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ABSTRACT 

The main goal of ESPRIT project 82 is to build an intelligent office workstation 
(IWS). A knowledge-based approach was chosen to overcome the complexity result
ing from the open-endedness of the office domain and the dynamic characteristics of 
the office environment. The knowledge representation system KRS is used to 
represent knowledge in the office domain. On the one hand, domain knowledge 
involves static domain concepts including concrete concepts such as persons and 
communication-means and more abstract concepts like organisations and roles. On 
the other hand, it involves a range of office activities which operate on these static 
domain concepts. In general, two categories of activities can be distinguished: primi
tive actions which directly operate on the office environment like 'send letter' or 
'archive document' and higher level conceptual tasks like 'plan a trip' or 'order a 
book'. The execution of actions and the translation of tasks into actions must be 
controlled within the IWS. For this purpose, special office formalisms such as 
agendas, monitors and a unification mechanism were designed and implemented on 
top of KRS. The paper presents these office formalisms and illustrates their func
tionality with the description of a prototype knowledge-based office assistant and 
with some worked out examples of typical office-tasks. 

1. INTRODUCTION 

IWS (ESPRIT Project 82) is a project in the domain of intelligent office applications. The 
partners involved in the project are Bull (France), VUB (Belgium), KUN and OCE (the Neth
erlands) and CRC (Greece). The goal of the project is to build an intelligent cooperative per
sonal workstation that assists the office-worker in the office tasks he is playing a role in. 

An important aspect is the representation of office knowledge. In order to let the workstation 
intervene in an intelligent and intelligible way, it must know about the office-procedures that 
are being followed and about their states, goals and reasons. To this end, the system must be 
knowledgeable about the functioning of offices in general (the generic model) and about the 
organisation of the user in particular. At each of these levels, three types of knowledge can be 
distinguished: tool-knowledge (how to use electronic tools such as text-formatters, printers, 
files, telefaxes, etc.), domain knowledge (in the generic model: knowledge about hierarchies, 
approvals and signatures, communication means, deadlines, book-years, vacations etc.; in the 
particular model: instances of the generic concepts, organisation structure, the people that work 
in the organisation and their roles, goals of the organisation and its function in society etc.) and 
office procedure knowledge (the knowledge needed to interact in the office environment: 
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knowledge about office-procedures, tasks and activities, problems, problem-solving, planning 
and waiting. 

The representation tool system KRS (Steels, 1986; Van Marcke, 1987) was chosen for the 
representation of these different types of knowledge. KRS was developed at the VUB AI-Lab 
within the ESPRIT project P440 (Message-Passing Architectures and Description Systems). It 
is based on earlier work on Representation Language Languages (Greiner, 1980). KRS is basi
cally a flexible object-oriented language in which multiple knowledge retrieval architectures can 
be explicitly modeled and used. The advantage of modeling different representation formalisms 
explicitly in the same language is that it allows knowledge represented in different styles to 
cooperate. A more pragmatic advantage of using KRS is that it is implemented in ZetaLisp in 
such a way that it can be easily ported to other dialects, and that it runs efficiently. KRS has 
been successfully ported to InterLisp, Common Lisp and Le-Lisp. Porting to Le-Lisp has been 
done within the context of the IWS project by people at Bull, because Le-Lisp was chosen as 
the language to be used in the project. 

The task of the VUB in the project is to design and develop knowledge representation formal
isms in KRS. Those must facilitate the task of representing office knowledge (carried out by 
Bull, see the companion paper to this one: Ader, 1987). The present paper describes the 
current state of this process. More specifically, it describes three different formalisms which 
are currently being developed and used in our laboratory. Some of them are also used in the 
implementation of the activity-manager at Bull (Tueni et al., 1987). The first is the representa
tion of priority-agendas. A priority-agenda is an agenda on which items can be placed together 
with a priority. The item with the highest priority on the agenda is always removed first. 
Multiple priority-agendas can be used to control execution of tasks and actions in a flexible and 
modular way. A second formalism which has been developed in KRS is a monitor formalism. 
Monitors allow to automatically start some activity the moment some event occurs. In an 
office environment, most actions are typically invoked as a reaction to some event. The third 
formalism enables the representation of features and the unification of feature-sets, which is 
among other things useful to decide between alternative solutions. 

