

Tilburg University

Evaluation of lexical representation formalisms

Daelemans, W.M.P.; van der Linden, H.J.B.M.

Document version:
Publisher final version (usually the publisher pdf)

Publication date:
1992

Link to publication

Citation for published version (APA):
Daelemans, W. M. P., & van der Linden, H. J. B. M. (1992). Evaluation of lexical representation formalisms. (ITK
Research Memo). Tilburg: Institute for Language Technology and Artifical IntelIigence, Tilburg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. jan. 2016

https://pure.uvt.nl/portal/en/publications/evaluation-of-lexical-representation-formalisms(608bc10e-ef8a-4810-8395-64ce24e2f2ef).html

CBM ~~J
R ~`~~

~J~i
8419 ~ ,~~ ; ~~~
1992 ~o~~~~~~~~~P~~
14 J ~ II IInI~uuIII I I II N IN II IVII I~I INllll ll~ l

1

INST!TUTE FOR LANGUAGE TECHNOLOGY AND ARTIFICIAL INTELLIGENCE INSTITUUT VOOR TAAL- EN KENNISTECHNOLOGIE

ITK Research Memo
february 1992

Evaluation of Lexical
Representation Formalisms

Walter Daelemans 8z
Erik-Jan van der Linden

No. 14

We wish to thank Hans Bcers with whom we worked on DATR. Furthermore, we thank
Gosse Bouma, Kcenraad de Smedt, other participants of the second CLIN meeing, and
participants of the ITK~LIKE Colloquium for comments and discussion.

01992 Institute for Language Techno.logy and Artificial Intelligence,
Tilburg Universíty, P.O.Box 90153, 5000 LE Tilburg, The Netherlands
Phone: f3113 663113, Fax: f3113 663110..~

Evaluation of Lexical Representation Formalisms

Walter Daelemans and Erik-Jan van der Linden'

February 1992
(Draft, comments welcome)

Abstract

With the structure and organisation of the lexicon at the centre of attention in computational
linguistics the last few years, we have witnessed the appearance ofvarious proposals for lexical re-
presentation formalisms and mechanisms. We discuss formalism-internal and formalism-external
criteria that allow us to compare and evaluate a number of these proposals (typed feature struc-
tures, DATR, the hierarchical lexicon, default unification, object-oriented representation). This
evaluation results in a position with respect to the role of inheritance in the design of lexicons.

1 Introduction

The shift from the expression of linguistic generalizations in linguistic rules to their represen-
tation in the lexicon has led to a vast increase in the interest for the lexicon and the formal
representation of lexical knowledge.l Unification-based approaches have introduced various for-
mal devices (templates, default unification, typing etc.) to structure lexical data. Another line
of research is formed by systems inspired by AI knowledge representation, that introduced the
notion of inheritance to computational linguistics.~

The aim of this paper is to review developments in this area. We do not introduce a new
formalism for the representation of lexical knowledge, but discuss a number of formalisms with
acknowledged criteria in mind: notational adequacy and expressivity. An evaluation like this is
important since various NLP projects are faced with a choice in favour of one of the formalisms
in question, and has, to our knowledge, not been made elsewhere. Nebel and Smolka (to
appear) only present a comparison of formal properties of what they refer to as terminological
repreaentation languagea and unification grammara. The main result of our exercise will be a
position with respect to the relation between unification and inheritance in lexicon design. Our
slogan is Inheritance before unification.

2 Basic ~nctions and Evaluation Criteria

In AI, a fruitful distinction is made in the design of knowledge systems between a compu-
tational level (the level of representation and problem solving formalisms), and a knowledge
level (implementation-independent aspects of the knowledge to be represented). Flirthermore,
it seems clear that these knowledge-level aspects (such as task analysis, inference patterns,
domain models, problem-solving methods, and their interaction) determine the choice of archi-
tecture and formalisms used in the implementation of the knowledge system (Steels, 1989), and

' We wish to thank Hans Boers with whom we worked on DATR. Furthermore, we thank Gosae Bouma, Koen-
raad de Smedt, other participants of the second CLIN meeting, and pnrticipants of the ITK~LIKE Colloquium for
comments and diacussion.

1See for inatance papers in the special isaue on the lexicon of Computational Linguistics 1987; Boguraev and
Briacoe 1989; Zernik 1989; van der Linden and van der Wouden 1990; Briscoe et al. 1992.

~See for inatance papers in Daelemans and Gasdar, 1990, 1992.

1

not the other way round. The same applies to the design of computational lexicons (construed
as lezical knowledge systems).3

From the point of view of performance, a task analysis of the lexicon in generation and
parsing reveals the following basic functions, which any lexical representation formalism should
facilitate as much as possible. In the remainder of this paper we will be concerned mainly with
representation issues.

~ Representation. Representation of morphological, syntactic, semantic and pragmatic
information in such a format that it can be easily integrated, and used with grammar,
parser,and generator.

~ Access. Given underspecified information, lexical signs compatible with it must be retrie-
ved. Given a lexical sign, information associated with this sign must be retrieved. Given
a lexical sign, (information associated with) related signs muat be retrieved. These are all
instances of a generic claaaification task.

~ Acquiaition. Addition of new lexical signa to the lezicon must be possible while keeping
consistency of the lezicon.

