
1226

P r o j e c t No. 82

REPRESENTATION ASPECTS OF KNOWLEDGE-BASED OFFICE SYSTEMS

K. Van Marcke, V. Jonckers and W. Daelemans
A.I.-LAB, Vrije Universiteit Brussel
Pleinlaan 2 Building K
1050 Brussels, Belgium

ABSTRACT

The main goal of ESPRIT project 82 is to build an intelligent office workstation
(IWS). A knowledge-based approach was chosen to overcome the complexity result
ing from the open-endedness of the office domain and the dynamic characteristics of
the office environment. The knowledge representation system KRS is used to
represent knowledge in the office domain. On the one hand, domain knowledge
involves static domain concepts including concrete concepts such as persons and
communication-means and more abstract concepts like organisations and roles. On
the other hand, it involves a range of office activities which operate on these static
domain concepts. In general, two categories of activities can be distinguished: primi
tive actions which directly operate on the office environment like 'send letter' or
'archive document' and higher level conceptual tasks like 'plan a trip' or 'order a
book'. The execution of actions and the translation of tasks into actions must be
controlled within the IWS. For this purpose, special office formalisms such as
agendas, monitors and a unification mechanism were designed and implemented on
top of KRS. The paper presents these office formalisms and illustrates their func
tionality with the description of a prototype knowledge-based office assistant and
with some worked out examples of typical office-tasks.

1. INTRODUCTION

IWS (ESPRIT Project 82) is a project in the domain of intelligent office applications. The
partners involved in the project are Bull (France), VUB (Belgium), KUN and OCE (the Neth
erlands) and CRC (Greece). The goal of the project is to build an intelligent cooperative per
sonal workstation that assists the office-worker in the office tasks he is playing a role in.

An important aspect is the representation of office knowledge. In order to let the workstation
intervene in an intelligent and intelligible way, it must know about the office-procedures that
are being followed and about their states, goals and reasons. To this end, the system must be
knowledgeable about the functioning of offices in general (the generic model) and about the
organisation of the user in particular. At each of these levels, three types of knowledge can be
distinguished: tool-knowledge (how to use electronic tools such as text-formatters, printers,
files, telefaxes, etc.), domain knowledge (in the generic model: knowledge about hierarchies,
approvals and signatures, communication means, deadlines, book-years, vacations etc.; in the
particular model: instances of the generic concepts, organisation structure, the people that work
in the organisation and their roles, goals of the organisation and its function in society etc.) and
office procedure knowledge (the knowledge needed to interact in the office environment:

1227

knowledge about office-procedures, tasks and activities, problems, problem-solving, planning
and waiting.

The representation tool system KRS (Steels, 1986; Van Marcke, 1987) was chosen for the
representation of these different types of knowledge. KRS was developed at the VUB AI-Lab
within the ESPRIT project P440 (Message-Passing Architectures and Description Systems). It
is based on earlier work on Representation Language Languages (Greiner, 1980). KRS is basi
cally a flexible object-oriented language in which multiple knowledge retrieval architectures can
be explicitly modeled and used. The advantage of modeling different representation formalisms
explicitly in the same language is that it allows knowledge represented in different styles to
cooperate. A more pragmatic advantage of using KRS is that it is implemented in ZetaLisp in
such a way that it can be easily ported to other dialects, and that it runs efficiently. KRS has
been successfully ported to InterLisp, Common Lisp and Le-Lisp. Porting to Le-Lisp has been
done within the context of the IWS project by people at Bull, because Le-Lisp was chosen as
the language to be used in the project.

The task of the VUB in the project is to design and develop knowledge representation formal
isms in KRS. Those must facilitate the task of representing office knowledge (carried out by
Bull, see the companion paper to this one: Ader, 1987). The present paper describes the
current state of this process. More specifically, it describes three different formalisms which
are currently being developed and used in our laboratory. Some of them are also used in the
implementation of the activity-manager at Bull (Tueni et al., 1987). The first is the representa
tion of priority-agendas. A priority-agenda is an agenda on which items can be placed together
with a priority. The item with the highest priority on the agenda is always removed first.
Multiple priority-agendas can be used to control execution of tasks and actions in a flexible and
modular way. A second formalism which has been developed in KRS is a monitor formalism.
Monitors allow to automatically start some activity the moment some event occurs. In an
office environment, most actions are typically invoked as a reaction to some event. The third
formalism enables the representation of features and the unification of feature-sets, which is
among other things useful to decide between alternative solutions.