The paper first gives an overview of the aims and achievements of KRS. It is not our inten
tion to give a detailed description of the mechanisms of the language, but rather to illustrate 
why it is a suitable tool for our purposes. Secondly, the three special-purpose formalisms intro
duced are illustrated by means of an experimental architecture simulating an office environment. 
This experimental architecture is being developed at VUB to test and to experiment with those 
formalisms. Although this office environment will not be part of the final specifications of the 
project, it is sophisticated enough to be a non-trivial test-bank for the formalisms we propose. 

2. KRS 

2.1. Philosophy 

KRS is a representation tool system developed at the VUB AI-Lab. It is partly inspired by 
earlier work in Representation Language Languages and in particular by the language ARLO 
(Haase, 1986). KRS differs from popular representation tool systems like KEE and ART in 
that it does not provide a fixed set of formalisms. Instead it provides a language, called the 
concept-language, in which new or existing formalisms can be easily modeled and used by the 
user. It is essentially an object-oriented language featuring single inheritance, lazy construction, 
caching, consistency maintenance, meta-representations and explicit representation of reference. 
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Multiple inheritance has grown into a heavily debated controversy in the object-oriented sys
tems community. KRS has chosen for a single inheritance mechanism with the capability to 
build more complicated architectures explicitly into the language when they are needed (Van 
Marcke, 1987). KRS objects are constructed in a lazy way, i.e. not when they are defined but 
when they are first used. This leads to more economic applications and more elegant 
definitions, especially when cross-pointing structures are involved. Caching is a technique to 
store computed values for re-use. This may lead (depending on the application) to serious per
formance upgrades. Together with caching, a consistency maintenance mechanism is needed to 
make sure that there remain no cached values depending on something that has already 
changed. All KRS objects also have a unique meta-interpreter object that contains all informa
tion about the object itself. Those meta-features are explicitly accessible and can be overridden 
by the KRS-user (Maes, 1987). Finally, the referent relation explicitly states what an object is 
about. This has led among others to a smooth and sound interface to LISP. A more thorough 
description of KRS can be found in (Steels, 1986). 

KRS was originally implemented on a Symbolics LISP machine in ZetaLisp. An earlier ver
sion has been ported to 1NTERLISP to run on a Xerox LISP Machine. The latest version has 
been ported to Common Lisp by ourselves to run on for example a Sun work station. It has 
also been ported to Le-Lisp by Michel Tueni of Bull to run on Sun, Vax and the Metaviseur. 
The implementation in Le-Lisp was made in the context of this project. 

2.2. The Concept-Language 

The fundamental building block in the concept-language is the concept. A concept is a frame-
like structure, grouping a set of subjects. Each subject is a named association between the 
concept and some other concept, which we call the filler of the subject. This way concepts are 
connected in a labeled network. We will describe a concept with its name (if it has one) possi
bly followed by a list of its subjects, like in the following example: 

JOHN 
A PERSON 

ACE TWENTY-FIVE 
FRIEND A PERSON 

AGE (>> age) 

The subjects are described with their name and a description of their filler. The description of 
this filler can be the description of this concept, or a reference to the filler of another subject. 
In the preceding example, the filler of the age-subject of the filler of the friend-subject of the 
concept with name John is described by a reference to the filler of the age-subject of that same 
concept ("(>> age)"). The example therefore describes a concept named John, with an age-
subject with filler the concept named Twenty-Five, and with a friend-subject with filler a con
cept with a new age-subject with filler also the concept named Twenty-Five. 

The descriptions of the concept John and of the filler of its friend-subject contain both an 
expression "A PERSON". This expression classifies the concepts in a strict type-tree, which is 
used for a prototype-style (Lieberman, 1986) inheritance. We say that the concept Person is 
the type of both concepts. A concept inherits all subjects from its type except those which it 
overrides. 
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The KRS concept-system is a representation language language, i.e. a language to describe 
representation languages. Most of the static knowledge structures are most naturally expressed 
directly in the concept-language. When more complicated or more dynamical architectures are 
needed, they can be built explicitly in the language. KRS provides libraries to facilitate this 
construction. Some of those libraries have already been developed and/or experimented with, 
such as a production-rule library, a logic-library, a cliche-library, etc. (Steels et al., 1987). 