Classification as a generic task for lexicon access suggests a combination of abstraction,
matching and refinement as a problem solving method, which in its turn suggests the use of
taxonomiea for the representation of lexical knowledge (compare Steels, o.c.). In other words, a
knowledge level analysis (in terms of tasks and problem solving methods) may suggest important
criteria for the evaluation of formalisms, in this case the basic relation in the lexicon.

Role of the formalism. We see a formalism as a bridge between theory (the knowledge
level) and implementation (the computational level). There are different criteria that can be
used to evaluate knowledge representation formalisms in general, and lexical representation
formalisma in particular. Some of these are formaliam-internal, and reflect the relation between
formalism and implementation. Others are formaliam-external, and reflect the relation between
formalism and theory. The choice for taxonomies in lexical knowledge representation is an
ezample of the application of a formalism-external criterion.

In current lexical research, formalism-internal criteria play a major role. If they are met
by a formalism, it can be said to be felicitous from the point of view of mathematics and~or
computer science.

~ A formal declarative semantics should be provided.
~ Formal declarative inference rules should be defined.
~ Inference should be sound and complete.

~ Inference should be computationally tractable.

The criteria we will focus on in this paper are formaliam-ezternal criteria4. They are, in our
view, more important at the present stage of research in Computational Linguistics: mathema-
tics and computer science have provided formal linguistics with a multitude of formal devices for
the representation of linguistic data that match the criteria mentioned above, but less attention
has been paid to the relation between (linguistic) theory and formalism.

~ Notational adequacy. "Some kinds of notation seem to fit the sorts of facts one en-
counters in some domain; others, which may ultimately be equivalent in some sense to the
former kinds, do not." (Gasdar, 1985). Applied to grammar formalisms, Shieber (1986:5)
states that a formalism ahould represent linguistic phenomena "as linguista would wiah to
atate them„ .

~ Expreasivity. Expressivity means that the formalism should allow for the expression ofall
linguistic facta, and only those. Depending on the opinion one has on which phenomena are
linguistic and which are extra-linguistic, there is room for religious wars about ezpressivity. ~

~See van der Linden et al. 1990 for a comparable observation concerning the application of techniquea from
database deaign to the design of lexical databases.

~For these criteria see e.g. Whitelock (198?).

2

J

Expressivity of a formalism is concerned with what can be represented, notational adequacy
with how it is represented. If these linguistic formalism-external criteria are met by a formalism
it can be said to be linguiatically felicitoud 6. Notice that we could also introduce paychological
felicity this way. Another source of criteria which we will not discuss here, is practicalfelicity:
software engineering considerations (parsimony, ease of maintenance, uniformity, modularity,
and interaction (e.g. Daelemans et al. 1992) are not an issue here, but the use of inheritance
hierarchies is motivated by such considerations.

Criteria may conflict. A model of the lexicon that is for instance linguistically felicitous
removes as much redundancy as possible from the lexical representations, since one of the aims
of linguistics is to provide an abstract and general description of language. Regularly inflected
forms should not occur as stored lezical entries in the linguistic lexicon. A model that ia
psycholinguistically felicitous, on the other hand, may represent regularly inflected forms as
such (Stemberger and McWhinney, 1986). The criteria of psychological realism and notational
adequacy are thus in conflict. We will not pursue the old discussion concerning the role of
cognitive psychology in AI, but concentrate on linguistic felicity.

3 Dimensions in hierarchical lexicon design
In this section, we discuss a number of dimensions in lexicon design, and for some of them
we state what choice should be made given the criteria of the previous section. The main
conclusion of this section, and the paper, will be that inheritance should be the basic relation
between elements in the hierarchical lexicon, with unification playing a secondary role.

3.1 Basic Relation
In lexicalist grammars, there is a practical problem of removing redundancy in representation
(feature structures associated with a single lexical sign can be hundreds of nodes big), and a
theoretical problem of expressing the right generalizations. The non-redundant representation
of lexical information, and the expression of generalizations can be accomplished by structuring
the lexicon in the form of a hierarchy in which properties are shared between the elements that
constitute the hierarchy. As we mentioned earlier, a taxonomic representation is also suggested
by the main task of the lexicon in linguistic processing (i.e. classification).

In unification-based systems, the basic elements in the lexicon are signs (denoted here with
capitals: X, Y, but mostly unnamed), consisting of features structures (feature - value) which
denote the properties of the signs. The basic relation between signs is the subsumption relation
(C), from which unification is derived as an information combining operation (see Shieber, 1986).

(1) X
foo - 1

Y
foo - 1
bar - 2

XCY
In inheritance-based systems, the basic elements are classes or objects (X, Y; sometimes

called types or prototypes) consisting of property-value relations (property - value). The ba-
sic relation between these classes is the inheritance relation, which can be interpreted as a
generalization of more restricted relations.

Either a value (atomic or complex, i.e. a structured object in its own right) is provided for
the property of an object (a), or a direction of where to look for the value (b-e). In (b), the
value is equaled with the value of a different property within the same object, in (c) the value
is equaled with the value for the same property in a different object, and in (d), the value is

óAlthough Shieber (1986) equals linguistic felicity with expreasivity.

