Proceedi ngs 3rd Twente Wb rkshop on Language Technol ogy, 27-38, 1992

GENERALIZATION PERFORMANCE OF BACKPROPAGATION
LEARNING ON A SYLLABIFICATION TASK*

Walter Daelemans ITK
Tilburg University,

walter@kub.nl

Antal van den Bosch
antalb@kub.nl

P.O.Box 90153
5000 LE Tilburg
The Netherlands

Abstract

We investigated the generalization capabilities of
backpropagation learning in feed-forward and re-
current feed-forward connectionist networks on
the assignment of syllable boundaries to ortho-
graphic representations in Dutch (hyphenation).
This is a difficult task because phonological and
morphological constraints interact, leading to am-
biguity in the input patterns. We compared the
results to different symbolic pattern matching ap-
proaches, and to an ezemplar-based generaliza-
tion scheme, related to a k-nearest neighbour
approach, but using a similarity metric weighed
by the relative information entropy of positions
in the training patterns. Our results indicate
that the generalization performance of backprop-
agation learning for this task is not better than
that of the best symbolic pattern matching ap-
proaches, and of exemplar-based generalization.

1 BACKGROUND

There is a marked difference between the rich in-
ventory of representational and control structures
used in “symbolic” approaches to linguistic pat-
tern matching and transformation (production
rules, frames, trees, graphs, unification, match-
ing) and the one available in connectionist ap-
proaches (activation and inhibition links between
simple units), which at first sight suggests that
the former approach, because of its expressive
power, is more suited for linguistic knowledge rep-
resentation and processing. On the other hand, it

*A shorter version of part of this paper appears in
the proceedings of the International Conference on Ar-
tificial Neural Networks (ICANN 92). We are grateful to
Ton Weijters, Theo Vosse, David Powers, Erik-Jan van
der Linden, and Peter Berck for relevant comments and
conversation. Thanks also to Arthur van Horck for his

I TgXwizardry.

is clear that we need methods for the automatic
acquisition and adaptation of linguistic knowl-
edge if we want to achieve real progress in com-
putational linguistics. Connectionist learning al-
gorithms allow us to learn mappings between rep-
resentations automatically, on the basis of a lim-
ited number of examples, and to generalize what
is learned to unseen cases. It is instructive in this
respect to compare the architecture of a typical
symbolic system for grapheme-to-phoneme con-
version, which “learns by brain surgery” (Figure
1, from Daelemans, 1988) to a connectionist so-
lution for the same problem, such as the one by
Sejnowski and Rosenberg (1987, Figure 2).

SYLLABIFICATION STRESS

ASSIGNMENT
PHONOL OGICAL
DATA
TRANSLITERATION
MAPPINGS
MORPHOL OGICAL
ANALYSIS GRAMMARS
PHONETICAL
INTONATION
LEXICAL
SYNTACTIC DATABASE
ANALYSIS PEECH
SYNTHESISER
Textin Speech out

Figure 1: Interaction between modules in
the GRAFON grapheme to phoneme con-
version system.

The latter approach can be adapted to differ-
ent languages simply by changing the training set.
Weijters (1990) used the architecture for English
developed by Sejnowski and Rosenberg (1987) to
accomplish the grapheme-to-phoneme conversion
task for Dutch. Connectionist architectures are
more robust, and it is not necessary to invest sev-
eral manmonths of linguistic engineering to get
the rules right. On the other hand, symbolic sys-
tems are modular (parts can be reused in other

hidden layer
a output layer
c k!
a
t
Input Pattern Output Pattern
Encoding Decoding
Text Speech
Figure 2: Topology of the NETtalk

grapheme to phoneme conversion network.

tasks), and the rules and structures used can be
inspected and interpreted by domain specialists
(in this case linguists). We argue that in connec-
tionist and other learning approaches, reusability
(which has become the new philosopher’s stone of
computational linguistics recently) exists at the
level of the acquisition technique rather than at
the level of the acquired knowledge. This is a
form of reusability which is stronger and more
useful than what is usually understood by this
term.

This paper is concerned with a well-defined in-
stance of linguistic pattern matching problems:
the assignment of syllable boundaries to ortho-
graphic (spelling) representations of word forms
in Dutch. We wanted to investigate whether
the currently most popular connectionist learning
technique, backpropagation of errors (Rumelhart
et al, 1986) on (recurrent) feed-forward networks,
is powerful enough to abstract the regularities
governing the segmentation of strings of spelling
symbols into syllable representations. The hy-
pothesis we set out with was that the performance
of connectionist solutions to the problem would
not be significantly better than that of existing
pattern matching approaches, because of the in-
herent complexity of the task.

The [connectionist] approach suffers
from the same shortcoming as pattern
matching approaches: without a dictio-
nary, it is impossible to correctly com-
pute morphological and syllable bound-
aries (...). We see no way how any net-
work (...) could provide sufficient gen-
eralisations to parse or syllabify com-
pound words reliably, whatever the size
of the training data (remember that

the vocabulary is infinite in principle).
[Daelemans, 1988:11].