The paper first gives an overview of the aims and achievements of KRS. It is not our inten
tion to give a detailed description of the mechanisms of the language, but rather to illustrate
why it is a suitable tool for our purposes. Secondly, the three special-purpose formalisms intro
duced are illustrated by means of an experimental architecture simulating an office environment.
This experimental architecture is being developed at VUB to test and to experiment with those
formalisms. Although this office environment will not be part of the final specifications of the
project, it is sophisticated enough to be a non-trivial test-bank for the formalisms we propose.

2. KRS

2.1. Philosophy

KRS is a representation tool system developed at the VUB AI-Lab. It is partly inspired by
earlier work in Representation Language Languages and in particular by the language ARLO
(Haase, 1986). KRS differs from popular representation tool systems like KEE and ART in
that it does not provide a fixed set of formalisms. Instead it provides a language, called the
concept-language, in which new or existing formalisms can be easily modeled and used by the
user. It is essentially an object-oriented language featuring single inheritance, lazy construction,
caching, consistency maintenance, meta-representations and explicit representation of reference.

1228

Multiple inheritance has grown into a heavily debated controversy in the object-oriented sys
tems community. KRS has chosen for a single inheritance mechanism with the capability to
build more complicated architectures explicitly into the language when they are needed (Van
Marcke, 1987). KRS objects are constructed in a lazy way, i.e. not when they are defined but
when they are first used. This leads to more economic applications and more elegant
definitions, especially when cross-pointing structures are involved. Caching is a technique to
store computed values for re-use. This may lead (depending on the application) to serious per
formance upgrades. Together with caching, a consistency maintenance mechanism is needed to
make sure that there remain no cached values depending on something that has already
changed. All KRS objects also have a unique meta-interpreter object that contains all informa
tion about the object itself. Those meta-features are explicitly accessible and can be overridden
by the KRS-user (Maes, 1987). Finally, the referent relation explicitly states what an object is
about. This has led among others to a smooth and sound interface to LISP. A more thorough
description of KRS can be found in (Steels, 1986).

KRS was originally implemented on a Symbolics LISP machine in ZetaLisp. An earlier ver
sion has been ported to 1NTERLISP to run on a Xerox LISP Machine. The latest version has
been ported to Common Lisp by ourselves to run on for example a Sun work station. It has
also been ported to Le-Lisp by Michel Tueni of Bull to run on Sun, Vax and the Metaviseur.
The implementation in Le-Lisp was made in the context of this project.

2.2. The Concept-Language

The fundamental building block in the concept-language is the concept. A concept is a frame-
like structure, grouping a set of subjects. Each subject is a named association between the
concept and some other concept, which we call the filler of the subject. This way concepts are
connected in a labeled network. We will describe a concept with its name (if it has one) possi
bly followed by a list of its subjects, like in the following example:

JOHN
A PERSON

ACE TWENTY-FIVE
FRIEND A PERSON

AGE (>> age)

The subjects are described with their name and a description of their filler. The description of
this filler can be the description of this concept, or a reference to the filler of another subject.
In the preceding example, the filler of the age-subject of the filler of the friend-subject of the
concept with name John is described by a reference to the filler of the age-subject of that same
concept ("(>> age)"). The example therefore describes a concept named John, with an age-
subject with filler the concept named Twenty-Five, and with a friend-subject with filler a con
cept with a new age-subject with filler also the concept named Twenty-Five.

The descriptions of the concept John and of the filler of its friend-subject contain both an
expression "A PERSON". This expression classifies the concepts in a strict type-tree, which is
used for a prototype-style (Lieberman, 1986) inheritance. We say that the concept Person is
the type of both concepts. A concept inherits all subjects from its type except those which it
overrides.

1229

The KRS concept-system is a representation language language, i.e. a language to describe
representation languages. Most of the static knowledge structures are most naturally expressed
directly in the concept-language. When more complicated or more dynamical architectures are
needed, they can be built explicitly in the language. KRS provides libraries to facilitate this
construction. Some of those libraries have already been developed and/or experimented with,
such as a production-rule library, a logic-library, a cliche-library, etc. (Steels et al., 1987).