3. A PROTOTYPE OFFICE MANAGER 

3.1. A General Office Model 

To investigate which formalisms can be useful in the implementation of an intelligent office 
system and to develop and experiment with such formalisms we have developed a prototype 
office manager which implements a very general model of an office environment. This section 
first sketches this general office model and introduces the basic concepts used in its implemen
tation. The need for dedicated formalisms to complete this implementation is briefly discussed 
at the end of this section. In the next section three formalisms are discussed in more detail. 

In the office domain static and active knowledge components can be distinguished. Static office 
knowledge involves knowledge about concrete and abstract concepts in the office domain, e.g. 
persons, communication-means, organisations, roles, etc. Such office concepts can be modeled 
straightforwardly as KRS-concepts. In this approach, the KRS-concepts fulfill the role of 
frame-style representation structures. Modeling office concepts as KRS-concepts therefore 
holds the advantages commonly attributed to frame-based representation languages (Fikes 1985). 
Frames capture the way experts typically think about much of their knowledge. They can 
describe different types of domain objects, they can represent the useful relations, and they sup
port a kind of 'definition by specialisation' which is in most domains a natural thing to do. 
Below we show some simple examples (in a simplified notation) of such KRS-concepts model
ing a prototypical person and a specific person, respectively. 

PERSON 
A STATIC-OFFICE-CONCEPT 

NAME a person-name 
ADDRESS an address 
ELECTRONIC-MAIL-ADDRESS a mall-address 

KRIS 
A PERSON 

NAME A PERSON-NAME 
LAST-NAME [string "Van Marcke"] 
FIRST-NAME [string "Kris"] 

ELECTRONIC-MAIL-ADDRESS [mall-address krisvm«arti.vub.uucp]' 

Complementary, office activities which operate on these static domain concepts can be viewed 
as active knowledge components. Furthermore, activities like 'send a letter' or 'archive docu
ment' which correspond to concrete actions in the office domain can be distinguished from 
activities like 'plan a trip' or 'order a book' which are more conceptual tasks. In fact, the latter 
require a combination of primitive actions for their execution. Below we sketch a very general 
model of active office knowledge. A complex task gradually decomposes into more primitive 
subtasks. In the end, each primitive subtask corresponds straightforwardly to a single concrete 
action. 
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In the remainder of the text, the term action is reserved for a concrete, executable action in the 
office world while the term task is used to denote conceptual entities of activity. In our termi
nology, actions are executed while tasks are handled. 

3.2. Tasks and Actions 

A KRS-concept named action is introduced to serve as ancestor node for all KRS-concepts 
which model an action. As usual, subjects associate the necessary information with each action 
concept. In particular, the procedure which can be called to execute the action is associated 
with each action concept via the execute-procedure subject. An example is shown below. 

ACTION 
AN ACTIVE-OFFICE-CONCEPT 

EXECUTE-PROCEDURE a procedure 

SEND-ELECTRONIC-MAIL-ACTION 
AN ACTION 

SENDER a person 
RECEIVER a person 
MESSAGE a message 
EXECUTE-PROCEDURE [procedure (send-mail ...)] 

A KRS-concept named task is introduced to serve as ancestor node for each KRS-concept 
which models a task. The task distribute-message discribed further on is an example for this 
concept. A task contains a script which is in general an analysis of the tasks in terms of more 
simple tasks. Such a script, called a task-handling-script, determines how the task is handled, 
either in terms of its subtasks or in terms of an action to be executed. A task-handling-script 
has a handle-procedure subject, typically filled by a lisp-procedure, that implements the func
tionality of the script. Libraries of general-purpose scripts can be provided and applied to han
dle more specific tasks. 