3

equaled with the value of a different property in a different object. In (e), all values of properties
in object X are equaled to the values of the corresponding properties in Y(~ ranges over all
properties). This corresponds to the well-known IS-A inheritance relation (X IS-A Y). Parts of
expressions which are left implicit ín the syntax of most formalisms are between brackets.

(2) a. X
foo - 1

Y
foo-2
bar - 3

b. X
foo - 1
bar ~ (foo of) X

c. X
foo ~ (foo of) Y

d. X
foo ~ bar of Y

e. X
(~)--~(aof)Y

3.2 Recursive Structure

It should be possible to allow lexical signs to refer to other lexical signs as values in their
information structure. We want to be able to express patha of properties or features, as in the
following (where uppercase symbols are structured lexical signs or classes).

(3) WORK
type - REGULAR-VERB
past-part - WORKED

WORKED
type - VERB-FORM
tense - past
person - 1 n 2 I` 3
number - sing n plur

INTRANSITIVE-VERB
category - (np`(np `s))

AUXILARY
argument - INTRANSITIVE-VERB
result - INTRANSITIVE-VERB

This allows us to build complex paths while querying the lexicon, e.g. What ia the peraon
of the paat-part of WORK, or to describe the relation between argument category and result
category of the categorial representation for an auxilary. Similarly for syntax (e.g. we can
have complex NP's as values in subject and object slots), or for semantics (e.g. we can have
structured semantic types as values in the semantics attribute). Although at least the necessity
of this type of expressivity seems to be self-evident, we will see that it is not unproblematic in
some lexical representation formalisms.

4~

In what followa we will review a number of design principles for hierarchical lezicons.s

3.3 Multiple and Single Inheritance
In single inheritance, each element has at most one parent element it inherits information from.
In multiple inheritance it is possible to inherit from more than one parent. Inheritance must
be multiple in order to achieve notational adequacy, that is, to avoid redundant descriptions
and to improve modularity. In the definition of lexicons, we want to separate morphological,
syntactic and semantic information in different tazonomies, and integrate this information in
lexical signs through multiple inheritance, because the generalisations we want to express in the
different parts of the lexicon will suggest differently organised hierarchies.

For instance, admire inherita its syntactic information from the class TRANSITIVE-VERB,
its semantic information from PSYCHOLOGICAL-VERB, and its morphological information
from REGULAR-VERB. Notational adequacy would suffer if we tried to cram all these classes
into the same tazonomy.

When an element inherits from more than one other element it is possible that conflicts
may arise, however. There are basically two types of solution that have been suggested for this
problem: orthogonal multiple ínheritance and prioritized multiple inheritance.

3.3.1 Orthogonal Multiple Inheritance

This solution, which is in line with the motivation for the use of multiple inheritance as a means
of partitioning the lexical database, suggests that information inherited from different classes
should be non-conflicting; no single property can be inherited from more than one parent class.
This principle of orthogonal inheritance is present in work by Flickinger (1987:61), in the object-
oriented morphology work of Daelemans (1987b:50-53), and in the `parent psorts do not conflict'
principle of Copestake (1991:2).

3.3.2 Prioritised Multiple Inheritance

In this view of multiple inheritance, one or more properties may be inherited from more than one
parent, but the parents are ordered (in a class precedence list). Of two parents with conflicting
values for this property in this list, the first wins, and ~hadows the value of the property in
the other. This prioritiaed multiple ínheritance (present in languages such as FLAVORS and
CORBIT) has been used in object-oriented NLP extensively (e.g. De Smedt 1984, Daelemans
1989). Recently it has been granted theoretical linguistic status in the work of Carpenter (1991)
and Russell et al. (1992), which is based on the class precedence list computation method of
CLOS (Steele, 1990). It is an open question which algorithm can best be used to compute
class precedence: depth first, breadth first, topological ordering, inferential distance (Touretsky,
1986) or others. In Daelemans (1990) it is suggested that the class precedence list can be
dynamically computed on the basis of contextual cues during processing.

3.4 Monotonic and Non-monotonic Inheritance
In monotonic inheritance, each element inherits all properties associated with its parent. To be
able to ezpress regularities, sub-regularities and exceptions within a single hierarchy, we have
to abandon monotonicity and introduce the principle that properties attached to an element
take precedence over those inherited from a parent. This is called non-monotonic inheritance,
or default inheritance~. Although in principle, default inheritance could be avoided by using
multiple non-monotonic inheritance, notational adequacy demands the capability of stating

óSee Touretgky and Thomason, 1987 for a more general overview of inheritance mechanisms. A number of
diatinctions presented there and elsewhere in the literature will not be discusaed here: class-based inheritance versus
prototype-based inheritance, homogeneous versus heterogeneous inheritance, unipolar veraus bipolar inheritance, and
cyclicity.

~See Dórre et al. for an overview of formalism-internal conaiderations concerning defaults.

5
.r

class definitions as being of a certain parent class, with some additional (possibly conflicting)
information.e

One of the earliest illustrations of the descriptive power of default inheritance is the following
treatment of Dutch verbs by De Smedt (1984).