3. A PROTOTYPE OFFICE MANAGER

3.1. A General Office Model

To investigate which formalisms can be useful in the implementation of an intelligent office
system and to develop and experiment with such formalisms we have developed a prototype
office manager which implements a very general model of an office environment. This section
first sketches this general office model and introduces the basic concepts used in its implemen
tation. The need for dedicated formalisms to complete this implementation is briefly discussed
at the end of this section. In the next section three formalisms are discussed in more detail.

In the office domain static and active knowledge components can be distinguished. Static office
knowledge involves knowledge about concrete and abstract concepts in the office domain, e.g.
persons, communication-means, organisations, roles, etc. Such office concepts can be modeled
straightforwardly as KRS-concepts. In this approach, the KRS-concepts fulfill the role of
frame-style representation structures. Modeling office concepts as KRS-concepts therefore
holds the advantages commonly attributed to frame-based representation languages (Fikes 1985).
Frames capture the way experts typically think about much of their knowledge. They can
describe different types of domain objects, they can represent the useful relations, and they sup
port a kind of 'definition by specialisation' which is in most domains a natural thing to do.
Below we show some simple examples (in a simplified notation) of such KRS-concepts model
ing a prototypical person and a specific person, respectively.

PERSON
A STATIC-OFFICE-CONCEPT

NAME a person-name
ADDRESS an address
ELECTRONIC-MAIL-ADDRESS a mall-address

KRIS
A PERSON

NAME A PERSON-NAME
LAST-NAME [string "Van Marcke"]
FIRST-NAME [string "Kris"]

ELECTRONIC-MAIL-ADDRESS [mall-address krisvm«arti.vub.uucp]'

Complementary, office activities which operate on these static domain concepts can be viewed
as active knowledge components. Furthermore, activities like 'send a letter' or 'archive docu
ment' which correspond to concrete actions in the office domain can be distinguished from
activities like 'plan a trip' or 'order a book' which are more conceptual tasks. In fact, the latter
require a combination of primitive actions for their execution. Below we sketch a very general
model of active office knowledge. A complex task gradually decomposes into more primitive
subtasks. In the end, each primitive subtask corresponds straightforwardly to a single concrete
action.

1230

In the remainder of the text, the term action is reserved for a concrete, executable action in the
office world while the term task is used to denote conceptual entities of activity. In our termi
nology, actions are executed while tasks are handled.

3.2. Tasks and Actions

A KRS-concept named action is introduced to serve as ancestor node for all KRS-concepts
which model an action. As usual, subjects associate the necessary information with each action
concept. In particular, the procedure which can be called to execute the action is associated
with each action concept via the execute-procedure subject. An example is shown below.

ACTION
AN ACTIVE-OFFICE-CONCEPT

EXECUTE-PROCEDURE a procedure

SEND-ELECTRONIC-MAIL-ACTION
AN ACTION

SENDER a person
RECEIVER a person
MESSAGE a message
EXECUTE-PROCEDURE [procedure (send-mail ...)]

A KRS-concept named task is introduced to serve as ancestor node for each KRS-concept
which models a task. The task distribute-message discribed further on is an example for this
concept. A task contains a script which is in general an analysis of the tasks in terms of more
simple tasks. Such a script, called a task-handling-script, determines how the task is handled,
either in terms of its subtasks or in terms of an action to be executed. A task-handling-script
has a handle-procedure subject, typically filled by a lisp-procedure, that implements the func
tionality of the script. Libraries of general-purpose scripts can be provided and applied to han
dle more specific tasks.

There are two overall subcategories of task-handling-scripts. Primitive-task-scripts translate the
task in exactly one action to be executed. We call tasks with a primitive-task-script primitive-
tasks. Composed-task-scripts match a predefined combination of more basic tasks. Typical
examples of composed-task-scripts are do-all-tasks, do-all-tasks-sequentially, do-some-tasks, do-
best-task, etc. They play the same role as control abstractions in programming languages.

To handle a primitive task, the corresponding action must be executed. Therefore, an action is
associated with each primitive-task-script via the handle-action subject. To handle a composed
task, subtasks must be handled as determined by the semantics of the composed task. To han
dle a do-all-tasks for example, each task enumerated in the tasks subject of this composed-
task-script must be handled.

