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1 Empirical Learning of Natural Language

Browsing through the Machine Learning literature, we find that language learning is not a hot
topic in machine learning, and that most work in the area addresses either the computational
modeling of child language acquisition or the extraction of domain knowledge from text.
The algorithms used are also predominantly analytic (symbol-level learning) rather than
empirical (knowledge-level learning). While these are obviously interesting research areas and
approaches, the absence of more research on the empirical learning of language knowledge and
behaviour from text and speech data strikes me as strange. After all, the main problem of
the AI discipline of Natural Language Processing (NLP) is a knowledge acquisition bottleneck:
for each new language, domain, theoretical framework, and application, linguistic knowledge
bases (lexicons, rule sets, grammars) have to be built basically from scratch. This problem is
not surprising, given the complexity of NLP, and the difficulty of finding ’hard and fast’ rules
governing language processing.

There are at least three reasons why Machine Learning researchers should become more
interested in NLP as an application area.

e Availability of Large Datasets. NLP problems provide realistically sized training
sets for inductive algorithms. Datasets of tens or hundreds of thousands of instances
are readily available. Traditional “benchmark datasets” usually contain far less in-
stances. Experimenting with linguistic datasets will provide a more realistic evaluation
of the practical usefulness of algorithms, and will force algorithm designers to work on
performance issues.

e Real-World Application. “Hand-crafting” NLP knowledge bases has proven to be
infeasible or unaffordable for most practical applications. The market pull for appli-
cations in NLP (especially Text Analysis and Machine Translation) is enormous, but
has not been matched by current language technology due to the knowledge acquisition
bottleneck. ML techniques may help in realising the enormous market potential for
NLP applications.



e Complexity of Tasks. Data sets describing language problems at all levels of de-
scription (beneath, at, and above the word level) exhibit a complex interaction of regu-
larities, sub-regularities, pockets of exceptions, idiosyncratic exceptions, and noise. As
such, they are a perfect model for a large class of other poorly-understood real world
problems (e.g. medical diagnosis) for which it is less easy to find large amounts of data.
A better understanding of which algorithms work best for this class of problems will
transfer to many other problem classes.

In the remainder of the paper, I will describe an approach to empirical learning of language
knowledge which we have been investigating the last five years in Tilburg and Antwerp in
the context of the ATILA project. At this point I would like to acknowledge the contributions
of my current and former colleagues to this effort, especially those of Antal van den Bosch
(Tilburg, now Maastricht), Steven Gillis, Gert Durieux, and Peter Berck (Antwerp), and
Jakub Zavrel (Tilburg).

2 NLP as a Cascade of Classification Tasks

To solve NLP knowledge acquisition bottlenecks we need ML methods, but in order to achieve
any results, we must show that the important NLP tasks can indeed be formulated in a ML
framework.

Tasks in NLP are context-sensitive mappings between representations (e.g., from text to
speech, from spelling to parse tree, from parse tree to logical form, from source language
to target language, etc.). These mappings tend to be many-to-many and complex because
they can typically only be described by means of the conflicting regularities, sub-regularities,
and exceptions alluded to earlier. E.g., in a hyphenation programme for a word processor
(the simplest and most prosaic NLP problem imaginable), possible positions for hyphens
have to be found in a spelling representation; the task is to find a mapping from a spelling
representation to a syllable representation. In Dutch, even this simple task is not trivial
because the phonological regularities governing syllable structure are sometimes overruled by
more specific constraints from morphology (the morphological structure of the word and the
nature of its affixes). On top of that, there are constraints which are conventional or which
derive from the foreign origin of words. Linguistic engineering (handcrafting) of a rule set and
exception lists for this type of problem is time-consuming, costly, and does not necessarily
lead to accurate and robust systems.