We also wanted to compare the generaliza-
tion performance of the connectionist approach
to that of other statistical induction techniques
(which we consider to be a baseline in the eval-
uation of the results of connectionist generaliza-
tion).

2 TASK DESCRIPTION

Dutch syllabification is an interesting problem to
test the generalization capabilities of connection-
ist networks because the process involves phono-
logical and morphological constraints that are
sometimes conflicting. There are also a number
of language-dependent spelling hyphenation con-
ventions that override syllabification rules. Sim-
plifying matters slightly (see Daelemans, 1989 for
a full account), we can say that the process is
guided by a phonotactic mazimal onset princi-
ple, a principle which states that between two
vowels, as many consonants belong to the sec-
ond syllable as can be pronounced together, and
a sonority principle, which states that in general,
the segments in a syllable are ordered according
to sonority (from low sonority in the onset to
high sonority in the nucleus to low sonority in the
coda). This results in syllabifications like groe-nig
(greenish), I-na and bad-stof (terry cloth). How-
ever, these principles are sometimes overruled by
a morphological principle. Internal word bound-
aries (to be found after prefixes, between parts
of a compound and before some suffixes) always
coincide with syllable boundaries. This contra-
dicts the syllable boundary position predicted by
the mazimal onset principle. E.g. groen-achiig
(greenish, groe-nachtig expected), in-enten (in-
oculate, i-nenten expected) and stads-tuin (city
garden, stad-stuin expected). In Dutch (and Ger-
man and Scandinavian languages), unlike in En-
glish and French, compounding is an extremely
productive morphological process which happens
through concatenation of word forms (e.g. com-
pare Dutch spelfout or German Rechtschreibungs-
fehler to French faute d’orthographe or English
spelling error). Because of this, the default
phonological principles fail in many cases (we cal-
culated this number to be on average 6 % of word
forms for Dutch newspaper text).

By incorporating a morphological parser and
lexicon, a phonologically guided syllabification al-
gorithm (as described in Daelemans, 1989) is able
to find the correct syllable boundaries in the com-
plete vocabulary of Dutch (i.e. all existing and all

possible words, excluding some loan words and
semantically ambiguous word forms like kwarts-
lagen (quartz layers) versus kwart-slagen (quar-
ter turns)). Existing symbolic pattern match-
ing approaches that do not use a morphological
parser fail miserably on a large proportion of new?!
cases where phonological and morphological con-
straints conflict.

The task for our connectionist network can be
specified more clearly now. It should be able to
achieve the following:

e Abstract the maximal onset and sonority
principles and apply them to input not
present in the training material.

e Abstract some (implicit) notion of mor-
phological boundaries and language-specific
hyphenation conventions as overriding the
phonological principles.

e Recognize loan words as overriding the pre-
vious principles.

We designed and implemented? a series of sim-
ulations to test the performance of networks on
this task.

3 CONNECTIONIST SIM-
ULATIONS

One of the disadvantages of applying a connec-
tionist approach to any empirical problem, is that
the designer of the simulations is confronted with
a large search space formed by alternative archi-
tectures, training data selection and presentation
methods, learning and activation functions, pa-
rameters, and encoding schemes. In this section,
we report on a series of simulations in which we
explored part of this search space for the hyphen-
ation problem. We will focus on those choices
that influenced network performance most. Un-
less otherwise stated, backpropagation learning in
a three-layer feed-forward network (Sejnowski et

al., 1986) should be assumed.

1With new we mean: not used to derive the rules. The
pattern matching rules can of course be tailored to any set
of word forms and hyphenate this set with 100% correct-
ness (the approach by Vosse to be discussed later achieves
this), but we are concerned with generalization to new
cases here.

2For the simulations we used PLANET 5.6, a pub-
lic domain connectionist simulator for UNIX workstations
developed by Yoshiro Miyata. We are grateful to Van
Dale Lexicografie (Utrecht) for allowing us to use a word
form list with hyphens based on Prisma Handwoordenboek
Spelling. Het Spectrum, 1989 for research purposes.

Pattern | Left Focus Right | Target
1 _ _ 7z 1 e 0
2 7z 1 e k 0
3 7z 1 e k e 0
4 1 e k e n 1
5 e k e n h 0
6 k e n h u 0
7 e n h u 1 1
8 n h u 1 s 0
9 h u 1 s _ 0

10 u 1 s - - 0

Table 1: Window encoding applied to
‘ziekenhuis’ (hospital).

3.1 Training and Test Data Encod-
ing

We interpret the hyphenation task as a pattern
classification problem: given a certain character
position in a word and a left and right context,
decide whether it is the first character of a new
syllable. This formulation leads to an encoding in
which the input is a character string (a pattern)
representing part of the word, with one character
position as the focus decision position. The tar-
get is a simple yes/no unit that decides whether
the focus position is the start of a syllable. This
encoding can be seen as a window being ‘moved’
along the word. An example of this ‘moving win-
dow’ encoding of ziekenhuis (hospital), resulting
in 10 patterns, is shown in Tablel.