1231

TASK-HANDLING-SCRIPT
AN OFFICE-CONCEPT

HANDLE-PROCEDURE a procedure

PRIMITIVE-TASK-SCRIPT COMPOSED-TASK-SCRIPT
A TASK-HANDLING-SCRIPT A TASK-HANDLING-SCRIPT

HANDLE-ACTION an action
HANDLE-PROCEDURE DO-ALL-TASKS

[procedure (>> execute handle-action)] A COMPOSED-TASK-SCRIPT
TASKS a task-list
HANDLE-PROCEDURE [procedure (mapcar ...)]

The example below shows how a simple task is defined using a primitive-task-script.

TASK
AN OFFICE-CONCEPT

SCRIPT a composed-task

SEND-MESSAGE
A TASK

FROM a person
TO a person
MESSAGE a message
SCRIPT A PRIMITIVE-TASK-SCRIPT

HANDLE-ACTION A SEND-ELECTRONIC-MAIL-ACTION
SENDER (>> from)
RECEIVER (>> to)
MESSAGE (>> message)

The next example illustrates how a complex task such as distributing a message to a set of per
sons is described on a very abstract level, i.e. in terms of the message to send, the person who
sends the message and the list of persons who have to receive the message. The script role
holds the appropriate composed-task-script. Notice that the programming cliche transform is
used to obtain the sequence of individual send-electronic-mail tasks from the information given
with the distribute-message-task.

DISTRIBUTE-MESSAGE
A TASK

FROM a person
DISTRIBUTE-TO a person-list
MESSAGE a message
SCRIPT A DO-ALL-TASKS

TASKS (A TRANSFORM
TRANSFORM-OVER (>> distribute-to)
TRANSFORM-WITH ?one-person
TRANSFORMER A SEND-MESSAGE

FROM (>> from)
TO ?one-person
MESSAGE (>> message)

It may be necessary to emphasise at this point the importance of the distinction between
primitive-tasks and actions. It is true that every primitive-task translates straightforwardly to an
executable action. But a primitive task is no more than a conceptual entity while an action

1232

really operates on the environment. Therefore, dealing with failures, recovery after machine
crashes, and other persistency problems are different for both kind of concepts.

From the very general model sketched so far, the need for mechanisms which control the
decomposition of tasks into more primitive subtasks and the execution of the resulting actions
automatically emerges. The simple examples given create the impression that modeling complex
office tasks corresponds to writing a kind of high level procedures in a specialised and power
ful language. But the execution of these procedures can not be controlled by a fixed interpreta
tion mechanism. A much more flexible interpretation process is necessary to deal with the typi
cal characteristics of an office environment such as:
- The competition for resources between different tasks and subtasks which can be reflected in
differences in priority.
- Interference of externally induced changes in the office environment with the execution of
tasks.
- Interference between execution of different tasks.
- The existence of alternative ways for dealing with the same problem.

The following section introduces three special purpose formalisms which are useful in the
implementation of an office manager. First, priority-agendas are introduced and their usage to
control the execution of tasks and actions with different priorities in a flexible and modular way
is illustrated. Second, monitors are introduced and it is illustrated how they can be used to
coordinate task handling. Finally, a unification mechanism on feature sets is proposed which
can be used to deal with choices between alternatives.

4. SPECIAL PURPOSE OFFICE FORMALISMS DM KRS

4.1. Priority Agendas

4.1.1. Basic Idea

A priority-agenda is basically a queue on which items can be stored together with a priority-
level. The selection of the number of priority-levels is arbitrary. Upon a first-element request,
the agenda returns the items in order of decreasing priority. Objects with the same priority are
returned on a first in first out basis. In addition, the priority-levels of the objects on the agenda
can be upgraded. For this purpose, an upgrade-step and a maximum-upgrade-level is associated
with each priority agenda. Regular upgrades can for example be used to avoid that tasks with
low priority-levels stay on the agenda for ever.

PRIORITY-AGENDA
AGENDA a mutating-list
UPGRADE-STEP a number
MAXIMUM-UPGRADE-LEVEL a number

Priority-agendas as such are useful for many purposes. In particular, we illustrate in the fol
lowing subsection how priority-agendas are used in the implementation of the prototype office
manager which serves as test-bed for the development of special-purpose office formalisms.