HEAK VERB
~ past part - getroottt~d

~ past aing - root}t~de
~ pres sing 3 - roottt

I ...
I `

iTERKEN HIiED vERB
I past part - ge}root}en

~ `
~ `

BIKKEN STRONG 9ERB
~ past sing - tVowel Change

~
LOPEN

The expressiveness of default inheritance has been used in work in HPSG (Flickinger, Pollard
and Wasow, 1985; Flickinger, 1987), Word Grammar (Hudson, 1984, 1990), and object-oriented
NLP (Daelemans, 1987b; De Smedt, 1990), and has been the prime motivation for work on
default unification (Bouma, 1992; Carpenter, 1991).

The (mostly implicit) consensus view has been that as far as notational adequacy is concer-
ned, default inheritance hierarchies should be used to encode dimensions of regularity, marked-
ness, and productivity within a single hierarchy (see Daelemans et al., 1992).

3.5 Explicit coding of non-default information
It is possible to code non-default information explicitly, or to leave it implicit, that is, to let
the information the child carries prevail over the information of the parent. The latter principle
is an acknowledged principle in knowledge representation and (computational) linguistics, and
goes under the name of blocking, elsewhere condition or principle of priority to the particular.
The difference between the figure below, and the one presented above, is the explicit coding of
defeasability of the past part and part sing information with the use of a overwriting operator,
r

iJEAK VERB
~ past part

~ past sing
~ prea sing 3

~ ...
~ `

getroottt~d
roottt~de
root}t

iiERKEN MIXED VERB
~ ! past part - gefrootfen

I `
I `

BAKKEN STRONG VERB
~ ! past sing - fVowel Change

~
LOPEN

"See Daelemans et al. 1992 for a discusaion of this point.

6

In extensiona ofunification-based frameworks, one finds explicit coding ofoverwriting (Bouma
1992; Carpenter 1991)9.

There are two problems dvith the explicit coding of non-defaults. Firstly, the lexicon designer
must indicate explicitly what information is default and what information is non-default. One
could say that ezplicit coding represents such atatements as "X is a Y, but its c-property is
d", and implicit coding represents such statements as "X is a Y, with d as its c-property".
Note that in the default inheritance mechanisms discussed earlier, the most specific information
takes precedence automatically. It is questionable whether the first kind of statement matches
the demand for expressivity. Secondly, a problem occurs when several pieces of information in
the hierarchy are marked as non-default information. In default unification all default and non-
default information must be unified separately before it is combined by default unification. This
implies that different pieces of non-default information may not be conflicting, which makes it
impossible to define hierarchies with exceptions of exceptions.

(4) BIRD
Can-fly - Yes

PENGUIN
isa BIRD
! Can-fly - No

TWEETY
isa PENGUIN
! Can-fly - Yes

A set-theoretic approach. A set-theoretic approach makes the differences between the
approach which necessitates explicit overwriting and other approaches clearer. The subsumption
relation is comparable to a subset-superset relation in set-theoretic terms. If we take num -
sing to denote a set the members of which have the property num - sign, and person - 1 to
denote a set the members of which have the property person - 1, then num - sing fl person - 1
denotes the intersection of these sets. If a mothernode occurs in this intersection then the nodes
subsumed by the mother should be members of the intersection as well. In approaches in which
inheritance is the principle relation between signs, all properties are in principle defeasible, and
so a mother in num - sing fl person - 1, may have children which are in some subset of the
union of the sets denoted by the properties of the mother. For instance a node for which num -
plural and person - 1 hold may be children of the mother. If in the unification approach a node
deviates with respect to certain properties from the node, this should thus be coded explicitly.

Explicit overwriting in Word Grammar. Default inheritance implies a form of block-
ing: the computation of regular forms is shielded by the presence of irregular forms at a more
specific level in the default inheritance hierarchy (this was even one of the prime motivations
for introducing it into lexical description). However, in some cases (e.g. the English plural), we
want to derive both the exceptional and the regular form (hoo~ hooves, hoofa).lo To solve this
problem, Fraser and Hudson (1992) introduce a notion of inheritance in which exceptions do
not sutomatically override inherited defaults, the default has to be explicitly negated if it has
to be suppressed.

9Note that the explicit coding of defeasability in Veltman 1990:31, and Touretzky 1986 is a property of the
information that is overwriten, and thus differs from the notion of explicit non-default information here.

loThe same applies to the verb prove from which two participles can be derived: proven and proved.

7

(5) NOUN
Plural - Root -}- s

FOOT
Isa NOUN
NOT Plural - Root f s
Plural - Feet

HOOF
Isa NOUN
Plural - HOOVES

Note that this way a device has to be added for the exceptional case where we have two
plural forms. We loose the more notationally adequate automatic blocking present in other
inheritance systems. In default unification we have to know which information is not default,
in Word Grammar we have to know which default iníormation is overridden. We would favour
a device which ezplicitely states that information is added, or is a variant, which ia notationally
more adequate in our view. This could be accomplished by means of an operator VARIANT,
or by means of the variant sets introduced by Russell et al. 1992. Below we present a tentative
representation.

(6) NOUN
Plural - Root ~ s

FOOT
Isa NOUN
Plural - Feet

HOOF
Isa NOUN
Variant Plural - HOOVES

3.6 Conclusion
The conclusion from the present section is that a formalism that meets the formalism-external
criteria set out at the beginning should at least have the following properties.

~ Recursive structuring (path formation).

. Integration of knowledge from multiple sources (multiple inheritance~subsumption).