We encoded the individual characters ran-
domly using 5 units for each grapheme. This
random encoding is economical and avoids weak-
ening the results by explicitly encoding linguis-
tic knowledge into the patterns (although we will
loosen this restriction later in the paper). Our
results indeed indicate that for this task, there
is no need for encoding orthographic features, or
using a space-consuming local coding®.

3.2 Training and Test Set Proper-
ties

The training set consisted of 19,451 word forms
(containing hyphens indicating syllable bound-

30ne input unit for each possible input character for
each pattern position. I.e. 26 units for each character in
the input pattern. Tests with local coding show that at
best, their hyphenation performance equals that of net-
works with randomly encoded patterns. An advantage of
local coding may be that it is in general easier to inter-
pret trained connection weight matrices. The complexity
of the present task is such that local coding is not really
helpful however.

Size N T/t A 0]
3 (1-1-1) 6266 0.03 16.2 97.8
5(2-1-2) | 66231 032 1.0 75.9
7(3-1-3) | 124309 0.61 0.1 48.7

Table 2: A comparison of number of pat-
tern types in training set (N), pattern
type/token ratio in the training set (T/t),
percentage of ambiguous patitern types in
the training set (A), and overlap between
training set and test set patiern types (O).

aries) taken from the Van Dale list (containing
about 195,000 word form types). The test set
consisted of 1,945 words from the same database,
not present in the training set. It is useful to
keep in mind a number of properties of training
and test set when evaluating the generalization
performance of networks and other classification
algorithms.

e Depending on the window size, the number
of training pattern types may differ in or-
ders of magnitude, but also the representa-
tiveness of the training set for the problem
space (the space of possible and actually oc-
curring patterns) may differ radically. Some
information about this can be gained from
the average ratio between types of patterns
and the number of instances they have in the
training set ({ype-token ratio).

e Different pattern sizes may result in different
amounts of ambiguity in the training set (i.e.
the proportion of pattern types for which
contradictory decisions can be found in the
training set).

e Since a word is transformed into a number
of patterns, some test pattern types may be
contained in the training pattern set, be-
cause of partial similarity between words.
E.g., draadje (thread) and paadje (path) pro-
duce the identical patterns [aadje], [adje]
and [dje_] when using a 5-character (2-1-2)
window. We will call this overlap.

Table 2 lists number of types, type-token ratio
(number of types for each token), percentage of
ambiguous pattern types (i.e. patterns with con-
tradictory classifications), and overlap between
training and test set (in percentage of pattern
types) for three different pattern sizes.

These results show that with increasing pat-
tern length, the training pattern type set becomes
increasingly less representative for the problem

space (the space of possible patterns, for this
problem 26%, where k is pattern size). Cues
for this decreasing representativeness are a.o. a
strong increase in number of pattern types, de-
creasing overlap with test set, and increasing
type/token ratio. Ambiguity of the pattern types
is already near minimal at pattern size 7. This
seems to suggest that increasing pattern size fur-
ther would not necessarily lead to increasing gen-
eralization performance (noise is absent at pat-
tern size 7).

3.3 Output Analysis

The activation of the single output unit in our
network architecture is interpreted as a decision
on the insertion of a hyphen before the target po-
sition of the input pattern that is fed to the input
layer: YES (activation 0.5 or higher) or NO (ac-
tivation less than 0.5). The activation level could
also be interpreted as a probability or certainty
factor, but in order to optimize accuracy we chose
the threshold interpretation.*

The network error on the test set measures the
number of incorrect decisions on patterns. What
we are interested in, however, is the number and
type of incorrectly placed hyphens and incorrectly
hyphenated words. To analyse the actual hyphen-
ation performance (as opposed to the network er-
ror), we therefore used some additional metrics
to determine the different kinds of errors that a
hyphenation network made. Four different kinds
of errors are distinguished:

1. Omission of a hyphenation. This error can
easily be stated as a NO that should have
been a YES. It counts as one false hyphen-
ation (a hyphenation missed). E.g. pia-no
instead of pi-a-no.

2. Insertion of a hyphenation. A YES that
should have been a NO. This error also
counts as one false hyphenation (a hyphen
too many). E.g. pi-a-n-o.

3. Transposition. Hyphenation on a position to
the left or right of the target. This is ac-
tually a combination of error type 1 and 2.
This error typically occurs on the linking po-
sition between the different parts of a mor-
phologically complex word, where additional
morphological information would be needed
to put the hyphen in the correct place. Two
adjacent incorrectly placed patterns count

‘Having an UNKNOWN-group with activations be-
tween 0.3 and 0.7 resulted in 10% more incorrect decisions.

as one incorrectly placed hyphenation. E.g.
daa-rom instead of daar-om (therefore).

4. Marking two adjacent positions as hyphen-
ation positions, creating an impossible one-
consonant syllable. Two adjacent patterns
may (in isolation) both deserve a hyphen, so
without memory it is inevitable that a net-
work tags both positions as a syllable bound-
ary. E.g. daa-r-om. In Dutch it is possible
to have a one-vowel syllable, as in pi-a-no, so
when counting false hyphenations, the type
of the isolated phoneme has to be checked.
If it is a consonant, the incorrectly processed
pattern counts as one incorrectly placed hy-
phenation.