1233

4.1.2. The Administrative Coordinating Manager

The prototype office-manager is represented as a KRS-concept named Administrative-
Coordinating-Manager (ACM). An ACM has three important components: a task-agenda, an
action-agenda, and a monitor-manager. The task-agenda component is responsible for handling
tasks in the office-environment, i.e. for the translation of tasks into a number of subtasks to be
handled. The action-agenda component is responsible for controlling all operations on or within
the office-environment, i.e. for executing actions. The monitor-manager component is responsi
ble for feeling changes in the office-environment and for activating tasks and actions that are
waiting for such events to happen. This component is described in more detail in the follow
ing section when monitors are discussed.

Both the task-agenda and the action-agenda are specialisations of the priority-agenda discussed
earlier. All items on the task-agenda are tasks and all items on the action-agenda are actions.
Furthermore, each agenda has associated with it an independent LISP-process that infinitely
selects and 'treats' the first-element of the agenda. In the case of the action-agenda this simply
means that the actions on the agenda are continuously executed. In the case of the task-agenda
this means that the tasks on the agenda are handled which implies that subtasks are pushed on
the task-agenda or that actions are pushed on the action-agenda as specified for the task
involved. In this way, a few simple components are combined into a powerful yet flexible and
modular whole.

ADMINISTRATIVE-COORDINATING-MANAGER
AN OFFICE-CONCEPT

TASK-AGENDA a priority-agenda
ACTION-AGENDA a priority-agenda
MONITOR-MANAGER a monitor-manager

Using priority-agendas to run tasks and actions holds several advantages over a fixed interpreta
tion process for tasks and actions. In an office environment multiple activities are running
simultaneously. The use of a priority-agenda makes it for example possible to handle urgent
new tasks before completion of older, possibly already partially handled tasks. As explained
earlier, to handle a complex task, subtasks are pushed on the agenda (as specified in the task's
script). Therefore, another urgent task can be handled before a cumbersome but maybe not so
important task is completely finished since the ACM will detect this newer and more urgent
task. In combination with the monitor-manager discussed in the following subsection it becomes
also possible to explicitly suspend the execution of tasks and to reactivate them automatically
when appropriate.

Using two separate agendas for tasks and actions is decided upon because it further enlightens
the conceptual difference between tasks and actions. In addition, using different agendas implies
using different concurrent processes to execute actions and to handle tasks, respectively. This
may turn out to be an advantage when for example a high-priority action is taking up much
resources since part of the resources will always remain available for running the task-agenda
and vice versa.

1234

4.2. Monitors

4.2.1. Basic Idea

A monitor is a KRS concept which performs an action when it senses a change in the concept
it monitors (the filler of its monotoring subject) and only if its fire-when subject is true at that
moment. Monitors are connected to the dependency network used in the consistency mainte
nance system of KRS and can detect mutations to concepts that way. The fire-action subject of
a monitor contains a form to be evaluated whenever a change is monitored. The monitor starts
monitoring when the referent of its activate subject is computed. A monitor is deactivated
when its deactivate subject becomes true. Once deactivated, a monitor can never fire again.

MONITOR
MONITORING a concept
FIRE-ACTION a form
FIRE-WHEN a boolean
DEACTIVATE a boolean
ACTIVATE a switch

Monitors are used to implement the monitor-manager component of the ACM. This com
ponent manages the resumption of the execution of primitive and composite tasks that were
waiting for events to happen. Central in the operation of the monitor-manager is the concept
of a delay which is based on the activation of a monitor.

4.2.2. Delays

A delay is a concept which is used to suspend execution of tasks until something happens.

DELAY
ACTIVATE
EVENT some mutating concept
DELAV-UNTIL a form
DELAY-WHAT a task

The delay concept has subjects event (the concept which represents the event that is monitored
for changes); delay-whai (a primitive or composed task which is to be suspended until some
thing happens); delay-until (a condition to be checked when the monitored event changes; when
this condition becomes true the delay is ended and the suspended task is resumed) and activate
(to start the delay: the delay-whal is suspended, and a monitor is installed and activated moni
toring event, firing when delay-until becomes true and deactivating itself when it has fired).
The following example shows how a delay can be constructed that waits for a specific date to
resume the task with which it is associated.