There are two overall subcategories of task-handling-scripts. Primitive-task-scripts translate the 
task in exactly one action to be executed. We call tasks with a primitive-task-script primitive-
tasks. Composed-task-scripts match a predefined combination of more basic tasks. Typical 
examples of composed-task-scripts are do-all-tasks, do-all-tasks-sequentially, do-some-tasks, do-
best-task, etc. They play the same role as control abstractions in programming languages. 

To handle a primitive task, the corresponding action must be executed. Therefore, an action is 
associated with each primitive-task-script via the handle-action subject. To handle a composed 
task, subtasks must be handled as determined by the semantics of the composed task. To han
dle a do-all-tasks for example, each task enumerated in the tasks subject of this composed-
task-script must be handled. 
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TASK-HANDLING-SCRIPT 
AN OFFICE-CONCEPT 

HANDLE-PROCEDURE a procedure 

PRIMITIVE-TASK-SCRIPT COMPOSED-TASK-SCRIPT 
A TASK-HANDLING-SCRIPT A TASK-HANDLING-SCRIPT 

HANDLE-ACTION an action 
HANDLE-PROCEDURE DO-ALL-TASKS 

[procedure (>> execute handle-action)] A COMPOSED-TASK-SCRIPT 
TASKS a task-list 
HANDLE-PROCEDURE [procedure (mapcar ...)] 

The example below shows how a simple task is defined using a primitive-task-script. 

TASK 
AN OFFICE-CONCEPT 

SCRIPT a composed-task 

SEND-MESSAGE 
A TASK 

FROM a person 
TO a person 
MESSAGE a message 
SCRIPT A PRIMITIVE-TASK-SCRIPT 

HANDLE-ACTION A SEND-ELECTRONIC-MAIL-ACTION 
SENDER (>> from) 
RECEIVER (>> to) 
MESSAGE (>> message) 

The next example illustrates how a complex task such as distributing a message to a set of per
sons is described on a very abstract level, i.e. in terms of the message to send, the person who 
sends the message and the list of persons who have to receive the message. The script role 
holds the appropriate composed-task-script. Notice that the programming cliche transform is 
used to obtain the sequence of individual send-electronic-mail tasks from the information given 
with the distribute-message-task. 

DISTRIBUTE-MESSAGE 
A TASK 

FROM a person 
DISTRIBUTE-TO a person-list 
MESSAGE a message 
SCRIPT A DO-ALL-TASKS 

TASKS (A TRANSFORM 
TRANSFORM-OVER (>> distribute-to) 
TRANSFORM-WITH ?one-person 
TRANSFORMER A SEND-MESSAGE 

FROM (>> from) 
TO ?one-person 
MESSAGE (>> message) 

It may be necessary to emphasise at this point the importance of the distinction between 
primitive-tasks and actions. It is true that every primitive-task translates straightforwardly to an 
executable action. But a primitive task is no more than a conceptual entity while an action 
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really operates on the environment. Therefore, dealing with failures, recovery after machine 
crashes, and other persistency problems are different for both kind of concepts. 

From the very general model sketched so far, the need for mechanisms which control the 
decomposition of tasks into more primitive subtasks and the execution of the resulting actions 
automatically emerges. The simple examples given create the impression that modeling complex 
office tasks corresponds to writing a kind of high level procedures in a specialised and power
ful language. But the execution of these procedures can not be controlled by a fixed interpreta
tion mechanism. A much more flexible interpretation process is necessary to deal with the typi
cal characteristics of an office environment such as: 
- The competition for resources between different tasks and subtasks which can be reflected in 
differences in priority. 
- Interference of externally induced changes in the office environment with the execution of 
tasks. 
- Interference between execution of different tasks. 
- The existence of alternative ways for dealing with the same problem. 

The following section introduces three special purpose formalisms which are useful in the 
implementation of an office manager. First, priority-agendas are introduced and their usage to 
control the execution of tasks and actions with different priorities in a flexible and modular way 
is illustrated. Second, monitors are introduced and it is illustrated how they can be used to 
coordinate task handling. Finally, a unification mechanism on feature sets is proposed which 
can be used to deal with choices between alternatives. 