We will call errors of types 1, 2 and 4 non-
morphological errors, and errors of type 3 mor-
phological errors. For errors of type 4, it is possi-
ble to introduce a correction mechanism to solve
some instances of this problem. Since the out-
put of the type of network we used is usually not
exactly the minimum or maximum target value
but a floating point value that comes near to it,
the two YES outputs involved in this type of er-
ror could be matched in the way that the output
with the highest value is declared to be the cor-
rect output; the other is set to NO. Note that
if this decision is not correct, the resulting single
hyphenation error has become one of error type
3 (e.g., a morphological error).

In the simulations mentioned below, this cor-
rection mechanism chose the correct solution in
about 60 to 70 % of all cases. Without the cor-
rection, all cases of error type 4 count as one
incorrectly placed hyphenation of type 2. Note
that this correction mechanism is efficient (a lin-
ear comparison between pairs), and hardly af-
fects the total time needed to hyphenate a word.
In the following performance descriptions we will
provide results both with and without this post-
processing.

3.4 Optimizing Hyphenation Per-
formance

In the simulations that will be described here,
various network features were systematically al-
tered to measure their effect on generalization
performance (the degree to which the extracted
patterns can be successfully applied to new data
not present in the training data). We start with
a short summary of network parameters that we
decided not to change systematically after some
initial experimentation.

3.4.1 Static Network Parameters

Hidden layer size. To represent the extracted
knowledge necessary for hyphenation, a rea-
sonable number of hidden units must be
available. In practice, it turned out to be
best to have a number of hidden units that
is about 1.5 to 2 times the number of input
units.

Activation values. We used input and target
activation values of 0.9 and 0.1 instead of 1.0
and 0.0, resulting in less incorrectly placed
hyphens.

Network parameters. After some exploratory
experimentation, we chose to use standard
values for the learning rate (0.55) and the
momentum (0.5) for all simulations. More
usual values (such as 0.2 for learning rate and
0.9 for momentum) resulted in lower perfor-
mance and generalization rates.

Length of training. Because of the ambiguity
of some training patterns, a network will
never converge to an error of nearly 0.0, but
to a somewhat higher error. Usually it took
about 300 to 400 iterations or epochs to reach
that level. The lowest error on test material
is reached much earlier: due to overfitting
and overgeneralisation on the training mate-
rial, which already starts to play a role after a
few epochs, the network often performs best
on test material after 50-100 iterations.

3.4.2 Effect of Window Size

In spelling, average syllable length is 4.3
graphemes. To determine the optimal window
size, we first determined the importance of each
side of the patterns separately. We trained a net-
work on patterns which had only a right context
and another network on patterns which had only
a left context (using a context of four characters).
We obtained an error of 51% incorrectly placed
hyphens using left context, and 35% using right
context. These results show that the right con-
text contains more information useful in hyphen-
ation but that it is not sufficient for the task. The
same asymmetry between information content in
left and right context shows up in a grapheme-to-
phoneme conversion task using table-lookup, de-
scribed in Weijters (1991) and in our own exper-
iments with exemplar-based generalization to be
discussed shortly. It is consistent with the maxi-
mal onset principle.

As expected from the analysis of training and
test set, window size 7 (3-1-3) produced optimal

results. The average phonological syllable length
in Dutch is 2.8 phonemes. In a different set of sim-
ulations (van den Bosch and Daelemans, 1992) in
which we tested syllabification of phoneme rep-
resentations instead of orthographic representa-
tions, we even found that window size 5 (2-1-2)
turned out to produce better results than win-
dow size 7. For that task, the optimal trade-
off between coverage of the problem space by the
training set and ambiguity of the patterns lies at
window size 5.

3.4.3 Effect of Network Architecture

Errors of type 4 (marking two adjacent positions
as hyphens, isolating a consonant) were made by
most networks. The correction mechanism that
solved a lot of these errors is obviously not part
of the network itself, but only plays a role after
the word has been passed through the network.
Using standard backpropagation, it was impossi-
ble to let the network notice this type of errors,
simply because in standard backprop no ‘mem-
ory’ is available to remember that the previous
pattern already received a hyphen.

Recently, proposals have been made on the
subject of incorporating memory in connection-
ist networks. The two most used approaches are
those of Jordan (1986) and Elman (1988). Jor-
dan proposes an extra recurrent copy link from
the output layer to a contexzt layer, which in its
turn is connected to the hidden layer. In the
case of hyphenation networks, we expected that
a previous Y ES-output, copied back to the con-
text unit, is a sign for the network to suppress
marking the following position as a hyphenation
position (provided that the current focus charac-
ter is a consonant). Elman’s approach introduces
an extra context layer which is a copy of the hid-
den layer after a pattern has passed the network.
Instead of a direct clue about the previous out-
put, the hidden layer activations might implicitly
make clear that the current output should not be
a syllable boundary by using its memory about
previous positions.

We performed four simulations on each archi-
tecture, using the same training set in each simu-
lation. This training set was considerably smaller
than the one we used in our primary simulations.
The results indicate that there is no evidence for
the claim that recurrency improves hyphenation.
In fact, Jordan networks seem to perform worse
than standard backprop networks.