Empirical Learning (inductive learning from examples) is fundamentally a classification
paradigm. Given a description in terms of feature-value pairs of an input, a category label
is produced. This category should normally be taken from a finite inventory of possibilities,
known beforehand. It is our claim that all useful linguistic tasks can be redefined this way and
can thus be taken on in a ML context. All linguistic problems can be described as mappings of
two kinds: disambiguation (or identification) and segmentation (identification of boundaries)
(see Daelemans, 1995).

e Disambiguation. Given a set of possible categories and a relevant context in terms
of attribute values, determine the correct category for this context. Instances of dis-
ambiguation include part of speech tagging (disambiguating the syntactic category of a
word), grapheme-to-phoneme conversion, lezical selection in generation, morphological
synthesis, word sense disambiguation, term translation, and stress assignment.



e Segmentation. Given a target and a context, determine whether a boundary is associ-
ated with this target, and if so which one. Examples include syllabification, hyphenation,
morphological analysis, and constituent boundary detection.

In such a perspective, complex NLP tasks like parsing can be defined as a cascade of
segmentation tasks (finding constituent boundaries) and disambiguation tasks (deciding the
morphosyntactic category of words, and the label of constituents, and resolving attachment
ambiguities).

An approach often used to arrive at the classification representation needed is the win-
dowing method (as used in Sejnowski & Rosenberg, 1986 for text to speech), in which an
imaginary window is moved one item at a time over an input string where one item in the
window (usually the middle item or the last item) acts as a target item, and the rest as the
context.

3 Generalization without Abstraction

Especially in Language Engineering applications (building commercially useful NLP applica-
tions), the main evaluation criteria for systems are (i) efficiency in terms of space and time
requirements, and (ii) accuracy in terms of behaviour of the system on previously unseen
input. In a learning framework, this criterion is defined in terms of generalization accuracy
—the percentage of correct outputs associated with inputs the system was not trained on— and
is usually estimated using cross-validation.

Many empirical learning methods (e.g. top down induction of decision trees, rule induc-
tion methods, and supervised connectionist learning algorithms) are eager learning methods.
They achieve generalization by means of abstraction. The original training data is abstracted
into a representational structure (condition-action rules, trees, weight matrices) that models
the regularities governing the input-output associations in the training data. However, ab-
straction is not a prerequisite for generalization. There is a class of lazy learning algorithms
that is based on the fundamental idea that a system can generalize what it has learned by
using its experiences directly, instead of using abstractions extracted from them. From the
research we did on inductive learning for NLP tasks, it becomes clear that this lazy learning
approach achieves better generalization accuracy than eager learning algorithms. A possible
explanation for this is the structure of NLP tasks discussed earlier: apart from a number of
clear generalizations, a lot of subregularities and exceptions exist in the data. Exceptions tend
to come in ‘families’. Tt is therefore advantageous to keep exceptions (some family members
may turn up during testing) rather than abstracting away from them: being there is better
than being probable.

In the remainder of this section I will shortly present the basics of the lazy learning
approach. Later sections will describe applications of this idea to NLP tasks.

Lazy Learning is a form of supervised, inductive learning from examples. Examples are
represented as a vector of feature values with an associated category label. During training,
a set of examples (the training set) is presented in an incremental fashion to the classifier,
and added to memory. During testing, a set of previously unseen feature-value patterns (the
test set) is presented to the system. For each test pattern, its distance to all examples in
memory is computed, and the category of the least distant instance(s) is used as the predicted
category for the test pattern.



In AI, the concept has appeared in several disciplines (from computer vision to robotics),
using terminology such as similarity-based, example-based, memory-based, exemplar-based,
case-based, analogical, nearest-neighbour, and instance-based (Stanfill and Waltz, 1986; Kolod-
ner, 1993; Aha et al. 1991; Salzberg, 1990). Ideas about this type of analogical reasoning can
be found also in non-mainstream linguistics and pyscholinguistics (Skousen, 1989; Derwing
& Skousen, 1989; Chandler, 1992; Scha, 1992). In computational linguistics (apart from inci-
dental computational work of the linguists referred to earlier), the general approach has only
recently gained some popularity: e.g., Cardie (1994, syntactic and semantic disambiguation);
Daelemans (1995, an overview of work in the early nineties on memory-based computational
phonology and morphology); Jones (1996, an overview of example-based machine translation
research); Federici and Pirrelli (1996).

