. 'Finite State Morphology.' Linguistics 23, 1985, 597-607. 
Gebruers, R. 'Het vertaalsysteem Metal' In: Automatische vertaling aan de K.U. 

Leuven. Leuven: Acco, 1986. 
Geeraerts, D. and G. Janssens. Wegwijs in Woordenboeken. Assen: van Gorcum, 

1982. 
Geerts, G. et al. (eds.), Algemene Nederlandse Spraakkunst. Groningen: Wolters-

Noordhoff, 1984. 
Gibson, E.J. and L. Guinet. 'Perception of inflections in brief visual presentation of 

words.' Journal of verbal learning and verbal behavior 10, 1971, 182-189. 
Glencross, Courner, Nilsson. The Flinders typing Project. Report (1979). 
Goldberg, A. and D. Robson. Smalltalk-80: The Language and its Implementation. 

Reading, MA: Addison-Wesley, 1983. 
Golding, A.R. Lexicrunch: an expert system for word morphology. Unpublished 

M.Phil thesis, Edinburgh University, 1984. 
Golding, A.R. and H.S. Thompson. 'A morphology component for language pro-

grams.' Linguistics 23, 1985, 263-284. 
Gosling, J. Unix Emacs. Carnegie Mellon University. 1981. 
Greanias, E.C., 'Computer aids for Spelling Correction and Word Selection.' Paper 

presented at IBM-Europe Institute, Davos, 1984. 
Grudin, J. T. 'Error Patterns in Novice and Skilled Transcription Typing.' In: 

Cooper, W. E. (ed.) Cognitive Aspects of Skilled Typewriting. New York: 
Springer Verlag, 1983. 

Halle, M. 'Prolegomena to a Theory of Word Formation' In Linguistic Inquiry 4, 
1973, 3-16. 

Hayes, J. and L.S. Flower. 'Identifying the Organization of Writing Processes.' In: 
Gregg and Steinberg (Eds.). Cognitive Processes in Writing. Hillsdale (N.J.): 
Erlbaum, 1980, p.3-30. 

Hays, D.G. An Introduction to Computational Linguistics. New York: American 
Elsevier, 1967. 



Heer, T. De. 'De informatiesporenmethode.' IWIS-TNO rapport (1982), Den Haag. 
Henderson, L. Toward a psychology of morphemes.' In A.W. Ellis (ed). Progress 

in the psychology of language, vol. I. London: Erlbaum. 
Hendrix, G.G. 'Encoding Knowledge in Partitioned Networks.', In: Findler, N.V. 

(Ed.) Associative Networks - Representation and Use of Knowledge by Comput-
ers. Academic Press, 1979. 

Heuven, V. van. Spelling en lezen. Hoe tragisch zijn de werkwoordsvormen?. Assen: 
Van Gorcum, 1978. 

Hewitt, C, P. Bishop and R. Steiger. 'A Universal, Modular Actor Formalism For 
Artificial Intelligence.' UCAI, 1973. 

Hill, D.R. 'Spoken Language Generation and Understanding: A Problem and Appli-
cation Oriented Overview.' In: Simon, J.C. (Ed.) Spoken Language Generation 
and Understanding. Dordrecht: Reidel, 1980, p. 3 - 39. 

Hoenkamp, E. Een computermodel van de spreker: Psychologische en Linguistische 
Aspecten. Unpublished dissertation, University of Nijmegen. 

Hoenkamp, E. 'Weg met de computer?' Gramma 9, 1985, 27-45. 
Honig, H.J. Oracle User's Manual. Delft University of Technology, 1984. 
Hudson, R., Word Grammar. Oxford: Black well, 1984. 
Hudson, R., and W. Van Langendonck. 'Word Grammar.' In: Droste, F.G. (Ed.) 

Stromingen in de hedendaagse linguistiek. Leuven: Universitaire Pers Leuven, 
1985, 192-229. 

Isoda, M., H. Aiso, N. Kamibayashi and Y. Matsunaga (1986) 'Model for Lexical 
Knowledge Base.' Proceedings COLING-86, 451-453. 

Jackendoff, R.S., 'Semantic and Morphological Regularities in the Lexicon.' 
Language 51, 639-71. 

Jakimik, J., R.A. Cole and A.I. Rudnicky. 'Sound and spelling in spoken word 
recognition.' Journal of memory and language 24, 1985, 165-178. 

Janssen, T.M.V. 'A computer program for Montague grammar.' In: Groenendijk, J. 
and M. Stokhof (Eds.) Proceedings of the Amsterdam Colloquium on Montague 
Grammar and Related Topics. Amsterdam, 1976. 