Table 3 (hyphenation results without post-
processing) displays the results of the comparison
simulations. We performed an addition analysis

Error Morph Non- Type 4
morph errors
Backp | 16.2 36.7 63.3 110
Elman | 16.5 36.3 63.7 114
Jordan | 19.1 41.6 58.4 133

Table 3: Hyphenation performance (num-
ber of incorrect hyphenations), and error
type analysis for Backprop, Elman and Jor-
dan architectures. Mean results for four
stmulations with each architecture.

on the error types made by the three networks.
Instead of a decrease in the number of type 4 er-
rors, the results show that Jordan networks also
perform worse in this respect than backprop net-
works.

3.5 Combination of Network Solu-
tions

Sometimes two networks can have the same er-
ror percentage, while producing different types of
hyphenation errors. For example, network A can
have the habit of leaving out uncertain hyphen-
ations, whereas network B, producing the same
overall error, tends to ‘overhyphenate’. If it were
possible to somehow combine the solutions of A
and B, their shortcomings might be partly cor-
rected against each other. We investigated two
different approaches that combine two or more
network solutions in order to get better hyphen-
ation performance:

1. Modular Combination: combining the
outputs of several (two or more) networks
that solve the same problem. The array of
outputs serves as the input layer for a top
network that is trained to decide on the ba-
sis of its inputs (which may conflict at some
points) what is to be the definitive output
(see Figure 3).

2. Internal Combination: combining differ-
ent encodings in single patterns. Contrary to
modular combination, the hyphenation prob-
lem is presented to a single network. Hy-
phenation performance is augmented by pre-
senting the network with more clues for solv-
ing the problem, by extending the encoding.

The main advantage of having a top network
to solve this decision problem, is that it is in
principle able not only to extract generalizations
about when to amplify or suppress each network
output, but also to represent exceptions to these

LT_I D Out
/[D Hid]\
AOut|TI DiIn DIn T B Out

AHid f f B Hid
[] []

Aln Bin

A B

Figure 3: Composition of networks. The
output layers of networks A and B are com-
bined to serve as the input layer of top net-

work C.

generalizations. For example, the top network
will encounter situations where the outputs of the
competing networks clearly conflict. It will have
to develop some notion of exception to decide in
those cases which network is right. A second ad-
vantage is that by analyzing the relative influence
of each subnetwork on the overall decision, we can
get insight into the relative importance of differ-
ent encodings. During experimentation it also be-
came clear that the best results were not obtained
by combining the best networks for each encod-
ing, but by combining well performing networks
with slightly erroneous networks.

The main advantage of combining different en-
codings in patterns as opposed to the top net-
work approach is that the problem solving is done
within a single network. The solution to the hy-
phenation problem is not developed separately
as in the case of a top network, but proceeds
interactively during training. There is a slight
hyphenation performance advantage for internal
combination versus modular combination. Fur-
thermore, internal combination has the practical
advantage of using less space as it results in a sin-
gle network. The accuracy of both optimization
methods turned out to be the same.

In one of the simulations, two different in-
put encodings (the random identity encoding dis-
cussed earlier and an encoding representing the
sonority of each grapheme as a number) were
combined in the input patterns. The accuracy of
this method turned out to be better than that of
networks using each of the encodings separately.
Notice that we introduce a linguistic bias here, in
the sense that the sonority encoding is expected
(on the basis of linguistic theory) to be useful in
finding syllable boundaries®.

5 Experiments with syllabification of phonological repre-
sentation show a stronger increase of performance when bi-

Error Error Post-
Type pat. hyph. process.
Single 2.8 9.6 4.7
Combined 2.1 7.2 4.6

Table 4: Results: performance on test set
single versus combined networks. Error on
patterns, and on syllables with and without
postprocessing is given.

Table 4 shows the results of the best net-
work trained on an encoding of the identity of
graphemes, and the results of the combined net-
work.

Taking into consideration the fact that more
extensive testing could produce even better re-
sults, it can be concluded that the combination
of different encodings in a modular or internal
way can lead to a improvement in hyphenation
performance, although it seems that about 96%
correctly placed hyphens is the ultimate accuracy
threshold for networks of our kind (with post-
processing).

3.6 Related Research

One of the first applications of connectionist
learning to (morpho)phonology was the pattern
association (2-layer) network of Rumelhart and
McClelland (1986), that learned to map roots
to their past tense. The experiment has been
replicated with backpropagation learning in a
three-layer network by Plunkett and Marchman
(1989). To avoid the legitimate criticism that
these approaches only work because of the lin-
guistic knowledge that is implicit in the training
data (Lachter and Bever, 1988) or don’t work be-
cause of the wrong linguistic knowledge implicit
in the training data (Pinker and Prince, 1988), we
performed most of our simulations with random
encodings of segments.

In the landmark experiments by Sejnowski and
Rosenberg (1987) on text-to-speech transforma-
tion with NETtalk, they also included syllable
boundaries (and stress) in the training material.
It is unclear whether generalization performance
on syllable boundary prediction was taken into
account in their performance measures (80% gen-
eralization), or, if this was the case, what part
of the error was due to incorrect hyphenations.
Furthermore, hyphenation in Dutch is of a com-
pletely different nature, which makes comparison
specious.

asing the encodings with sonority information. It is not al-
ways possible to assign a clear sonority level to graphemes.