3.1 Similarity Metric

Performance of a lazy learning system (accuracy on the test set) crucially depends on the
distance metric (or similarity metric) used. The most straightforward distance metric would
be the one in equation (1), where X and Y are the patterns to be compared, and §(z;,y;) is
the distance between the values of the i-th feature in a pattern with n features.

n
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Distance between two values is measured using equation (2), an overlap metric, for sym-
bolic features (we will have no numeric features in the tagging application).
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We will refer to this approach as IB1 (Aha et al., 1991). We extended the algorithm
described there in the following way: in case a pattern is associated with more than one
category in the training set (i.e. the pattern is ambiguous), the distribution of patterns over
the different categories is kept, and the most frequently occurring category is selected when
the ambiguous pattern is used to extrapolate from.

3.2 Feature Relevance Weighting

In this distance metric, all features describing an example are interpreted as being equally
important in solving the classification problem, but this is not necessarily the case. We there-
fore weigh each feature with its information gain; a number expressing the average amount of
reduction of training set information entropy when knowing the value of the feature (Daele-
mans & van den Bosch, 1992, Quinlan, 1993; Hunt et al. 1966) (Equation 3). We will call this
algorithm IB-IG. Many other methods to weigh the relative importance of features have been
designed, both in statistical pattern recognition and in machine learning (see Wettschereck
et al. 1996 for an overview).

The main idea of information gain weighting is to interpret the training set as an informa-
tion source capable of generating a number of messages (the different category labels) with a
certain probability. The information entropy of such an information source can be compared
in turn for each feature to the average information entropy of the information source when the
value of that feature is known. Database information entropy is equal to the number of bits



of information needed to know the category given a pattern. It is computed by equation (3),
where p; (the probability of category 7) is estimated by its relative frequency in the training
set.

H(D) = — Zpilong' (3)

For each feature, it is now computed what the information gain is of knowing its value.
To do this, we compute the average information entropy for this feature and subtract it from
the information entropy of the database. To compute the average information entropy for
a feature (equation 4), we take the average information entropy of the database restricted
to each possible value for the feature. The expression D[;—,| refers to those patterns in the
database that have value v for feature f, V is the set of possible values for feature f. Finally,
|D| is the number of patterns in a (sub)database.
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A well-known disadvantageous property of information gain is that it tends to favour
features with many values (Quinlan, 1993). This bias can be rectified (as suggested by
Quinlan) by normalizing the information gain of a feature by dividing it by the number of
bits required to determine the feature (which depends on its number of values).
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Information gain is then obtained by equation (6), and scaled to be used as a weight for
the feature during distance computation.
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Finally, the distance metric in equation (1) is modified to take into account the information
gain weight associated with each feature.

G(f) = H(D)
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We have experimented with additional metrics for both feature weighting (e.g. value
difference metrics which assign different differences between different pairs of values) and ez-
emplar weighting (e.g. metrics assigning different weights to exemplars in memory depending
on their success in classification, or based on some intrinsic property such as typicality of the
exemplar for its task).

It is important to emphasize that the metrics used in Lazy learning should be domain-
independent: they are not linguistically informed, and are applicable to domains as different as
medical diagnosis and robotics. This is crucial, because otherwise, the acquisition bottleneck
would move from the linguistic engineering of rules and knowledge bases to the tailoring of
linguistically motivated metrics.