Johnson, M. 'Computer Aids for Comparative Dictionaries.' Linguistics 23, 1985, 
285-302. 



Johnson-Laird, P.N. 'Mental Models in Cognitive Science.' Cognitive Science 4, 
1980, 71-115. 

Joseph, D.M. and R.L. Wong. 'Correction of Misspellings and Typographical Errors 
in a Free-text Medical English Information Storage and Retrieval System.' 
Methods Inform. Med., 18(4), 1979, 228-234. 

Kay, A. 'SMALLTALK, A Communication medium for children of all ages.' Palo 
Alto, California: Xerox Palo Alto Pesearch Center, Learning Research Group, 
1974. 

Kay, M. 'Functional Grammar.' Proceedings 5th annual meeting of the Berkeley 
Linguistic Society, 1979. 

Kay, M. 'When meta-rules are not meta-rules.' In: Sparck Jones, K. and Y. Wilks 
(Eds.) Automatic Natural Language Parsing. New York: Wiley and Sons, 1983, 
p. 94-116. 

Kay, M. 'Parsing in a functional unification grammar.' In Dowty, D., L. Karttunen 
and A. Zwicky (Eds.) Natural Language Parsing. London: Cambridge Univer-
sity Press, 1985, 251-278. 

Kempen, G. 'Het Artificiele-intelligentieparadigma.' In: J.G.W. Raaijmakers, P.T.W. 
Hudson and A.H. Wertheim (reds.) Metatheoretische aspecten van de psychonomie. Van Loghum Slaterus, 1983. 

Kempen, G. 'Natural Language Technology for Office Workstations.' Report Univer-
sity of Nijmegen, 1984. 

Kempen, G., L. Konst, K. De Smedt. 'Taaltechnologie voor het Nederlands.' Informatie, 26 (11), 878-881, 1984. 

Kempen, G., H. Schotel and F. Pijls. 'Taaltechnologie en Taalonderwijs.' Report, 
University of Nijmegen, 1984. 

Kempen, G., G. Anbeek, P. Desain, L. Konst, K. De Smedt. 'Author Environ-
ments: Fifth Generation Text Processors.' In: ESPRIT '86. Amsterdam: 
North-Holland, 1986. 

Kempen, G. and E. Hoenkamp. 'An Incremental Procedural Grammar for Sentence 
Production.' Cognitive Science, forthcoming. 

Kerkhoff, J., J. Wester and L. Boves, 'A compiler for implementing the linguistic 
phase of a text-to-speech conversion system'. In: Bennis and Van Lessen Kloeke 
(eds), Linguistics in the Netherlands, p. 111-117, 1984. 



Kerstens, J. 'Abstracte Spelling.' De Nieuwe Taalgids, 74-1, 1981, 29-44. 
Kiparsky, P. 'Metrical Structure Assignment is Cyclic'. Linguistic Inquiry 10, 1979, 

421-42. 
Knuth, D.E. The Art of Computer Programming. Vol. 3. Sorting and Searching. 

Reading: Addison-Wesley, 1973. 
Knuth, D.E. TEX and Metafont: New Directions in Typesetting. Bedford, MA: 

Digital Press, 1979. 
Konst, L. 'A Syntactic Parser Based on Filtering.' K.U.Nijmegen: memo Psychologi-

cal Laboratory, 1986. 
Konst, L., W. Daelemans and G. Kempen. 'An Author System for an Intelligent 

Office Workstation.' Final report ESPRIT pilot project OS-82, 1984. 
Koskenniemi, K. Two-Level Morphology: A General Computational Model for 

Word-Form Recognition and Production. University of Helsinki: Department of 
General Linguistics, Publication 11, 1983. 

Koskenniemi, K. 'Two-level morphology.' Proceedings of COLING 1984. 
Kruyskamp, C. Groot Woordenboek van de Nederlandse Taal. Utrecht/Antwerpen: 

Van Dale Lexicografie, 1982. 
Kuipers, B. 'A frame for Frames: Representing Knowledge for Recognition.' In: 

Bobrow and Collins (Eds.) Representation and Understanding: Studies in Cogni-
tive Science New York: Academic Press, 1975, p. 151-184. 

Kwee, Tjoe Liong. 'A Computer Model of Functional Grammar.' In: G. Kempen 
(Ed.) Natural Language Generation: Advances in Artificial Intelligence, Psychol-
ogy and Linguistics. Dordrecht: Kluwer Academic Publishers (in preparation). 

Laudanna, A. and C. Burani. 'Address mechanisms to decomposed lexical entries.' 
Linguistics 23 (1985), 775-792. 