Fritzke and Nasahl (1991) report 96.8% cor-
rect generalization on connectionist hyphenation
for German (which is similar to Dutch as regards
syllabification) with a three-layer feed-forward ar-
chitecture, a window of 8 letters, a hidden layer
size of 80, random encoding of graphemes, and
one recurrent (feedback) link from output unit
to an extra input unit (the approach of Jordan,
1986). In contradiction with our own results,
they noted a slightly better result than a com-
parable architecture without a feedback connec-
tion. The network was trained on 1,000 words
and tested on 200 words not present in the train-
ing set. Their result (an error of 3.2% incorrectly
placed hyphenations) should be compared with
our error rate on patterns. As far as can be in-
ferred from the text, the error is measured on the
percentage of ‘incorrectly hyphenated positions’
but these positions seem to be interpreted as our
‘patterns’. In Dutch words there are on average
about four times more characters (and therefore
patterns) than hyphenations, and we calculated
that a network has at most about 1.3 more in-
correct patterns than incorrectly placed hyphens.
Assuming German to be similar to Dutch in this
respect, this leads to the conclusion that Fritzke
and Nasahl would have had a hyphenation error
percentage of about 10%.

3.7 Connectionist versus Symbolic
Pattern Matching

As a final comparison of the performance of con-
nectionist networks to symbolic pattern matching
systems, we selected a Dutch text® and compared
the performance of CHYP (Daelemans, 1989),
an approach based on the table look-up method
of Weijters (1991)7, an (as yet) undocumented
algorithm PatHyph (Vosse, p.c.), and our best
spelling hyphenation network. The results are
summarized in Table 5. For each approach, we
provide the percentage of incorrect hyphenations,
the percentage of incorrectly hyphenated word
types, and the contribution of morphological ver-
sus non-morphological errors to the overall per-
formance.

CHYP is a symbolic pattern matching algo-
rithm based on phonotactic restrictions only. It
operates in two modes: a ceutious mode, in which
only those syllable boundaries are indicated that
are absolutely certain (predictable from phono-

6 Foreign words and non-words were removed, but we
left loan words and names in the text.

"We are grateful to Ton Weijters for his willingness to
apply his table-lookup algorithm at very short notice to
our hyphenation data.

Error Error Morph Non-
hyphens words morph
CHYP 4.7 8.6 92 8
Table 2.0 3.7 40 60
PatHyph 1.8 3.0 87 13
Net 4.8 9.0 19 81
Net (postp) 3.1 5.8 54 46

Table 5: Hyphenation performance on a
Dutch text of alternative pattern matching
hyphenation systems vs. the best hyphen-
ation network (internal combination).

tactic pattern knowledge), and a daring mode, in
which apart from the 100% certain hyphens also
the most probable uncertain hyphens (according
to the phonological rules) are provided. For this
test, CHYP operated in daring mode.

The table look-up method of Weijters (1991)
uses the training set as a data base, and com-
putes the similarity of new patterns to each of the
items in the database. The decision associated
with the most similar data base item(s) is then
used for the new pattern as well. The similarity
measure takes into account the fact that charac-
ters closest to the target character are more im-
portant than those further away (this can be in-
terpreted as a domain heuristic, and is expressed
as a set of numbers used to weigh the importance
of each position during similarity matching). Us-
ing a pattern size of seven, and as weights 1 4 16
4 1, he reported (Weijters p.c.) an error on the
test set of 1.66 (error computed on patterns, to
be compared with our results in Table 4). Larger
pattern sizes (up to size 11) and different weight
settings did not significantly improve the score.
Interestingly, still with size 7 patterns, weights 1
4 1 already produced a low error on patterns of

only 2.93%.

PatHyph also uses patterns to predict sylla-
ble boundaries, but the patterns were continu-
ously and automatically adapted by repeatedly
testing them on a large lexical database. Al-
though being symbolic in nature, this method is
automatic (no hand-crafting), and the resulting
“knowledge” cannot be inspected.

The comparison shows that even our best net-
work with post-processing cannot compete with
the best pattern matching approach, confirming
our hypothesis. Especially the good performance
of the simple table look-up method is surprising,
and it incited us to explore this type of ezemplar-
based generalization further, and compare its per-
formance to that of symbolic and connectionist

pattern matching for this task.

4 EXEMPLAR-BASED
GENERALIZATION

The generalization technique which we will call
here exemplar-based generalization (EBG) is a
variant of statistical classification methods like
k-nearest neighbour (see e.g. Weiss and Ku-
likovsky, 1991), and shares with Case-Based Rea-
soning (CBR, e.g. Riesbeck and Schank, 1989)
and Memory-based Reasoning (MBR, Stanfill and
Waltz, 1986) the hypothesis that the foundation
of intelligence is reasoning on the basis of stored
memories rather than the application of (tacit)
rules. In linguistics a similar emphasis on reason-
ing on the basis of stored examples is present in
Skousen’s analogical modelling framework (Skou-
sen, 1989; Durieux, 1992).