3.3 Asymptotic Complexity

Lazy Learning is an expensive algorithm: of each test item, all feature values must be com-
pared to the corresponding feature values of all training items. Without optimisation, it
has an asymptotic retrieval complexity of O(NF') (where N is the number of items in mem-
ory, and F' the number of features). The same asymptotic complexity is of course found
for memory storage in this approach. Hardware solutions to the complexity problem have
been proposed: massively parallel computing (Stanfill & Waltz, 1986) or even wafer-scale
integration (Kitano, 1993). For numeric features kd-trees have been proposed (Friedman et
al., 1977) as a solution on single-processor machines. The advantages of this approach do
not generalize easily to symbolic features, however. We developed IGTrees (Daelemans et al.,
1996) to compress memory for symbolic features. IGTree is a heuristic approximation of the
IB-IG algorithm. The asymptotic complexity of IGTree (i.e, in the worst case) is extremely
favorable. Complexity of searching a query pattern in the tree is proportional to F x log(V),
where F' is the number of features (equal to the maximal depth of the tree), and V is the
average number of values per feature (i.e., the average branching factor in the tree). In IB1,
search complexity is O(N * F') (with N the number of stored cases). Retrieval by search in the
tree is independent from the number of training cases, and therefore especially useful for large
case bases. Storage requirements are proportional to N (compare O(N * F') for IB1). Finally,
the cost of building the tree on the basis of a set of cases is proportional to N xlog(V') * F' in
the worst case (compare O(N) for training in IB1).

4 Lazy Learning of Language Processing Problems

In our research, we have applied this approach to a number of linguistic engineering problems:
hyphenation (segment a word into syllables taking into account morphological structure),
grapheme-to-phoneme conversion (identify the pronunciation of words), stress assignment
(identify the stress pattern of words), morphology (both synthesis and analysis), and tagging
(identify for each word in a text its morpho-syntactic category). See Daelemans (1995) for a
discussion of the general approach, and van den Bosch & Daelemans, 1992, 1993; Daelemans
& van den Bosch, 1992ab, 1993, 1994; van den Bosch et al. 1996; Daelemans et al. 1994,
1995, 1996abc for the details.

There are some general trends which become clear when analysing the results of all these
experiments. First, the most striking result is that the accuracy of the induced systems is al-
ways comparable and often better than hand-crafted systems, at a fraction of the development
effort and time. This proves the point that ML techniques may help considerably in solving
knowledge acquisition bottlenecks in NLP. Second, when comparing different Lazy Learning
variants (notably IB1, IB-IG, and IGTree) to other more eager learning approaches (TDIDT,
Backprop learning), we find that IB-IG (the simplest Lazy Learning algorithm, extended with
information-entropy-based feature weighting and a probabilistic decision rule) always obtains
the best generalization accuracy. The picture is less clear for second place. Thirdly, in the
same comparsion, there is a tendency that the more eager the technique is, the less accurate
generalization becomes. More theoretical and empirical work is needed to explain and refine
these results.

We will briefly describe the tagging application as an example of the approach, and because
of its obvious practical applications (Daelemans et al. 1996¢ for details).



4.1 An Illustration: Part-of-Speech Tagging

The problem of POS tagging (morphosyntactic desambiguation) is the following: given a text,
provide for each word in the text its contextually disambiguated part of speech (morphosyn-
tactic category). I.e. transform a string of words into a string of tags. E.g., the sentence John
hit Pete . should be mapped to Noun Verb Noun Punc. The target category inventory
(tag set) may range from extremely simple (order 10) to extremely complex (order 1000).
Tagging is a hard task because of the massive ambiguity in natural language text (ambiguity
also depends of course on the tag-set used). E.g. in the example above, hit can be both a
noun and a verb, context determines that in this case it is a verb. The correct category of
a word depends on both its lexical probability Pr(cat|word), and its contextual probability
Pr(cat|context).

A good tagger is instrumental in a large number of language engineering applications
(ranging from text-to-speech over parsing to information retrieval). However, target tagset
and training corpus differ from one application to the next, and making a tagger by hand
is expensive and difficult. Therefore, robust, accurate taggers which can be automatically
learned from example corpora are a commercially interesting product.