1235

DELAY-FOR-CHANGING-DATES
A DELAY

EVENT (>> day of current date)

DELAY-UNTIL-DATE
A DELAY-FOR-CHANGING-DATES

DATE a date
DELAY-UNTIL (>> (equal (» date)) of current-date))

A delay-for-changing-dates checks its delay-until condition every time the day of current date
changes. Its delay-until can be an arbitrary boolean condition. A delay-until-date has a more
specific condition. It restarts its activity when it notices that the current-date is equal to the
filler of its own subject date.

Delays can and have been used to define more complex and abstract tasks such as monitor-
deadline, wait-for-reply, wait-for-approval etc.

4.3. Unification on Feature Sets

4.3.1. Feature Set Notations

KRS concepts describing office knowledge show a clear resemblance to a feature notation,
which is one of the most conceptually clear formalisms. In a feature notation, objects and situa
tions are described as sets of ordered pairs, where each pair consists of an attribute and a
value. We will call such a set of pairs a description. Values of feaures can be atomic (i.e. a
symbol) or complex (i.e. another feature). The realisation of feature formalisms in KRS is
straightforward: attributes are KRS subject names, and values are subject-fillers. The expres
sive power of the notation can be enriched by allowing negation (represented by 'NOT') and
disjunction (represented by curly braces). Notice that KRS definite descriptions can be used as
values, as long as they evaluate to an atomic or a complex value. An example office concept
in feature notation could be the following:

MY-TRIP
TYPE TRIP
REQUESTOR MILLIGAN
DESTINATION PARIS
DEPARTURE

TYPE DATE
DAY 22
MONTH 6
YEAR 1987

DURATION
DAYS |2 3| ;;; Two OR three days

TRAVEL-MEANS
NOT CAR ;;; Any travel means but a car

APPROVAL-AUTHORITY
(>> MANAGER OF REQUESTOR) ;;; A definite description

REASON
TYPE TECHNICAL-MEETING
WITH SELLERS
PROJECT P-82

1236

Problem solving with feature descriptions can be done through unification, an operation on
feature sets which is very successful in current (computational) linguistics, but which can be
usefully applied to other domains as well. Other operations on feature descriptions can be
envisioned (e.g. generalisation; Karttunen, 1986) but we will not explore their use in office
modelling here.

The type of unification which we will describe here is related to Prolog-like unification (a kind
of pattern matching in which variables in the patterns matched are bound such that they become
equal), but with important differences. The type of unification we use was introduced into
linguistics by Kay (1979, for an introduction, see Shieber, 1986). To our knowledge, this kind
of unification has not yet been applied to office problem solving.

Unification is the union of feature sets, but with two important differences: there is a possibility
of failure, and unification is structure-changing; if unification succeeds, the descriptions unified
are changed in the process (they are merged). The resulting description is the smallest (most
general) description subsuming all descriptions which have been unified. If unsuccessful, the
operands of the unification operation are left unchanged. In unifying two feature sets, only the
values of those attributes which are present in both feature sets are compared. If two values are
atomic, they must be equal or the unification fails. If they are complex (i.e. feature sets), the
unification operation is applied recursively on them. E.g., unifying the earlier description with

TRIP-INFO
TYPE TRIP
REASON

PROJECT (IWONL NFWO)
REPORT OBLIGATORY

would result in failure, as REASON PROJECT P-82 cannot be unified with REASON PRO
JECT {IWONL NFWO}. However, unification of the earlier description with

TRIP-INFO
TYPE TRIP
REASON

PROJECT IP-82 P-4401
REPORT OPTIONAL

would result in the merger of both descriptions, because the unification succeeds. In this case,
the result would be the addition of the feature REPORT OPTIONAL to the initial description.

The main advantages of a feature notation combined with unification are declarativeness and
order-independence. Declarative descriptions are simpler to understand and nearer to human
thought than procedural descriptions. Order-independence means that the order in which
descriptions are unified is irrelevant (unless side-effects are allowed). This implies that the
amount of control information and execution sequence information needed is small. Further
more, as there is a direct mapping from the feature notation to the KRS concept graph (or
rather a part of it), the same advantages applying to the KRS concept graph (lazy evaluation,
caching, consistency maintenance and inheritance) also apply to the feature notation. The fact

1237

that descriptions can be named, and used with this name in other descriptions allows modular
ity and conciseness in the descriptions.

4.3.2. Applications of Unification

In the office problem-solving environment, unification can be used for the control of choices
among alternatives, for structure building (specialising abstract descriptions to more concrete
descriptions and completing partial descriptions) and inconsistency checking. We will explain
these applications in turn.