An EBG system consists of a database of ex-
emplars each with a category assignment (in the
case of ambiguous patterns, for each category
the frequency of occurrence in the training set
is kept), and a metric to compute the similarity
between exemplars. An exemplar is a set of fea-
tures (attribute-value pairs). The training set of
our connectionist experiment can be interpreted
as a database of exemplars in a straightforward
way, with patterns as exemplars (features are po-
sitions in the pattern and values the character at
that position). When a pattern from the test set
is presented as input, it is first looked up in the
database. If it is present, the category with high-
est frequency (in case of ambiguity) is taken. If
the pattern is not found in the table, a similarity
measure is used to compare the new pattern with
each pattern in the table, and of those patterns in
the table which have the highest similarity with
the new case, the frequencies for each category
are summed before a decision based on frequency
is taken.

The simplest similarity metric assigns equal
weight to all features of patterns when comparing
them (absolute similarity). Table 6 shows the re-
sults for the hyphenation task with different pat-
tern sizes. Training and test set were exactly the
same as in the connectionist experiments. Test
error is the overall error on the test set (in pat-
terns, to be compared with the results in Table
4). Memory error is the error on database lookup
(i.e. the percentage of test pattern types that is
explicitly present in the database, but which is in-
correctly processed due to an incorrect frequency
decision). Generalization error is the error per-
centage on those patterns in the test set that are

Pattern | Test Memory Generalization
Size Error Error Error
3 8.5 8.2 21.4
5 3.1 1.4 8.4
7 2.4 0.2 4.8

Table 6: Error on the hyphenation task us-
ing a similarity metric based on absolute
stmzilarity. Error on patterns is shown.

not in the pattern database.

Even with this simplistic similarity measure,
the approach scores as good as backpropagation
learning. We set out to find a more reason-
able similarity measure that would be able to
assign different importance to different features
(not all features are equally important in solv-
ing the task). At the same time we wanted this
metric to be as domain-independent as possible
(unlike the weights assigned by Weijters on the
basis of intuitions about the task, or the special-
purpose metrics developed in MBR). Our simi-
larity metric was designed by weighing each field
with a number expressing its role in decreasing
the overall information entropy of the database
(an approach inspired by the use of information
entropy in ID-3, Quinlan 1986).

Database information entropy is equal to the
number of bits of information needed to know the
decision (in this case YES or NO) of the database
given a pattern. It is computed by the following
formula where p; (probability of category 1) is es-
timated by its relative frequency in the training
set. For the training set in this task (with two cat-
egories: YES or NO a hyphen), E(D) is equal to
0.78 bits.

E(D) = - Zpilogzp,- (1)

For each feature (position in the patterns), it
is now computed what the information gain is of
knowing its value. To do this we have to com-
pute the average information entropy for this fea-
ture and subtract it from the information entropy
of the database. To compute the average infor-
mation entropy for a feature, we take the aver-
age information entropy of the database restricted
to each possible value for the feature. The ex-
pression Dis_,) refers to those patterns in the
database that have value v for feature f, V 1is
the set of possible values for feature f.

|D,f:’0i
E(Dyp) =), E(D[f=vi])% (2)
i€V

Pattern | Test Memory Generalization
Size Error Error Error
3 8.3 8.2 10.7
5 2.5 1.4 5.9
7 1.7 0.2 3.4

Table 7: Error on the hyphenation task us-
ing a similarity measure weighed by infor-
mation gain of features.

Information gain is then obtained by equation
three, and scaled to be used as a weight for the
feature in the EBG task.

G(f) = E(D) — E(Dp) (3)

In the hyphenation task with pattern size
seven, for example, we see the pattern of infor-
mation gain values of Figure 4. It suggests that
the target letter, and even more so the letter im-
mediately following it, should play a primary role
in the similarity measurement.

wei ghtsT

8-
74
6
5
4
3_
2
1
0

1 2 3 4 5 6 7 —— postions

Figure 4: Information gain for each posi-
tion in the patterns of the training set. Po-
sition 4 18 the target position.

Table 7 shows the improvement when using en-
tropy metrics (to be compared with the results
using absolute similarity in Table 6). Notice that
performance on memorization stays the same be-
cause the similarity metric only plays a role when
a pattern is not found in memory.

These results show that a useful similarity met-
ric can be derived automatically from a training
set of patterns, obtaining results comparable to
more ad hoc metrics based on domain heuristics
(as is the case in the work of Stanfill and Waltz,
1986, and of Weijters, 1991). Preliminary re-
sults show a poor generalisation performance on
the hyphenation task using the similarity met-
rics developed in Stanfill and Waltz (1986) for

grapheme to phoneme conversion, clearly show-
ing the domain-dependence of these metrics.

5 CONCLUSION

For the problem of finding syllable boundaries in
spelling strings, solutions using domain knowl-
edge are still superior or comparable in accuracy
to a connectionist solution, even when the latter is
biased with linguistic information. They have an
added advantage because of their inspectability
and the reusability of developed rules. This sug-
gests that when domain knowledge is available, a
connectionist approach may not be the best way
to tackle a problem (see also Weijters, 1991).