. Default reasoning (non-monotonic inheritance~subsumption).

~ Implicit blocking (no explicit coding of default information).

The choice of a basic relation is left implicit here, and will emerge from the discussion of the
state of the art in the next section. With respect to multiple default inheritance, we conclude
that orthogonal multiple default inheritance is at this stage the best solution for conflicts. With
unrestricted multiple inheritance, the advantages in general don't weigh up against the formal
intricacies of dealing with conflicting inherited information. More research remains to be done
to evaluate the adequacy of different proposals for prioritised multiple inheritance.

4 State of the art

In this section we discuss the state of the art in lexical representation formalisms, and use the
criteria and design decisions from the previous sections to evaluate them.

8

4.1 Unification-based formalisms
Unification as used in currently popular unification-based grammar (UBG) formalisms is by
definition a monotonic operation. Information in the templates of PATR (Shieber, 1986), e.g.
is combined by means of unification, and the operation is equivalent in expressive power to
information combination by means of (multiple) monotonic inheritance. This monotonicity is
at the basis of some of the acknowledged advantages of UBG, e.g. order independence.

Part of the study of unification-based formalisms has been directed at extending the unifica-
tion-based machinery with tools for the representation of lexical knowledge. After the introduc-
tion of such concepts as templates and overwriting in PATR, two other concepts have become
of importance: typing and default unification.ll

4.1.1 Default Uniflcation

Bouma (1992) presents an asymmetric operation of default unification for (untyped) features
structures. The operation results in combining as much default information as possible with the
non-default (or strict) information. The basic relation in the lexicon is a unification relation.

In order to distinguish default from non-default information Bouma uses a unary type con-
structor ! with feature-value pairs in its domain. Note that use of such a type constructor is
obligatory: in case of non-default information there exists a conflict between the information
provided by the mother and the information provided by the daughter, which would lead to sub-
sumption~unification failure. Combining the non-default information by means of unification
would fail in this case before default unification can be applied. However, as we noted before,
explicit coding of non-default information is problematic.

In Krieger and Nerbonne (1991) it is proposed that feature structures are used in lexical
representation and for inflectional and derivational morphology. Again, the basic relation is
subsumption, and Bouma's default unification is acclaimed as being sufficient for representing
default inheritance.

4.1.2 Typed Feature Structures

Multiple monotonic inheritance hierachies can be found in a great deal of work in unification-
based grammar. In HPSG (Pollard and Sag, 1987), the lexicon is treated as a monotonic multiple
inheritance hierarchy. Other examples are Emele and Zajac (1992) and Emele et al. (1990),
sorts in Unification Categorial Grammar (Moens et al. 1989) and in the CLE project (Alshawi
et al. 1989), and the proposal of Nebel and Smolka (1991). In Typed Feature Structures (see
for instance Zajac, 1992) types are represented in a hierarchy with subsumption as the basic
relation. Although Zajac calls this an inheritance network, ít should thus rather be called
a subaumption network. It is not suprising that under this strict definition of inheritance as
subsumption, no notion of default inheritance is possible: "A subtype inherits all constraints
of its supertype monotonically". On the basis of expressive adequacy this restriction should be
rejected.

Carpenter 1991. Carpenter (1991) presents a formal system in which inheritance precedes
unification: feature structures may have a default unification relation, but the relation between
elements in the lexicon is basically an iaa relation. Carpenter, however, uses notions of templa-
tic inheritance and default inheritance which have the same flaws as Bouma's (1992) system:
overwriting and defaults have to be coded explicitly by marking a feature-value structure with
a one-place operator 9 or !(templatic inheritance), or a one-place operator atrict or default
(default inheritance). It is not surprising that Carpenter faces the problem of order-sensitivity
for the resolution of conflicting defaults.

11 Gasdar et al. 1988 preaent a general unification-based formalism for the representation of category atructu-
rea which is limited to syntactic information. Dórre et al. present an overview of extensions of unification-based
formaliama.

9

4.2 DATR
DATR (Evana and Gasdar, 1989a,b, 1990) is a non-monotonic inheritance formalism for lexi-
cal knowledge representation that is intended to be notationally adequate and formally and
computationally well-behaved. Lexical knowledge is expressed in terms of path equations.

The following sample DATR lexical theory for instance, expresses that the verb node is
associated with syntactic category verb and ayntactic type main, and that morphologically (by
default inheritance) all past forms consist of a sequence whose first element is the root and
whose second element is the suffix ~-ed. In the absence of any more specific (longer) paths, all
extensions of Gmor past~ in the context of VERB or deacendents of VERB like AUX will inherit
the same value. As far as the preaent form is concerned: for all extensions of Gmor pres tensel
except explicitly defined more specific ones like Gmor pres tense sing three~ the value "Gmor
root~" is inferred. Quoted paths are evaluated globally, i.e. in this example, "GmOr rOOt~"
refers to the value for Gmor rootl in the node description the query started from (possibly at a
lower level in the hierarchy). Paths that are not quoted are evaluated in the context of the node
with which they are associated. Notice that as far as notational adequacy is concerned, the
normal case is explicitly marked in DATR syntax (with quotes), while the marked case (global
inheritance) is unmarked.