Ledbetter, L. and B. Cox. 'Software-ICs.' Byte, June 1985. 
Lenat, D.B. 'The Nature of Heuristics.' Artificial Intelligence, 19, 1982, 189-249. 
Lieberman, H. 'A Preview of ACT1.' MIT: Artificial Intelligence Laboratory, Memo 

No. 625, 1981. 
Lyons, J. Language, Meaning and Context. Fontana Paperbacks, 1981. 
MacKay, D.G. 'On the retrieval and lexical structure of verbs.' Journal of verbal 

learning and verbal behavior 15, 1976, 169-182. 



MacKay, D.G. 'The structure of words and syllables: evidence from errors in 
speech.' Cognitive Psychology 3, 1972, 210-227. 

Marcke, K. Van. 'FPPD: A Consistency Maintenance System Based on Forward 
Propagation of Proposition Denials.' AI-Memo 86-1, 1986. 

Marcke, K. Van. The KRS Manual. Unpublished draft, V.U.B. AI-Lab., 1986. 
Marr, D. 'Artificial Intelligence - A Personal View.' Artificial Intelligence 9, 1977, 

37-48. 
Marr, D. Vision: a computational investigation into the human representation and 

processing of visual information. San Fransisco: Freeman, 1982. 
Marslen-Wilson, W.D. 'Speech understanding as a psychological process.' In J.C. 

Simon (Ed.). Spoken Language Generation and Understanding. Dordrecht: 
Reidel, 1980. 

Marslen-Wilson, W.D. and A. Welsh. 'Processing interactions and lexical access dur-
ing word recognition in continuous speech.' Cognitive Psychology 10, 1978, 
29-63. 

Marslen-Wilson, W.D. and L.K. Tyler. 'The temporal structure of spoken language 
understanding.' Cognition 8, 1980, 1-71. 

Matthews, P.H. Morphology. Cambridge: C.U.P., 1974. 
Metzing, D. Frame Conceptions and Text Understanding. Berlin: de Gruyter, 1979. 
Miller, G.A. 'Informavores.' In: Machlup, F. and U. Mansfield. The Study of Infor-

mation: Interdisciplinary Messages. New York: Wiley, 1984. 
Miller, L.A., Heidorn, G.G., and K. Jensen. 'Text-critiquing with the Epistle Sys-

tem: an Author's Aid to Better Syntax.' Proc. Nat. Comp. Conf., 1981. 
Minsky, M.A. 'A Framework for Representing Knowledge.' In: P. Winston (Ed.) 

The Psychology of Computer Vision New York: McGraw-Hill, 1975. 
Montague, R. 'The Proper Treatment of Quantification in Ordinary English.' In: 

Thomason, R.H. (Ed.) Formal Philosophy. Selected Papers of Richard Mon-
tague. New Haven: Yale University Press, 1974. 

Morton, J. 'A functional model for memory.' in D.A. Norman (Ed.) Models of 
Human Memory. New York: Academic Press, 1970. 

Morton, J. 'Word Recognition.' In: Morton, J. and J.C. Marshall (Eds.), Psycho-linguistics 2: Structures and Processes. Cambridge, Mass.: MIT-Press, 1979a. 



Morton, J. 'Facilitation in word recognition: experiments causing change in the Logo-gen model.' In: Kolers, P.A., M.E. Wrolstad, and H. Bouma (eds.), Processing 
of Visible Language, Vol. 1. New York: Plenum, 1979b. 

Murrell, G.A. and J. Morton. 'Word Recognition and Morphemic Structure.' Journal 
of experimental psychology 102, 963-968, 1974. 

Nes, F.L. Van. 'Analysis of keying errors.' Ergonomics, 19.2 (1976), 165-174. 
Peer, W. van. 'Het anker leert nooit zwemmen, ook al ligt het steeds in het water.' 

Moer, 5, 1982, p.2-15. 
Peterson, J.L. 'Computer programs for detecting and correcting spelling errors.' 

Communications of the ACM, 23(12) (1980a),676-687. 
Peterson, J.L. Computer Programs for Spelling Correction. Lecture Notes in Com-

puter Science. Vol.96. Springer Verlag, New York, 1980b. 
Peterson, J.L. 'A Note on Undetected Typing Errors'. Communications of the ACM, 

29(7) (1986),633-637. 
Pijls F., W. Daelemans and G. Kempen. 'Artificial Intelligence Tools for Grammar 

and Spelling Instruction.' Submitted to Second International Conference on Chil-
dren in the Information Age. Sofia, Bulgaria, 19-23 May, 1987. 