On the other hand, as far as efficiency is con-
cerned, a connectionist approach achieves accu-
racy levels comparable to a symbolic pattern
matching approach automatically, without need
for a large amount of linguistic engineering, shift-
ing reusability from the acquired knowledge to
the acquisition technique. The connection weight
matrix of a fully trained network, combined with
simple code for encoding, activation, decoding,
and postprocessing could be combined into a sim-
ple and efficient hyphenation module for text pro-
cessors, comparable in accuracy to existing ap-
proaches, but without the overhead of keeping in
store large tables of patterns or, even worse, a
dictionary.

What is worrying (from the point of view of
connectionist research), is the fact that a sim-
ple exemplar-based generalization technique with
a task-independent information-theoretic similar-
ity measure, achieves better generalization per-
formance than backpropagation in feed-forward
networks, even if context memory is available
through recurrent links. Further research should
make clear whether this result is limited to this
particular task.

6 REFERENCES

Bosch, A. van den and W. Daelemans. Linguis-
tic Pattern Matching Capabilities of Connec-
tionist Networks. In: Daelemans and Powers
(eds.) Background and Ezperiments in Machine
Learning of Natural Language. Proceedings First

SHOE Workshop. Tilburg: ITK, 183-196, 1992.
Daelemans, W. GRAFON-D: A Grapheme-to-

phoneme Conversion System for Dutch. Al
Memo 88-5, AI-LAB Brussels, 1988.

Daelemans, W. ‘Automatic Hyphenation: Linguis-
tics versus Engineering.” In: F.J. Heyvaert and

F. Steurs (Eds.), Worlds behind Words, Leuven
University Press, 347-364, 1989.

Durieux, G. Analogical Modelling of Main Stress As-
signment in Dutch Simplex Words. In: Daele-
mans and Powers (eds.) Background and Ez-
periments in Machine Learning of Natural Lan-
guage. Proceedings First SHOE Workshop.
Tilburg: ITK, 197-204, 1992.

Elman, J. Finding Structure in Time. CRL Techni-
cal Report 8801, 1988.

Fritzke, B. and C. Nasahl. A Neural Network that
Learns to do Hyphenation. In: T. Kohonen, K.
Maikisara, O. Simula and J. Kangas (Eds.) Ar-
tificial Neural Networks. Elsevier Science Pub-
lishers, 1375-1378, 1991.

Jordan, M. I. Attractor dynamics and parallelism in
a connectionist sequential machine. Proceedings
of the Eighth Annual Meeting of the Cognitive
Science Society Hillsdale, NJ, 1986.

Lachter, J. and T. Bever. ‘The relationship between
linguistic structure and associative theories of
language learning.” In Pinker and Mehler (eds.)
Connections and Symbols. MIT Press, 1988.

Pinker, S. and A. Prince. ‘On Language and Con-
nectionism: Analysis of a PDP Model of Lan-
guage Acquisition.” In Pinker and Mehler (eds.)
Connections and Symbols. MIT Press, 1988.

Plunkett, K. and V. Marchman. ‘Pattern Associ-
ation in a Back Propagation Network: Impli-
cations for Child Language Acquisition.” San
Diego, CRL, Technical Report 8902, 1989.

Quinlan, J. R. Induction of Decision Trees. Machine
Learning 1, 81-106, 1986.

Riesbeck, C. K. and R. S. Schank. Inside Case-based
Reasoning. Hillsdale, NJ: Erlbaum Assoc., 1989.

Rumelhart, D. E. and J. McClelland. ‘On learning
the past tense of English verbs.” In D.E. Rumel-
hart and J.L. McCleland and the PDP Research
Group, Parallel Distributed Processing: Ezplo-
rations in the Microstructure of cognition. Vol-

ume 2. Cambridge, MA: Bradford Books.
Rumelhart, D.E., G.E. Hinton, and R.J. Williams.

Learning Internal Representations by Error
Propagation. In: Rumelhart and McClelland
(Eds.) Parallel Distributed Processing Volume
1, MIT Press, 318-362, 1986.

Sejnowski, T.J. and C.R. Rosenberg. Parallel Net-
works that Learn to Pronounce English Text.
Complez Systems 1, 145-168, 1987

Skousen, R. Analogical Modeling of Language. Dor-
drecht: Kluwer, 1989.

Stanfill, C. and D. L. Waltz. Toward Memory-based
Reasoning. Communications of the ACM, Vol.
29, 12, 1986.

Weijters, A. and G. Hoppenbrouwers. ‘Net-

Spraak: een neuraal netwerk voor grafeem-
foneem-omzetting.” Tabu 20:1, 1-25, 1990

Weijters, A. ‘A simple look-up procedure superior
to NETtalk?’ In: T. Kohonen, K. Makisara, O.
Simula and J. Kangas (Eds.) Artificial Neural
Networks. Elsevier Science Publishers, 1991.

Weiss, S. M. and C. A. Kulikowsky. Computer Sys-
tems that Learn. San Mateo: Morgan Kauf-
mann, 1991.