4. SPECIAL PURPOSE OFFICE FORMALISMS DM KRS 

4.1. Priority Agendas 

4.1.1. Basic Idea 

A priority-agenda is basically a queue on which items can be stored together with a priority-
level. The selection of the number of priority-levels is arbitrary. Upon a first-element request, 
the agenda returns the items in order of decreasing priority. Objects with the same priority are 
returned on a first in first out basis. In addition, the priority-levels of the objects on the agenda 
can be upgraded. For this purpose, an upgrade-step and a maximum-upgrade-level is associated 
with each priority agenda. Regular upgrades can for example be used to avoid that tasks with 
low priority-levels stay on the agenda for ever. 

PRIORITY-AGENDA 
AGENDA a mutating-list 
UPGRADE-STEP a number 
MAXIMUM-UPGRADE-LEVEL a number 

Priority-agendas as such are useful for many purposes. In particular, we illustrate in the fol
lowing subsection how priority-agendas are used in the implementation of the prototype office 
manager which serves as test-bed for the development of special-purpose office formalisms. 
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4.1.2. The Administrative Coordinating Manager 

The prototype office-manager is represented as a KRS-concept named Administrative-
Coordinating-Manager (ACM). An ACM has three important components: a task-agenda, an 
action-agenda, and a monitor-manager. The task-agenda component is responsible for handling 
tasks in the office-environment, i.e. for the translation of tasks into a number of subtasks to be 
handled. The action-agenda component is responsible for controlling all operations on or within 
the office-environment, i.e. for executing actions. The monitor-manager component is responsi
ble for feeling changes in the office-environment and for activating tasks and actions that are 
waiting for such events to happen. This component is described in more detail in the follow
ing section when monitors are discussed. 

Both the task-agenda and the action-agenda are specialisations of the priority-agenda discussed 
earlier. All items on the task-agenda are tasks and all items on the action-agenda are actions. 
Furthermore, each agenda has associated with it an independent LISP-process that infinitely 
selects and 'treats' the first-element of the agenda. In the case of the action-agenda this simply 
means that the actions on the agenda are continuously executed. In the case of the task-agenda 
this means that the tasks on the agenda are handled which implies that subtasks are pushed on 
the task-agenda or that actions are pushed on the action-agenda as specified for the task 
involved. In this way, a few simple components are combined into a powerful yet flexible and 
modular whole. 

ADMINISTRATIVE-COORDINATING-MANAGER 
AN OFFICE-CONCEPT 

TASK-AGENDA a priority-agenda 
ACTION-AGENDA a priority-agenda 
MONITOR-MANAGER a monitor-manager 

Using priority-agendas to run tasks and actions holds several advantages over a fixed interpreta
tion process for tasks and actions. In an office environment multiple activities are running 
simultaneously. The use of a priority-agenda makes it for example possible to handle urgent 
new tasks before completion of older, possibly already partially handled tasks. As explained 
earlier, to handle a complex task, subtasks are pushed on the agenda (as specified in the task's 
script). Therefore, another urgent task can be handled before a cumbersome but maybe not so 
important task is completely finished since the ACM will detect this newer and more urgent 
task. In combination with the monitor-manager discussed in the following subsection it becomes 
also possible to explicitly suspend the execution of tasks and to reactivate them automatically 
when appropriate. 

Using two separate agendas for tasks and actions is decided upon because it further enlightens 
the conceptual difference between tasks and actions. In addition, using different agendas implies 
using different concurrent processes to execute actions and to handle tasks, respectively. This 
may turn out to be an advantage when for example a high-priority action is taking up much 
resources since part of the resources will always remain available for running the task-agenda 
and vice versa. 
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4.2. Monitors 

4.2.1. Basic Idea 

A monitor is a KRS concept which performs an action when it senses a change in the concept 
it monitors (the filler of its monotoring subject) and only if its fire-when subject is true at that 
moment. Monitors are connected to the dependency network used in the consistency mainte
nance system of KRS and can detect mutations to concepts that way. The fire-action subject of 
a monitor contains a form to be evaluated whenever a change is monitored. The monitor starts 
monitoring when the referent of its activate subject is computed. A monitor is deactivated 
when its deactivate subject becomes true. Once deactivated, a monitor can never fire again. 