(1) Choice between alternatives. Often, a choice must be made between different alternative
tasks or activities. Tasks and activities may be extended with pre-conditions and post
conditions. Pre-conditions are checked against a description of the current situation. If they
are true, the activity is applicable and can be executed. Post-conditions are conditions
which should be true after the application of the activity. They can be used to check
whether the activity was applied correctly or to prevent the execution of an activity the
post-conditions of which are already satisfied. When at some point a choice must be
made between two or more alternative activities or tasks, a correct choice can be made by
unifying a description representing the current situation with the pre-conditions of each
activity. If the unification fails, the activity cannot be executed, if it succeeds, execution is
possible. Simultaneously with this unification, the description of the current situation is
extended with information present in the pre-conditions of the activity. Analogously,
unification of the current situation with the post-conditions of activities can be used to
check whether the intended effect of an activity has been achieved.

(2) Structure-building. Initially vague, incomplete and abstract (general) descriptions can be
gradually provided with more detail (specialised) by unifying them with descriptions
representing the office knowledge. We might start, for example, with a travel-request by
creating a concept which simply states our intention to travel, our destination and the
time-period. The office problem solving mechanism may then provide such detail as the
project the applicant works on, his manager, the preferred travel means, the amount of
money to be given in advance and other information necessary for obtaining approval,
finding financial support, contacting a travel agent etc., by unifying the initial and inter
mediate descriptions with descriptions embodying office knowledge.

(3) Inconsistency checking. Office work is distributed (different descriptions relating to the
same task may be created by different people or at different times) and therefore prone to
inconsistencies. Different descriptions can be checked for consistency by unifying them.
A useful property of unification systems in this respect is that when a unification fails, the
place of the inconsistency (however deeply recursively embedded) can be easily reported
to the office worker.

5. CONCLUSION

We have shown that a flexible knowledge representation system and special-purpose formalisms
developed for office procedure assistance are necessary prerequisites in the development of an
intelligent workstation. The implementation of a prototype office environment in KRS was
instrumental in the isolation of useful formalisms like priority-agendas, monitors and
unification. Further experimentation with this prototype is expected to yield additional office
formalisms.

1238

6. REFERENCES

Ader, M. and M. Tueni. 'An Office Assistant Prototype.' ESPRIT Technical Week, Brussels,
September 1987.

Fikes, R. and Kehler, T. 'The Role of Frame-Based Representation in Reasoning.' Communi
cations of the ACM, Vol. 28 nr. 3 (1985)

Greiner, R. 'RLL-1: A Representation Language Language.' Stanford Heuristic Programming
Project, HPP-80-9. Stanford University, California, 1980.

Haase, K. 'ARLO - Another Representation Language Offer' MIT Bachelor's Thesis, October
1986

Karttunen, L. 'Features and Values' Proceedings of the Tenth International Conference on
Computational Linguistics, Stanford University, Stanford California, 1986.

Kay, M. 'Functional Grammar' in Proceedings of the Fifth Annual Meeting of the Berkeley
Linguistics Society, Berkeley California, 1979.

Lieberman, H. 'Using Prototypical Objects to Implement Shared Bahavior in Object Oriented
Systems.' in Proceedings of OOPSLA'86', Portland Oregon, 1986.

Maes, P. Computational Reflection. Technical Report 87 2, A.I.-LAB, University of Brussels,
1987.

Shieber, S. An Introduction to Unification-based Approaches to Grammar. Chicago: University
of Chicago Press.

Steels, L. 'The KRS concept system.' Technical Report 86 1, A.I.-LAB, University of
Brussels, 1986.

Steels L., W. Van de Velde, J. Paredis, K. Van Marcke and V. Jonckers. 'Report on KRS
Formalisms.' IWS deliverable D2/r2, A.I.-LAB, University of Brussels, 1987.

Tueni M., J. Z. Li and P. Fares. 'Supporting Execution and Monitoring of Office Tasks and
Administrative Procedures.' IWS deliverable E/rl, Bull, 1987.

Van Marcke, K. 'KRS manual.' University of Brussels, A.I.-MEMO 87_3, 1987.

Van Marcke, K. 'Context Determination Through Inheritance in KRS.' University of Brussels,
A.I.-MEMO 87 1, 1987.