There are rule-based systems (hand made or using rule-induction), and statistical systems
(using (hidden) markov modeling and dynamic programming). Although a thorough and
reliable comparison of these approaches has not yet been achieved, it seems to be the case
that all approaches converge to a 96-97% accuracy on new text from the same type as the
training material. This may seem pretty good, but when looking at accuracy on sentences,
this means only about 33% of sentences are correctly tagged completely.

The architecture of our lazy learning tagger takes the form of a tagger generator: given a
corpus tagged with the desired tag set, a POS tagger is generated which maps the words of
new text to tags in this tag set according to the same systematicity. The construction of a
POS tagger for a specific corpus is achieved in the following way. Given an annotated corpus,
three datastructures are automatically extracted: a lezicon (associating words to possible tags
as evidenced in the training corpus), a case base for known words (words occurring in the
lexicon), and a case base for unknown words. Case Bases are compressed using IGTree for
efficiency. During tagging, each word in the text to be tagged is looked up in the lexicon. If it
is found, its lexical representation is retrieved and its context is determined, and the resulting
pattern is disambiguated using extrapolation from nearest neighbours in the known words
case base. When a word is not found in the lexicon, its lexical representation is computed
on the basis of its form, its context is determined, and the resulting pattern is disambiguated
using extrapolation from nearest neighbours in the unknown words case base. In each case,
output is a best guess of the category for the word in its current context.

For known words, cases consist of information about a focus word to be tagged, its left
and right context, and an associated category (tag) valid for the focus word in that context.
For unknown words, a tag can be guessed only on the basis of the form or the context of the
word. In our lazy learning approach, we provide word form information (especially about
suffixes) indirectly to the tagger by encoding the three last letters of the word as separate
features in the case representation. The first letter is encoded as well because it contains
information about prefix and capitalization of the word. Context information is added to the
case representation in a similar way as with known words.

For evaluation, we performed the complete tagger generation process on a 2 million words
training set (lexicon construction and known and unknown words case-base construction), and



tested on 200,000 test words. Generalization performance on known words (96.7%), unknown
words (90.6%), and total (96.4%) is competitive with alternative hand-crafted and statistical
approaches, and both training and testing speed are excellent (text tagging is possible with a
speed of 200 words per second). In this case, the use of IGTrees as a heuristic approximation
to IB-IG did not result in a loss of generalization accuracy while at the same time accounting
for a spectacular decrease in memory and time consumption: 1GTree retrieval is 100 to 200
times faster than IB-IG retrieval, and uses over 95% less memory. Due to its heuristic nature,
however, accuracy is not guaranteed to be the same as IB-IG for any application.

5 Conclusions

We started with the observation that few of the inductive Machine Learning research projects
address the both conceptually and commercially attractive problems of Natural Language
Processing. This is a pity, because empirical learning methods have proven to be excellently
applicable to the classification problems to which most of NLP can be reduced. Taking on
NLP problems in ML, may lead to different perspectives in ML theory and practice, however.
Learning algorithms should be suited to learn from large amounts of data, and should be able
to cope with the complex interactions of regularities, subregularities and exceptions prevalent
in NLP tasks. Lazy Learning methods, when optimised for speed and storage requirements,
seem to be a good choice.

More specifically, the following claims were made in this paper (sometimes implicitly). T
list them here to facilitate discussion.

e The NLP knowledge acquisition bottlenecks can be solved with empirical ML. methods.

e All interesting and useful problems in NLP can be re-formulated as classification prob-
lems (or cascades of classification problems).

e A propositional language seems to be expressive enough to describe the necessary input
and output representations of NLP tasks.

e Lazy Learning works better than Eager Learning for NLP problems. Abstraction is
harmful. Being there is better than being probable.

e Domain bias in defining similarity metrics for Lazy Learning is both unneccessary and
unwanted.
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