Language-Independent
Data-Oriented
Grapheme-to-Phoneme Conversion

Walter Daelemans
Antal van den Bosch

ABSTRACT We describe an approach to grapheme-to-phoneme conver-
sion which is both language-independent and data-oriented. Given a set of
examples (spelling words with their associated phonetic representation) in a
language, a grapheme-to-phoneme conversion system is automatically pro-
duced for that language which takes as its input the spelling of words, and
produces as its output the phonetic transcription according to the rules
implicit in the training data. We describe the design of the system, and
compare its performance to knowledge-based and alternative data-oriented
approaches.

1 Introduction

Grapheme-to-phoneme conversion is an essential module in any text-to-
speech system. It can be described as a function mapping the spelling
form of words to a string of phonetic symbols representing the pronun-
ciation of the word. The largest part of research on this process focuses
on developing systems that implement various levels of language-specific
linguistic knowledge (especially morphological and phonotactic knowledge,
but often also syntactic knowledge). Tt is generally assumed that this is es-
sential to solving the task. MITalk (Allen et al., 1987) is a classic example
of such a knowledge-based approach for English; for Dutch, Morpa-cum-
Morphon (Heemskerk & van Heuven, 1993, Nunn & van Heuven, 1993)
can be considered state-of-the-art. A clearly disadvantageous consequence
of the knowledge-based strategy is the fact that it requires a large amount
of handcrafting of linguistic rules and data during development. Further-
more, language-specificity of a grapheme-to-phoneme model tends to be
incompatible with reusability of the developed implementation, i.e., for
each language, a specific set of rules and principles has to be found in order
to successfully run the model.

In this article we describe an implemented grapheme-to-phoneme con-

2 Walter Daelemans , Antal van den Bosch

Examples
Language L

|

ALIGNMENT

COMPRESSION

CLASSIFIER
CONSTRUCTION

l

Grapheme to Phoneme -
Spelling — | Conversion System —= Pronunciation
Language L

FIGURE 1. Overview of the architecture.

version architecture and explore to what extent i1t allows data-oriented
induction of a grapheme-to-phoneme mapping on the basis of examples,
thereby alleviating the expensive linguistic engineering phase. Input to our
system is a set of spelling words with their associated pronunciations in
a target phonemic or phonetic alphabet (the training data). Spelling and
pronunciation do not have to be aligned. The phonetic transcription can
be taken from machine-readable or scanned dictionaries, or from automatic
phoneme recognition. The words may represent text in context (when ef-
fects transgressing word boundaries have to be modeled) or isolated words.
Output of the system is a grapheme-to-phoneme conversion system which
takes as its input the spelling of words, and produces as its output the
phonetic or phonemic transcription according to the rules implicit in the
training data (see Figure 1 for an overview of the architecture).
The approach has a number of desirable properties:

1. It is data-oriented. The output system is constructed automatically
from the training data, thereby effectively removing some of the
knowledge acquisition bottlenecks. Knowledge-Based solutions to the
problem need considerable handcrafting of phonological and morpho-
logical data structures, analysis and synthesis programs.

2. Tt is in principle language-independent and reusable. Versions of the

Language-Independent Data-Oriented Grapheme-to-Phoneme Conversion 3

system for French, Dutch and English have been constructed auto-
matically using the same architecture on different sets of training
data. In linguistic approaches, the handcrafting has to be redone for
each new language. Languages with other writing systems may exist,
however, for which the approach is less well suited.

3. It achieves a high accuracy. Output of the Dutch version has been ex-
tensively compared to the results of a state-of-the-art ‘hand-crafted’
linguistic system. The data-oriented solution proved to be signifi-
cantly more accurate in predicting phonetic transcriptions of previ-
ously unseen words.

2 Design of the System

The system consists of the following modules:

1. Automatic alignment: strings of spelling symbols and strings of pho-
netic symbols have to be made of equal length in order to be processed
by the other modules.

2. Automatic training set compression: part of the training data is rep-
resented in a compact way using tree structures and information gain.

3. Automatic classifier construction: using the compacted training data,
a classifier is constructed that extrapolates from its memory struc-
tures to new, unseen input spelling strings.

We will discuss these stages in turn. Compression and classifier construc-
tion are achieved at the same time in our current implementation, and will
be discussed together.