Pounder, A. and M. Kommenda. 'Morphological analysis for a German text-to-speech system.' Proceedings of COLING, Bonn, 1986. 

Prescott Loui, R. 'On Spelling Error Detection.'Communications of the ACM, 24(5), 
(1981), 331-332. 

Quillian, M. R. 'Semantic Memory.' In: Minsky, M. (Ed.) Semantic Information 
Processing. MIT-Press, 1968. 

Rumelhart, D.E. and J.C. McClelland. Parallel Distributed Processing. Vol.1: Foun-
dations. Cambridge Mass.:MIT-Press, 1986a. 

Rumelhart, D.E. and J.C. McClelland. 'On learning the past tenses of English 
verbs.' In Rumelhart and McClelland, 1986a, 1986b. 

Santen, A. van. Morfologie van het Nederlands. Dordrecht: Foris Publications, 1984. 
Schaerlaekens, A.M. De Taalontwikkeling van het Kind. Groningen: Wolters-Noordhoff, 1979. 

Schane, Sanford A. Generative Phonology Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1973. 



Schotel, H. and F. Pijls. 'Een prototype van grammaticaonderwijs op een Lisp 
machine.' Informatie 28 (12), 1985. 

Schutter, G. de, 'Aspekten van de Nederlandse klankstruktuur'. Antwerp papers in 
linguistics, nr. 15, 1978. 

Selkirk, E.O., 'The Syllable' In: Hulst, H.v.d. and N. Smith (eds.), The Structure of 
Phonological Representations, Vol I and II, Dordrecht: Foris, 1982/83. 

Shaffer, L.h. en J.Hardwick. 'Errors and error detection in typing.' Q.J1. of 
exp.Psych., 21 (1969), 209-213. 

Simon, J.C. (Ed.) Spoken Language Generation and Understanding. Dordrecht: 
Reidel, 1980. 

Sleeman D. and Brown J. (eds) Intelligent Tutoring Systems. New York: Academic 
Press, 1982. 

Smedt, K. de. 'Orbit, an Object-Oriented Extension of Lisp.' Internal Report 
84FU13, K.U. Nijmegen, Psychological Laboratory, 1984. 

Smedt, K. de. 'Using Object-Oriented Programming Techniques in Morphology and 
Syntax Programming.' In: O'Shea, T. (Ed.) ECAI 84 Proceedings, 1984. 

Smedt, K. de. 'Object-Oriented Programming in Flavors and CommonOrbit.' In: 
Hawley, R. (Ed.) Artificial Intelligence Programming Environments. Ellis Horwood, 1987 (forthcoming). 

Smedt, K. de and G. Kempen. 'Incremental sentence generation'. In: G. Kempen 
(Ed.) Natural Language Generation: Advances in Artificial Intelligence, Psychol-
ogy and Linguistics. Dordrecht: Kluwer Academic Publishers (in preparation). 

Smith, R.N. 'Computer Aids to Writing.' In: W. Frawley (ed.), Linguistics and 
Literacy. New York: Plenum, 1982, p. 189-208. 

Srihari, S.N., J.J. Hull and R. Choudhari. 'Integrating Diverse Knowledge Sources 
in Text Recognition.' ACM Transactions on Office Information Systems, 1(1), 
1983, 68-87. 

Steels, L. Representing Knowledge as a Society of Communicating Experts. MIT: AI 
Lab Treatise, TR-542, 1980. 

Steels, L. 'Programming with Objects.' Schlumberger Doll Research, AI-Memo 9, 
1981a. 

Steels. L. 'Programming with Objects Using Orbit.' Schlumberger Doll Research, 
AI-Memo 13, 1981b. 



Steels, L. 'An Applicative View of Object-Oriented Programming.' Schlumberger 
Doll Research, AI-Memo 15, 1982. 

Steels, L. 'Community Memories'. Al-Memo 3/M2, 1985. 
Steels, L. 'The KRS Concept System.' Vrije Universiteit Brussel. Artificial Intelli-

gence Laboratory. Technical Report 85-4. Brussels, Belgium, 1985. 
Steels, L. 'Second Generation expert Systems.' In: Future Generation Expert Sys-

tems. Amsterdam: North-Holland, 1985. 
Steels, L. and K. De Smedt. 'Some Examples of Frame-based Syntactic Processing.' 

In: F. Daems and L. Goossens (eds.) Een Spyeghel voor G. Jo Steenbergen. 
Leuven: Acco, 1983, 293-305. 