MONITOR 
MONITORING a concept 
FIRE-ACTION a form 
FIRE-WHEN a boolean 
DEACTIVATE a boolean 
ACTIVATE a switch 

Monitors are used to implement the monitor-manager component of the ACM. This com
ponent manages the resumption of the execution of primitive and composite tasks that were 
waiting for events to happen. Central in the operation of the monitor-manager is the concept 
of a delay which is based on the activation of a monitor. 

4.2.2. Delays 

A delay is a concept which is used to suspend execution of tasks until something happens. 

DELAY 
ACTIVATE 
EVENT some mutating concept 
DELAV-UNTIL a form 
DELAY-WHAT a task 

The delay concept has subjects event (the concept which represents the event that is monitored 
for changes); delay-whai (a primitive or composed task which is to be suspended until some
thing happens); delay-until (a condition to be checked when the monitored event changes; when 
this condition becomes true the delay is ended and the suspended task is resumed) and activate 
(to start the delay: the delay-whal is suspended, and a monitor is installed and activated moni
toring event, firing when delay-until becomes true and deactivating itself when it has fired). 
The following example shows how a delay can be constructed that waits for a specific date to 
resume the task with which it is associated. 
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DELAY-FOR-CHANGING-DATES 
A DELAY 

EVENT (>> day of current date) 

DELAY-UNTIL-DATE 
A DELAY-FOR-CHANGING-DATES 

DATE a date 
DELAY-UNTIL (>> (equal ( » date)) of current-date)) 

A delay-for-changing-dates checks its delay-until condition every time the day of current date 
changes. Its delay-until can be an arbitrary boolean condition. A delay-until-date has a more 
specific condition. It restarts its activity when it notices that the current-date is equal to the 
filler of its own subject date. 

Delays can and have been used to define more complex and abstract tasks such as monitor-
deadline, wait-for-reply, wait-for-approval etc. 

4.3. Unification on Feature Sets 

4.3.1. Feature Set Notations 

KRS concepts describing office knowledge show a clear resemblance to a feature notation, 
which is one of the most conceptually clear formalisms. In a feature notation, objects and situa
tions are described as sets of ordered pairs, where each pair consists of an attribute and a 
value. We will call such a set of pairs a description. Values of feaures can be atomic (i.e. a 
symbol) or complex (i.e. another feature). The realisation of feature formalisms in KRS is 
straightforward: attributes are KRS subject names, and values are subject-fillers. The expres
sive power of the notation can be enriched by allowing negation (represented by 'NOT') and 
disjunction (represented by curly braces). Notice that KRS definite descriptions can be used as 
values, as long as they evaluate to an atomic or a complex value. An example office concept 
in feature notation could be the following: 

MY-TRIP 
TYPE TRIP 
REQUESTOR MILLIGAN 
DESTINATION PARIS 
DEPARTURE 

TYPE DATE 
DAY 22 
MONTH 6 
YEAR 1987 

DURATION 
DAYS |2 3| ;;; Two OR three days 

TRAVEL-MEANS 
NOT CAR ;;; Any travel means but a car 

APPROVAL-AUTHORITY 
(>> MANAGER OF REQUESTOR) ;;; A definite description 

REASON 
TYPE TECHNICAL-MEETING 
WITH SELLERS 
PROJECT P-82 
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Problem solving with feature descriptions can be done through unification, an operation on 
feature sets which is very successful in current (computational) linguistics, but which can be 
usefully applied to other domains as well. Other operations on feature descriptions can be 
envisioned (e.g. generalisation; Karttunen, 1986) but we will not explore their use in office 
modelling here. 

The type of unification which we will describe here is related to Prolog-like unification (a kind 
of pattern matching in which variables in the patterns matched are bound such that they become 
equal), but with important differences. The type of unification we use was introduced into 
linguistics by Kay (1979, for an introduction, see Shieber, 1986). To our knowledge, this kind 
of unification has not yet been applied to office problem solving. 