VERB: ~syn cat~ -- V
~syn type~ -- Main
~mor past~ -- ("tmor root~" fed)
~mor pres tense~ -- "~mor root~"
~mor pres tense sing three~ -- ("~mor root~" fs)
~mor pres participle~ -- ("~mor root~" ting)

AIIZ: ~~ -- VERB
~syn type~ -- aux

There are more limitations to the notational adequacy of DATR, however.

~ Apart from supporting wanted inferences by default inheritance through path extension,
DATR also happily infers nonsense like Gmor past pres future~ - G"Gmor root~" ~ed~.
To prevent some of the extensions to be inferred, so-called ugly objecta should be defined.
Taken together with the atomic attribute interpretation of DATR paths to be discussed
shortly, this means that DATR default inheritance is in fact merely an instance of prefix
matching of attributes. From this respect the expressivity of DATR is not adequate.

. The type of "multiple" inheritance used in DATR is a kind of mixin inheritance: inheri-
tance pointers can only be specified between Node-Path combinations, not between nodes
(objects). Single inheritance is represented as

X:~~ -- Y:~~.

This makes it possible to ascertain that all multiple inheritance in DATR is orthogonal.
Evans et al. (1992) explicitly discuss multiple inheritance in DATR. Although they pre-
sent a DATR-like pseudo-formalism, in which multiple prioritised inheritance could be
expressed aa auch,

ABC: o -- l,B,C

they do not incorporate this in DATR. Multiple inheritance is claimed to be expressible,
but this is only possible through a detour, and with the use of rather intricate DATR-
constructions. (As DATR is a powerful general-purpose representation language it is not
surprising that this is possible)1~. Linguistic felicity would demand the expression that
ABC is an A, a B and a C in one simple statement, however. The prioritised multiple
inheritance discussed by Evans et al. (1992) applies to DATR-paths, not to inheritance
from different objects.

'~For the more complex syntactic possibilities of DATR, no formal declarative semantics has been proposed yet.

10

~ It is not possible in DATR to have complex structured objects as "values" (remember that
only equations of node-path pairs can be expressed). This is unfortunate because, as we
pointed out earlier, we want to be able to express this kind of recursion in the lexicon.
Related to this, neither nodes nor theories in DATR correspond to lexical entities.

. Apart from these issues, there are a few points with respect to formalism-internal criteria
we would like to mention. The similarity of DATR paths to PATR paths is superficial, their
semantics ia very different. In fact, the DATR paths could be better described as atomic
attributes (they do not correspond with a recursive structure, and their only function is
to support prefix matching). Despite their superficially similar syntax, the integration of
DATR lexical theories with UBG-usable feature structure definitions is far from trivial
(although possible using the more complex syntactic possibilities mentioned earlier). All
proposed solutions seem to require the off-line expansion ofall lexical material (as opposed
to on-line or lazy inference). How to translate UBG-specific mechanisms like reentrancies
and disjunction into DATR is at present an unsolved question.

4.3 Object-Oriented Natural Language Processing
In object-oriented NLP (De Smedt, 1984, 1990; Daelemans, 19876,88), ideas from object-
oriented languages like polymorphism, inheritance and encapsulation, are transported to lin-
guistic modeling. (See Daelemans, 1989 for an overview and related ideas in AI, linguistics and
computational linguistics).

As a lexical representation language (as proposed in Daelemans, 1987a), object-oriented re-
presentation allows the definition of single and multiple inheritance hierarchies. While most
existing work presupposes a form of prioritised inheritance (enforced by a default search stra-
tegy built into the definition of the language), it is easy to guard orthogonality in multiple
inheritance. Also, while most existing work makes use of procedural methods, a declarative
regime can be enforced. (Typed) feature structures can straightforwardly be implemented as
objects (Daelemans et al. 1991), allowing the combination of unification and inheritance in a
single system. Due to the fact that lexical entities have a straightforward implementation as
structured objects, the approach seems to be intuitively clearer.

From the point of view of the criteria discussed here, object oriented frameworks provide
notational adequacy, but with respect to expressivity, unconstrained object oriented frameworks
are too powerful. Also, one important difference between this framework and the other forma-
lisms in this paper, is that there exists no formal semantics for object-oriented formalisms in
general (although proposals exist for significant subsets).

4.4 Hybrid Systems
Apart from the object-oriented approach discussed in the previous section, a number of other
systems combine feature-based and inheritance relations (Carpenter 1991, section 5; Russell et
al. 1992; Copestake 1991). In these systems, the basic relation between signs is the subclass-
superclass relation. Notions like default extension, superclaas extension and global extenaion
mediate between the inheritance relation and the unifiability of information of the classes. For
these hybrid systems not all formalism-internal demands have been fulfilled yet.

5 Conclusion

The conclusion we draw from the demands on lexical representation formalisms and the state
of the art is that lexical representation formalisms should allow for orthogonal, multiple, not
ezplicitely coded, defauIt inheritance and for recuraive structurea. Our position with respect to
existing formalisms is the following.

~ Formalisms that take unification as the basic relation and their extensions (typed features
structures and default unification) do not allow for a proper way to represent nonmonotonic
inheritance which is necessary from the point of view of expressivity.

11

~ DATR does not allow for multiple inheritance in a notationally adequate fashion, and is
too expressive as concerns path equations.

