The Profit of Learning Exceptions*

Antal van den Bosch, Ton Weijters, Jaap van den Herik
University of Maastricht, MATRIKS, Department of Computer Science
PO Box 616, NL-6200 MD Maastricht, the Netherlands

Walter Daelemans
Institute for Language Technology and AI (ITK),
Tilburg University, PO Box 90153, NL-5000 LE Tilburg, the Netherlands

Abstract

For many classification tasks, the set of available task instances can
be roughly divided into regular instances and exceptions. We in-
vestigate three learning algorithms that apply a different method of
learning with respect to regularities and exceptions, viz. (i) back-
propagation, (ii) cascade back-propagation (a constructive version of
back-propagation), and (iii) information-gain tree (an inductive decision-
tree algorithm). We compare the bias of the algorithms towards learn-
ing regularities and exceptions, using a task-independent metric for
the typicality of instances. We have found that information-gain tree
is best capable of learning exceptions. However, it outperforms back-
propagation and cascade back-propagation only when trained on very
large training sets.

1 Introduction

For many classification tasks, the set of available task instances can be
roughly divided into a core of regular instances and a periphery consisting of
exceptions. A successful learning algorithm must be able to learn the core

“In: Proceedings of Benelearn-95, TR/IRIDiA/95-16. Brussels: ULB. pp. 118-126

as well as the periphery. If one wishes to investigate the learnability of a set
of instances of which a large portion is peripherial, a metric is needed that
decides whether an instance belongs to the core or to the periphery. The met-
ric should be independent of any model or theory of the task. Zhang (1992)
presents a metric which can be used for this purpose. He defines the typical-
ity of an instance ¢ with classification c as 2’s average similarity to instances
with the same classification ¢, divided by its average similarity to instances
with another classification than c¢. Regular instances have typicalities larger
than 1; exceptions have typicalities smaller than 1.

Given two instances, ¢; and ¢3, each having n features, the similarity of
these instances, sim(i1,12), is formalised by Zhang (1992) as

. . 2
L 1< P — 7
szm(zl,zz) =1—,|— E _—
n 4 max! — mnd

j=1

where 1,{ is the value of the jth feature of instance i;, and maz? and min?
are the maximum and minimum values of the jth feature, respectively. In
our experiments, we use seven non-numeric (symbol-valued) features. In the
case of symbol-valued features the part of the formula between braces equals
1 if] and 7} have different symbolic values, and 0 otherwise.

2 The Task

The task adopted for our experiments is English hyphenation, i.e., the real-
world problem of finding the positions in an English spelling word at which
a hyphen (‘-’) can be placed. For English hyphenation, a fairly large num-
ber of cases exist that obey to a few simple, pronunciation-based principles
(Treiman and Zukowski, 1990). Moreover, the morphological principle intro-
duces a large amount of periphery, since it states that morphological bound-
aries must receive hyphens, regardless of any other applicable principle. This
leads to hyphenations such as <ac-cord-ance>, rather than <ac-cor-dance>,
because there is a morphological boundary between the stem <accord> and
the suffix <-ance>. From CELEX, a collection of lexical data bases of English,
German and Dutch, we derived a data base consisting of 89,019 hyphenated
English words. From this data base we extracted three subsets of increasing
magnitude: a subset of 200 words (henceforth D1), a subset of 2,000 words

(henceforth D2), and a subset of 20,000 words (henceforth D3). We refer to
the full data set of 89,019 words as D4.

Instead of using words as instances, we used the windowing technique (cf.
Sejnowski and Rosenberg, 1987) to convert words into fixed-length instances.
An instance consists of a focus letter surrounded by 3 left context letters and
3 right context letters, including blanks before and after words. Dataset D1
thus contains 1,729 instances, D2 16,980, D3 168,549, and D4 750,874. An
instance is associated with the classification ‘1’ if a hyphen may be placed
before the focus letter, and ‘0’ otherwise.

3 Three Algorithms

The hyphenation task is presented to three learning algorithms: (i) back-
propagation (BP), (ii) cascade back-propagation (CBP), and (iii) information-
gain tree (IG tree). First, BP is included because of its status as a benchmark
algorithm. It is known for its ability to learn regular instances as well as
exceptions. However, the latter ability is often limited due to storage limi-
tations. Therefore we have selected IG tree as a symbolic inductive-learning
algorithm which has no limitations in storage. For reasons of comparison, we
have opted for CBP, an extension of BP, that has no storage limitations. The
application of each learning algorithm to each data set was performed using a
10-fold cross-validation setup, except for the application of CBP to D4 which
was performed only once due to limitations in computational resources.