Unification is the union of feature sets, but with two important differences: there is a possibility 
of failure, and unification is structure-changing; if unification succeeds, the descriptions unified 
are changed in the process (they are merged). The resulting description is the smallest (most 
general) description subsuming all descriptions which have been unified. If unsuccessful, the 
operands of the unification operation are left unchanged. In unifying two feature sets, only the 
values of those attributes which are present in both feature sets are compared. If two values are 
atomic, they must be equal or the unification fails. If they are complex (i.e. feature sets), the 
unification operation is applied recursively on them. E.g., unifying the earlier description with 

TRIP-INFO 
TYPE TRIP 
REASON 

PROJECT (IWONL NFWO) 
REPORT OBLIGATORY 

would result in failure, as REASON PROJECT P-82 cannot be unified with REASON PRO
JECT {IWONL NFWO}. However, unification of the earlier description with 

TRIP-INFO 
TYPE TRIP 
REASON 

PROJECT IP-82 P-4401 
REPORT OPTIONAL 

would result in the merger of both descriptions, because the unification succeeds. In this case, 
the result would be the addition of the feature REPORT OPTIONAL to the initial description. 

The main advantages of a feature notation combined with unification are declarativeness and 
order-independence. Declarative descriptions are simpler to understand and nearer to human 
thought than procedural descriptions. Order-independence means that the order in which 
descriptions are unified is irrelevant (unless side-effects are allowed). This implies that the 
amount of control information and execution sequence information needed is small. Further
more, as there is a direct mapping from the feature notation to the KRS concept graph (or 
rather a part of it), the same advantages applying to the KRS concept graph (lazy evaluation, 
caching, consistency maintenance and inheritance) also apply to the feature notation. The fact 
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that descriptions can be named, and used with this name in other descriptions allows modular
ity and conciseness in the descriptions. 

4.3.2. Applications of Unification 

In the office problem-solving environment, unification can be used for the control of choices 
among alternatives, for structure building (specialising abstract descriptions to more concrete 
descriptions and completing partial descriptions) and inconsistency checking. We will explain 
these applications in turn. 

(1) Choice between alternatives. Often, a choice must be made between different alternative 
tasks or activities. Tasks and activities may be extended with pre-conditions and post
conditions. Pre-conditions are checked against a description of the current situation. If they 
are true, the activity is applicable and can be executed. Post-conditions are conditions 
which should be true after the application of the activity. They can be used to check 
whether the activity was applied correctly or to prevent the execution of an activity the 
post-conditions of which are already satisfied. When at some point a choice must be 
made between two or more alternative activities or tasks, a correct choice can be made by 
unifying a description representing the current situation with the pre-conditions of each 
activity. If the unification fails, the activity cannot be executed, if it succeeds, execution is 
possible. Simultaneously with this unification, the description of the current situation is 
extended with information present in the pre-conditions of the activity. Analogously, 
unification of the current situation with the post-conditions of activities can be used to 
check whether the intended effect of an activity has been achieved. 

(2) Structure-building. Initially vague, incomplete and abstract (general) descriptions can be 
gradually provided with more detail (specialised) by unifying them with descriptions 
representing the office knowledge. We might start, for example, with a travel-request by 
creating a concept which simply states our intention to travel, our destination and the 
time-period. The office problem solving mechanism may then provide such detail as the 
project the applicant works on, his manager, the preferred travel means, the amount of 
money to be given in advance and other information necessary for obtaining approval, 
finding financial support, contacting a travel agent etc., by unifying the initial and inter
mediate descriptions with descriptions embodying office knowledge. 

(3) Inconsistency checking. Office work is distributed (different descriptions relating to the 
same task may be created by different people or at different times) and therefore prone to 
inconsistencies. Different descriptions can be checked for consistency by unifying them. 
A useful property of unification systems in this respect is that when a unification fails, the 
place of the inconsistency (however deeply recursively embedded) can be easily reported 
to the office worker. 

5. CONCLUSION 

We have shown that a flexible knowledge representation system and special-purpose formalisms 
developed for office procedure assistance are necessary prerequisites in the development of an 
intelligent workstation. The implementation of a prototype office environment in KRS was 
instrumental in the isolation of useful formalisms like priority-agendas, monitors and 
unification. Further experimentation with this prototype is expected to yield additional office 
formalisms. 
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