~ Object-oriented formalisms are too expressive since they allow for the use of the complete
expresaivity of programming languages.

~ Hybrid Systems are the most promising aince they allow for inheritance as a basic relation
between signs, and its formulation in terms of unification.

~ture research Although we do not agree with his implementation of it, we agree with the
following quote from Zajac (1992:3). "A linguistic formalisrn should be an object-oriented logic
formalism." It remains to be seen what will turn out to be the best approach to accomplish
this. One line could be to pursue the limitation of object oriented frameworks. One of the
interesting devicea that should be preserved is the concept of multimethods (Daelemans, 1990).
In order to provide a formal semantics foï 00 frameworks, it should be noted that it is clear
from the work of Touretsky (1986) and Veltman (1990) that a modeltheoretic formal semantics
of a nonmonotonic framework requires an intensional approach, a opposed to the extensional
semantics that can for instance be found in the work of Carpenter (1991).

Another line of research would be to present inheritance in terms of logical type constructors
as in van der Linden (1992), although one could say that from the point of view of type theory
these operators should in principle be represented on a meta-level.

References

Hiyan Alshawi, David Carter, Johan van Eijck, Robert Moore, Douglas Moran, Fernando
Pereíra, Stephen Pulman, and Arnold Smith. `Final Report: Core Language Engine',
Technical Report, Project No. 2989, SRI, Cambridge, 1989.

Branimir Boguraev and Ted Briscoe, (eds.) Computational Lexicography for Natural Language
Processing. London: Longman, 1989.

Gosse Bouma, `Feature structures and nonmonotonicity', Computational Linguistics, vol. 18,
no. 2, 1992, forthcoming.

Ted Briscoe, Ann Copestake 8c Valeria de Paiva (eds), Default Inheritance in the Lexicon,
Cambridge University Press, Cambridge, 1992.

Robert Carpenter, `Skeptical and Credulous Default Unification with Applications to Templa-
tes and Inheritance.' In: Ted Briscoe, Ann Copestake 8t Valeria de Paiva (eds), Proceedings
Acquilex Workshop on Deafaults in the Lexicon., 1991.

Anne Copestake, `Defaults in the LRL.' In: Ted Briscoe, Ann Copestake 8z Valeria de Paiva
(eds), Proceedings Acquilex Workshop on Deafaults in the Lexicon., 1991.

Walter Daelemans. `A Tool for the Automatic Creation, Extension and Updating of Lexical
Knowledge Bases.' Proceedíngs of the Third ACL European Chapter Conference, Copen-
hagen, 70-74, 1987a.

Walter Daelemans. Studies in Language Technology: An Object-Oriented Computer Modei of
Morphophonological Aspects of Dutch, University of Leuven, PhD dissertation, 1987b.

Walter Daelemans. `A model of Dutch morphophonology and its applications', AI Communi-
cations, vol. 1, no. 2, pp. 18-25, 1988.

Walter Daelemans. `Object-oriented Hierarchical Lexicons.' Proceedings IJCAI'89 Workshop
on Object-oriented Progra~n.ming in AI, Detroit, 1989.

Walter Daelemans. `Inheritance in Object-oriented Natural Language Processing.' In: Daele-
mans, W. and G. Gazdar (eds.) Inheritance in Natural Language Processing: Workshop
Proceedings Tilburg: ITK, ITK Proceedings 90~1, 1990, p.30-38.

Walter Daelemans and Gerald Gasdar (eds.) Inheritance in Natural Language Processing:
Workshop Proceedings Tilburg: ITK, ITK Proceedings 90~1, 1990, 120p.

12

Walter Daelemans, Koenraad De Smedt and Josje de Graaf. `Default Inheritance in an object-
oriented representation of linguistic categories'. ITK Research Report 31, 1991.

Walter Daelemans and Gerald Gazdar (eds.) Inheritance in Natural Language Processing.
Special Issue of Computational Linguistics. Vol 18 (2), 1992, forthcoming.

Walter Daelemans, Koenraad De Smedt 8t Gerald Gazdar. `Inheritance in Natural Language
Processing.' Computational Linguiatica Vol 18 (2), 1992.

Koenraad De Smedt, `Using object-oriented knowledge representation techniques in morpho-
logy and syntax programming', ECAI-8.~, 181-184, 1984.

Koenraad De Smedt, Incremental Sentence Generation: a Computer Model of Grammatical
Encoding. NICI Technical Report 90-01, Nijmegen, 1990.

Martin C. Emele and Rémi Zajac, `Typed unification grammars', COLING-90, pp. 293-298,
1990.

Martin C. Emele, Ulrich Heid, Stefan Momma, and Rémi Zajac, `Organizing linguistic know-
ledge for multilingual generation', COLING-90, pp. 102-107, 1990.

Roger Evans and Gerald Gazdar, `Inference in DATR', ACL Proceedinga, 4th European Con-
ference, pp. 66-71, 1989a.

Roger Evans and Gerald Gazdar, `The semantics of DATR', in Proceedinga of the Seventh Con-
ference of the Society for the Study of Artifticial Intelligence and Simulation of Behaviour,
ed. Anthony G. Cohn, pp. 79-87, Pitman~Morgan Kaufmann, London, 1989b.