2.1 Alignment

The spelling and the phonetic trancription of a word often differ in length.
The grapheme-to-phoneme conversion module described in the next section
demands, however, that the two representations be of equal length, so that
each individual graphemic symbol can be mapped to a single phonetic
symbol. The problem 1s to align the two representations in such a way
that graphemes or strings of graphemes are consistently associated with
the same phonetic symbols. This 1s not a trivial task: if this alignment has
to be done by hand, it is extremely labour-intensive. Consider the example
alignments of the words ‘rusty’” and ‘rookie’:

4 Walter Daelemans , Antal van den Bosch

graphemes ||t u s t y|r oo k ie
|
1

phonemes r A s t

Whereas the alignment of ‘rusty’ is very straightforward (i.e., five one-to-
one grapheme-to-phoneme mappings), the alignment of ‘rookie” involves the
knowledge that it the ‘0o’ cluster maps to the /u/-phoneme, and that the
‘ie’ cluster maps to the /i/-phoneme. No other partitioning of the spelling
string is allowed, or at least intuitively correct. Our automatic alignment
algorithm attempts to make the length of a word’s spelling string equal to
the length of its transcription by adding null phonemes to the transcrip-
tions. Nulls have to be inserted in the transcription at those points in the
word where a grapheme cluster maps to one phoneme. In the example of
the word ‘rookie’; this would be done as follows (“=* depict phonemic nulls):

graphemes ||t o o

phonemes rou -

Note that it is arbitrary whether one uses the /ru-ki-/ aligment or the
/r-uk-i/ aligment (i.e., whether one chooses to map the last or the first of
a grapheme cluster to a phonetic null), as long as it is done consistently.
Alignments such as /ruki - -/ or /- - ruki/ should never be generated,
because they imply highly improbable mappings. An alignment should al-
ways follow the principles (i) that its grapheme-to-phoneme mappings are
viable (i.e., that they can be motivated intuitively or linguistically); (ii)
that the combination of all mappings within the alignment has a maximal
probability; and (ii) that it is consistent with aligments of other, similar
words.

The first part of the algorithm automatically captures the probabilities of
all possible phoneme-grapheme mappings in an association matrix. For each
letter in the spelling string, the association with the phoneme that occurs at
the same position in the unaligned transcription is increased; furthermore,
if a spelling string is longer than its transcription, phonemes which precede
the letter position are also counted, as they may be associated with the
target letter as well. In other words, the algorithm determines for each letter
in the graphemic string, all phonemes in the transcription to which it may
map. Furthermore, these phonemes are weighted differently. As shown in
the diagram below, the algorithm shifts the unaligned phonemic word from
the left aligned position to the right aligned position. Taking the ‘k’ as an
example, the algorithm adds a score of 8 to the association between ‘k’ and
/1/, a score of 4 to the association between ‘k’ and /k/, and a score of 2 to

Language-Independent Data-Oriented Grapheme-to-Phoneme Conversion 5

the association between ‘k” and /u/. Note that shifting is repeated at most
3 times; at the third shift, which may occur with longer words, associations
are increased by a score of 1. Other values for these weights result in slightly
(but not significantly) worse results. The idea behind this weighting is
the simple assumption that left-aligned phonemic transcriptions generally
contain more correct grapheme-to-phoneme mappings than right-aligned
transcriptions.

graphemes r o o k 1 e[| association
1| score
phonemes r u k 1 _ _ 8
phonemes, 1 right shift _r u k 1 _ 4
phonemes, 2 right shifts || - - r u k 1 2

Although a lot of noise is added to the association matrix by including
associations that are less probable (e.g., in our example, the mapping be-
tween ‘k” and /i/), the use of this shifting association ‘window’ ensures that
the most probable associated phoneme is always captured in this window.
More importantly, it turns out that the ‘intuitive’ or ‘linguistically appro-
priate’ mappings receive the highest scores in the end. When all words of
the data base are processed this way, the association scores in the associa-
tion matrix are converted into association probabilities.

The second part of the alignment algorithm generates for each pair of
unaligned spelling and phoneme strings all possible (combinations of) inser-
tions of null phonemes in the transcription. For each hypothesised string,
a total association probability is computed by multiplying the scores of
all individual letter-phoneme association probabilities of each hypothesised
alignment. The hypothesis with the highest total association probability is
then taken as output of the algorithm.

The resulting alignment, albeit very consistent, 1s not always identical
to the intuitive alignment applied by human coders. To test its efficacy, we
compared classification accuracy of the complete system when using a hand-
aligned training set as opposed to the automatically aligned training set.
The results indicate that there is no significant difference in classification
accuracy: the alignments result in equally accurate systems. The resulting
IG-Tree (see following section) is on average about 3% larger with the
automatically generated alignment, however.

2.2 IG-Trees: Compression and Classifier Construction
Rules and Patterns

The way grapheme-to-phoneme conversion works in our system can be seen
as optimised, generalised lexical lookup. Reasoning is based on analogy in