3.1 Back-propagation

Back-propagation uses a network architecture with fully connected multiple
layers of units. Learning takes place by adjusting the weights of the con-
nections between all units according to the error signal at the output layer
(Rumelhart, Hinton, and Williams, 1986). The number of connections fol-
lows from the numbers of layers and units predefined beforehand.

In our experiments with BP, we adopted the coding technique used by
Sejnowski and Rosenberg (1987), i.e., each of the 7 input letters are locally
coded. Moreover, a fixed hidden layer of 50 units was used. Test experiments
with different numbers of hidden units showed a worse performance with less
units, and no significant performance increase with more units. The output

layer contained one unit, representing the class (0 or 1). The learning rate was
set at 0.1, with a momentum of 0.4. Next, the update tolerance threshold was
set to 0.2, i.e., only when the error of the output unit exceeded this threshold,
back-propagation took place. This threshold enabled the algorithm to spend
less effort on instances already learned. All BP experiments were run for 30
cycles, since there the error on the training material started to converge.

3.2 Cascade back-propagation

Cascade back-propagation (CBP; Van den Bosch, Weijters, and Van den
Herik, 1995) is a variant of BP in that it uses the same connection-strength
adjustment rules. Its architecture coincides with the architecture of Fahlman
and Lebiere’s (1990) cascade-correlation network.

The first difference between CBP and BP is that CBP starts off without
any hidden layers. The input layer and the output layer are fully connected.
CBP trains the network until the mean-squared-output error converges. CBP
then freezes the connections in the network, and adds one hidden unit which
is fully connected to the input and output layer. The new unit is trained
with the generalised delta learning rule until the mean-squared-output error
again converges. CBP’s next step is to freeze the new unit’s incoming and
outgoing connections. Thereafter, it adds a second hidden unit. This unit is
fully connected to the input layer, the output layer and all previously-added
hidden units. Then the network is again trained using the generalised delta
learning rule. This is repeated until a newly added unit does not lead to
a decrease of the mean-squared-output error (after a predefined number of
possible attempts).

The second difference with BP is that in our CBP implementation, we set
all target class values (0 or 1) already classified correctly to 0. The new
hidden unit is then trained on the remaining outputs of class 1 previously
classified as 0. Thus the task for the new hidden unit ideally becomes simpler
as more hidden units ‘solve’ more training examples.

The third difference is the slight increase of the learning rate during train-
ing (an empirically established increase of 0.02 per added unit). The param-
eter settings in our CBP experiments were kept identical to those used with
BP, except for the stop criterion. CBP experiments were run as long as 20
attempted new units did not result in a lower mean-squared-output error.

3.3 Information-Gain Tree

The information-gain tree (IG-tree) algorithm is a data-oriented, symbolic,
inductive decision-tree algorithm. It can be considered as a optimisation of
IBL (Instance-Based Learning; Aha, Kibler, and Albert, 1991). For a detailed
description of the 1G-tree algorithm, we refer to Daelemans, Van den Bosch,
and Weijters (1995). The idea is that the 1G-tree algorithm compresses a
set of classification-task instances into a decision-tree structure. Instead of
storing full instances as paths in the tree, the algorithm decides to reduce
the instances to precisely those input features that properly disambiguate
the instance from other instances within the training set. The algorithm is
then able to classify new instances by matching them to stored parts of the
reduced instances.

In our experiments, the standard 1G-tree algorithm was used (Daelemans
et al., 1995). Since IG tree is a symbolic learning algorithm, the 7-letter input
patterns were not encoded by binary values, but by the letters themselves.

4 Results

An experiment is a 10-fold cross-validation application of one of the three
learning algorithms to one of the four data sets. We computed for each
experiment (i) the classification performance on test instances, and (ii) the
average typicality of misclassified test instances. The results are graphically
displayed: the graphs represent the algorithms, the data points our four data
sets.

The left diagram of Figure 1 displays the percentages of misclassified
test instances. We report the following three observations. First, all three
algorithms show a decrease in their generalisation error when trained on
a larger data set. Second, BP outperforms the other two algorithms when
trained on all but the largest data set (D4). Third, when trained on the
massive number of about 676,000 instances, IG tree was found to perform
significantly better than both BP and CBP (using t-tests).

The right diagram of Figure 1 displays the average typicality of misclassi-
fied test instances. The higher the value, the less exceptions are misclassified,
relative to regular instances. For BP and CBP, the portion of misclassified
exceptions remained roughly constant over all data sets. For 1G tree, how-

120 ¢

o BP o BP
< CBP F < CBP
2 1G-Tree

+1G-Tree L6 £

test instances

% misclassified

108 |

" ;j>é6
100 E ‘ s
100

1000 10000 100000
training words # training words

average typicality
incorrect instances

C I I
100 1000 10000 100000

Figure 1: Percentages of misclassified test instances (left), and average typi-
cality of misclassified test instances (right) for BP, CBP, and IG tree, trained
on the four increasing data sets.

ever, the portion of misclassified exceptions increased with larger data sets
(we explicitly remark that the number of misclassified exceptions, of course,
decreases with larger data sets). Moreover, we see that IG tree makes rel-
atively less classification errors on exceptions as compared to BP and CBP,
regardless of any training-set size. The differences in average typicality of
misclassified instances between both IG tree and BP, and IG tree and CBP,
were found to be significant for all training-set sizes (using t-tests).