Roger Evans and Gerald Gazdar, The DATR Papera, Volume 1, Cognitive Science Research
Paper CSRP 139, University of Sussex, Brighton, 1990.

Roger Evans, Gerald Gazdar, and Lionel Moser, `Prioritised multiple inheritance in DATR', in
Default Inheritance in the Lexicon, Ted Briscoe, Ann Copestake 8c Valeria de Paiva (eds),
Cambridge University Press, Cambridge, 1992.

Daniel P. Flickinger, Lexical Rulea in the Hierarchical Lexicon, Stanford University, PhD dis-
sertation, 1987.

Daniel P. Flickinger, Carl J. Pollard, and Thomas Wasow, `Structure-sharing in lexical repre-
sentation', ACL Proceedinga, 23rd Annual Meeting, 262-267, 1985.

Norman M. Fraser and Richard A. Hudson, `Inheritance in Word Grammar', Com,putational
Linguiatica, vol. 18, no. 2, 1992.

Gerald Gazdar, `Computational Tools for poing Linguistics: Introduction', Linguiatica 23,
185-187, 1985.

Gerald Gazdar, Geoffrey Pullum, Bob Carpenter, Ewan Klein, Thomas Hukari, and Robert
Levine `Category Structure', Computational Linguiatica 14, pp. 1-19, 1988.

Richard A. Hudson, Word Grammar, Blackwell, Oxford, 1984.

Richard A. Hudson, Engliah Word Grammar, Blackwell, Oxford, 1990.

Hans-Ulrich Krieger and John Nerbonne, `Feature-based Inheritance Networks for Computa-
tional Lexicons.' Proceedinga of the Acquilez Workahop on Default Inheritance, 1991.

Erik-Jan van der Linden, `Incremental processing and the hierarchical lexicon', Computational
Linguiatica, vol. 18, no. 2, 1992.

Erik-Jan van der Linden, Sjaak Brinkkemper, Koenraad De Smedt, Pauline van Boven, and
Mieke van der Linden, `The Representation of Lexical Objects', In: Magay, T., and Zigány,
J., (Eds.) BudaLEX '88 proceedinga : papera from the 3rd International EURALEX con-
greaa, Budapest, 4-9 September 1988. Budapest: Akadémiai Kiadó, 1990.

Erik-Jan van der Linden 8t Ton van der Wouden, `Computer and Lexicon.' In: Van der
Wouden, T. 8z Van der Linden, E. (Eds.) Computer and Lexicon. Special issue of Tabu,
20, 3, p. 61-74, 1990 (Dutch).

Marc Moens, Jo Calder, Ewan Klein, Mike Reape, and Henk Zeevat, `Expressing generalizati-
ons in unification-based grammar formalisms,' ACL Proceedinga, 4th European Conference,
174-181, 1989.

13

Bernhard Nebel and Gert Smolka, `Representation and Reasoning with Attributive Descripti-
ons.' In: Blësius et al. Sorta and Typea in Artificial Intelligence, 1992.

Carl Pollard and Ivan A. Sag, Information-Baaed Syntax and Semantica, Volume 1, CSLI~Chicago
University Press, Stanford~Chicago, 1987.

Graham Russell, Afzal Ballim, John Carroll, and Susan Warwick-Armstrong, `A practical
approach to multiple default inheritance for unification-based lexicons,' Computational
Linguiatica, vol. 18, no. 2, 1992.

Stuart M. Shieber, An Introduction to Unification-Baaed Approachea to Grammar, University
of Chicago Press, Chicago, 1986.

Guy Steele, Common Liap The Language, Digital: Digital Press, 1990.

Luc Steels, `Components of Ezpertise.' AI-MEMO 89-2, 1989.
Joseph Stemberger and Brian MacWhinney `Frequency and the lexical storage of regularly

inflected forms', Memory and Cognition 14, pp.17-26, 1986.
David S. Touretzky, The Mathematica of Inheritance Syatema, Pitman~Morgan Kaufmann,

London~Los Altos, 1986.

David Touretaky 8c Richmond Thomason, `A clash of intuitions: the current state of nonmo-
notonic inheritance systems.' In Proceedings od IJCAI-87, 676-482, 1987.

Frank Veltman, `Defaults in Update Semantics' In: Hans Kamp (ed.) Conditionala, Defaulta
and Belief reviaion. Dyana Deliverable R2.5.A, 1990.

Jochen Ddrre, Andreas Eisele, Jurgen Wedekind, Jo Calder and Mike Reape, `A survey of
Linguistically Motivated Extensions of Unification-Based Formalisms' Dyana Deliverable
R3.1.A.

Peter Whitelock, Mary McGee Wood, Harold L. Somers, Rod L. Johnson, and Paul Bennett,
Linguiatic Theory f! Computer Applicationa, Academic Press, London, 1987.

Rémi Zajac, `Inheritance and constraint-based grammar formalisms', Computational Linguia-
tica, vol. 18, no. 2, 1992.

Uri Zernik (Ed.) Proceedinga of the Firat International Lexical Acquiaition Workahop. Detroit,
Michigan, 1989.

14

i i ui~ ïinï~iid~ïPui~i ~

ITK: P0. BOX 90153 5000 LE TILBURG THE NETHERLANDS

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18