Steels, L. and W. Van de Velde. 'Learning in Second Generation Expert Systems.' 
In: Kowalik (Ed.) Knowledge Based Problem Solving. New Jersey: Prentice 
Hall, 1985. 

Stefik, M. and D.G. Bobrow. 'Object-Oriented Programming: Themes and Varia-
tions.' AI-Magazine. 6(4), 1986, 40-62. 

Taft, M. 'Prefix stripping revisited.' Journal of verbal learning and verbal behavior 
20, 1981, 289-297. 

Taft, M. and K.I. Forster. 'Lexical storage and retrieval of prefixed words.' Journal 
of verbal learning and verbal behavior 14, 1975, 638-647. 

Taft, M. and G. Hambly. 'The influence of orthography on phonological representa-
tions in the lexicon.' Journal of memory and language 24, 1985, 320-335. 

Teitelman,W. Interlisp Reference Manual. Xerox Research Center, Palo Alto, Calif. 
(1978) Ch.17. 

Toorn, M.C. van den. 'De tussenklank in samenstellingen waarvan het eerste lid een 
afleiding is.' Nieuwe Taalgids 74, 1981a, p.197-205. 

Toorn, M.C. van den. 'De tussenklank in samenstellingen waarvan het eerste lid sys-
tematisch uitheems is.' Nieuwe Taalgids 74, 1981b, p.547-552. 

Toorn, M.C. van den. 'Tendenzen bij de beregeling van de verbindingsklank in 
samenstellingen I.' Nieuwe Taalgids 75, 1982a, p.24-33. 

Toorn, M.C. van den. 'Tendenzen bij de beregeling van de verbindingsklank in 
samenstellingen II.' Nieuwe Taalgids 75, 1982b, p. 153-160. 

Trommelen, M., The Syllable in Dutch. Dordrecht: Foris, 1983. 



Uit den Boogaart, P.C. (ed.), Woordfrequenties in geschreven en gesproken Nederlands. Utrecht: Oosthoek, Scheltema en Holkema, 1975. 

Weinreb, D. and D. Moon Lisp Machine Manual. Symbolics Inc., 1981. 
Wester, J. 'Language Technology as Linguistics: A phonological case study of Dutch 

spelling.' In: Bennis, H. and F. Beukema (Eds.) Linguistics in the Netherlands 
1985. Dordrecht: Foris, 1985a. 

Wester, J. 'Autonome spelling en toegepaste fonologie; of: naar een generatieve spellingtheorie.' Gramma 9(3), 1985b, 173-196. 

Wijk, C. van and G. Kempen, 'From sentence structure to intonation contour'. In: 
B. Muller (Ed.), Sprachsynthese. Hidesheim: Georg Olms Verlag, 1985, p. 
157-182. 

Winograd, T. 'Frame Representations and the Declarative/Procedural Controversy.' 
In: Bobrow and Collins (Eds.) Representation and Understanding: Studies in 
Cognitive Science New York: Academic Press, 1975, p. 185-210. 

Winograd, T. Language as a Cognitive Process. Volume I: Syntax. Reading Mass.: 
Addison-Wesley, 1983. 

Winston, P.H. Artificial Intelligence. Reading Mass.: Addison-Wesley, 1984. 
Woordenlijst van de Nederlandse Taal. 's Gravenhage: Martinus Nijhoff, 1954. 
Yannakoudakis, E.J. and D. Fawthrop. 'The rules of spelling errors.' Information 

Processing and Management, 19.2 (1983a), 87-99. 
Yannakoudakis, E.J. and D. Fawthrop. 'An intelligent spelling error corrector.' 

Information Processing and Management, 19.2 (1983b), 101-108. 
Yazdani, M. 'Intelligent Tutoring Systems Survey' Artificial Intelligence Review 1, 

1986, 43-52. 
Yianilos, Peter N. 'A dedicated comparator matches symbol strings fast and intelli-

gently.' Electronics (december 1983), 113-117. 
Zamora, A. 'Automatic detection and correction of spelling errors in a large data-

base.' J.Am.Soc.Inform.Sei., 31(1) (1980), 51-57. 
Zamora, E.M., J.J.Pollock and A.Zamora. 'The use of trigram analysis for spelling 

error detection.' Information Processing and Management, 17(6) (1981), 305-
316. 

Zoeppritz, M. 'Human Factors of a "Natural Language" Enduser System.' In: 
Blaser, A. and M. Zoeppritz (eds.) Enduser Systems and Their Human Factors. 
Berlin: Springer-Verlag, 1983. 



Zonneveld, W. 'Autonome Spelling.' In De Nieuwe Taalgids 73 (6), 1981. 