When considering the storage capacities, we note that CBP and IG tree
created larger models when trained on larger amounts of data. When trained
on D1, D2, D3, and D4,CBP developed the following networks (characterised
by their number of units with the number of connections between parenthe-
ses): 10 (3,005), 42 (13,293), 51 (16,371), and 70 (23,135), respectively; IG
tree created trees with on the average 966, 6,473, 34,991, and 64,182 nodes,
respectively.

We now focus on the difference between the two connectionist learning
algorithms, BP and ¢BP. When monitoring the errors made by the two
algorithms during training, some qualitative differences in the learning of
exceptions become visible. Figure 2 displays the distributions of typicalities

of misclassified training instances, for BP (left) and ¢BP (right). The data

displayed in Figure 2 were obtained from training both algorithms on the

first 10-fold cross-validation partitioning of D2.

Ve ,‘\\\\\\\
sl
N

0 50 100 150 200 250 300 350
incorrect
Instances

30100 150 200 250 300 350

incorrect
Instances

Figure 2: Typicality distributions, computed over intervals of 0.1, of mais-
classified instances during training of the BP (left) and CBP (right) networks
applied to the first partitioning of D2. The BP network was monitored during
30 cycles; the CBP network during the appending of 29 hidden units.

As can be seen from Figure 2, BP is a steady learner which gradually
decreases the number of misclassified training instances regardless of their
typicality. CBP, however, less gradually learns a considerable number of
slightly exceptional instances (seen in Figure 2, right, as the peak at typical-
ity 0.9), but is less successful in learning slightly typical instances (the less

pronounced peak at typicality 1.3).

5 Conclusions

We trained BP, CBP, and IG tree on data sets with many exceptions
found that the three algorithms increased their generalisation performance
when training-set size was increased. BP performed better than the other
algorithms when trained on the smaller data sets. IG tree outperformed BP
and CBP only when trained on the largest data set, D4. Moreover, IG tree
made significantly less misclassifications on exceptions than BP and CBP, for

We

all training-set sizes. Hence, applying IG tree leads to a better performance
than applying any of the connectionist algorithms, under the assumption
that the amount of training instances is large enough.

From these results we conclude that for the hyphenation task, the size of
the training set determines the most profitable learning algorithm. For any
given real-world task with a large periphery, there might be a training-set
size below which the method of BP and CBP is more profitable, and above
which the method of 1G tree is more profitable.

Acknowledgements

We gratefully recognise Eric Postma for the valuable discussions and technical
assistance, and thank Fred Wan for his help with the significance tests.

References

Aha, D., Kibler, D., and Albert, M. (1991). Instance-based learning algorithms.
Machine Learning, 7, pp. 37-66.

Daelemans, W., and Van den Bosch, A. (1992). A neural network for hyphen-
ation. In I. Aleksander and J. Taylor (Eds.), Artificial Neural Networks 2,
volume 2, pp 1647-1650. Amsterdam: North-Holland.

Daelemans, W., Van den Bosch, A., and Weijters, T. (1995). 1G-tree: A variant
of 1BL. submitted.

Fahlman, S. E. and Lebiere, C. (1990). The Cascade-correlation Learning Ar-
chitecture. Technical Report CMU-CS-90-100, School of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA.

Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986). Learning internal
representations by error propagation. In D. E. Rumelhart and J. L. Mec-
Clelland (Eds.), Parallel Distributed Processing, volume 1: Foundations, pp.
318-362. Cambridge, MA: The MIT Press.

Sejnowski, T.J., and Rosenberg, C.S. (1987). Parallel networks that learn to
pronounce English text. Complex Systems, 1, pp. 145-168.

Treiman, R., and Zukowski, A. (1990). Toward an understanding of English
syllabification. Journal of Memory and Language, 29, pp. 66-85.

Van den Bosch, A., Weijters, A., and Van den Herik, H.J. (1995). Scaling effects

with greedy and lazy machine-learning algorithms. In Proceedings of the
Dutch AI Conference, NAIC-95, forthcoming.

Zhang, J. (1992). Selecting typical instances in instance-based learning. In Pro-

ceedings of the International Machine Learning Conference 1992, pp. 470-
479.