6 Walter Daelemans , Antal van den Bosch

the overall correspondence of the writing system and the pronunciation of a
certain language. Words that are spelled similarly, are pronounced similarly.
The system automatically learns to find those parts of words on which sim-
ilarity matching can safely be performed. This is perhaps best illustrated in
the example of the word <behave>. An ‘analogical’ model which operates
with a certain similarity metric, and which has already encountered (and
learned) roughly similar words such as <shave>, <beehive>, and <have>,
and perhaps even <behave> itself, will certainly have a number of clues
as to how <behave> is pronounced. However, in this example, problems
may arise with the <a> of <behave>. If the similarity matcher of the ana-
logical model decides to retrieve the pronunciation of the word <have> as
the pronunciation of <-have> in <behave>, the incorrect pronunciation
/biheev/ would result. Our system does not take such overgeneralisation
risks. The model is extremely sensitive to context, in the sense that it will
have stored the knowledge that <have> is not enough context to be cer-
tain of the pronunciation of the <a>. Instead, the system will look for
more contextual information. In a current implementation of the system
trained on English words, the system decides to take /ej/ as output only
when it finds the sub-word chunk <ehave> in the input word. Note that
this system has encountered the word <behave> during training, but that
for the case of the pronunciation of the <a>>, it was not necessary to store
the complete word, as there were no other words with the sub-word chunk
<ehave> with a different pronunciation of the <a>. In sum, the system
stores single letter — phoneme correspondences with a minimal context that
is sufficient to be certain that the mapping is unambiguous (in the training
material).

Each of these sub-word — phoneme correspondences can be seen as a
context-sensitive rewrite rule, which rewrites a letter in context to a phoneme.
As the context may be of any width, many of these rewrite rules are much
more specific than a typical rule in a rule-based grapheme-to-phoneme
module would be; many even contain whole words. Although one would
be tempted to categorise such an approach as rule-based, it could equally
well be regarded as a lexical approach. Some of the rules are so specific
that it would make more sense to call them lexical patterns. The rules are
a compressed version of the text-to-speech corpus it is trained on. After
training, they contain in a compressed format complete knowledge of the
pronunciation of all words of the learning material (lossless compression),
except for homographs such as <read> (pronounced as /red/ or /rid/),
of which only one pronunciation is stored. This is certainly a shortcom-
ing for languages such as Russian, where pronunciation depends on stress
placement, which in its turn depends on lexical properties which cannot
be deduced from the form of the word (which is the only information the
current implementation of our system uses). We will return to this problem
in our conclusion. See Yarowsky (this volume) for an approach to homo-
graph disambiguation using decision lists, which could be integrated with

Language-Independent Data-Oriented Grapheme-to-Phoneme Conversion 7

our approach.

To illustrate the appearance of automatically extracted rules, Table 1
lists some examples that the model extracted from English data and French
data.

Table 1: Examples of automatically extracted sub-word — phoneme cor-
respondences, with their associated phonemes, from English and French
data. Example words containing the rules are given. Dots represent unused
context positions; underscores represent word boundaries.

English Phoneme || Example Word
v || o v voucher
els|fi]ld]le|n]|.]. o president
willoll - - -1 -]- u two
_{h{alfv|el|-|. |- ® have
French Phoneme || Example Word
¢ |l . S frangais
_|l-|bjelalu]|x o beaux
vififin|l -] .|] E vin
nilcl|o k francophone

From Table 1, it can clearly be seen that some correspondences express
very general pronunciation knowledge, whereas others are used to disam-
biguate between only a few words, e.g., <esiden> — /o / discriminates
<president> from <reside>. There is no clear distinction between rules
and lexical patterns, they are regarded as extremes in a continuum.

Compressing knowledge into an IG-Tree

The system does not actually store a large list of context-sensitive rewrite
rules and lexical patterns. It compresses the information contained in these
rules even more by storing them in a decision tree. Each rule is represented
as a path in this tree. A path consists of a starting node which represents
the target letter that is to be mapped to a phoneme; the consecutive nodes
represent the consecutive context letters. The order in which these letters
are attached to the path is governed by computing their overall relative
importance in disambiguating the mapping. This is done using Informa-
tion Gain, a computational metric based on Information Theory (hence
the name IG-Tree). A description of this metric is given in Daelemans et
al. (1994). Computation of the Information Gain of context positions ren-
ders a result that is constant for all corpora used. Trivially, the focus letter
itself is the most important ‘context’ letter. The further the context posi-
tion is removed from the focus letter, the less important that position is

8 Walter Daelemans , Antal van den Bosch

FIGURE 2. Retrieval of the pronunciation of < a >, /ej/, of the word < behave >.
The path represents the minimally disambiguating context < ehave >.

for disambiguation, on the average. Furthermore, there is an as yet unex-
plained difference between right and left context: right context positions are
computed to be slightly more important than their respective left context
positions. In practice, this leads to an ordering in which the first character
on the right is the first context expansion, i.e., the first node down the tree.
Then follows the first character on the left, then the second character on
the right, then the second character on the left, and this alternating pat-
tern simply repeats. To visualise the way in which knowledge is organised
in the decision tree, Figure 2 displays the part of the tree in which the
pronunciation of the <a> in the word <behave> is stored.

With the <a>-node as starting point, the node labelled with the first
character on the right, <v>>, is the second node accessed in the path. Then,
the <h>-node, the first character to the left of the <a>, is taken. At
that point, the only possible extensions stored in the tree are <have>,
<havi> (from <having>) and <havo> (from <havoc>); the pronunciation
at that point is still ambiguous. Then, the <e>-node is accessed, which
leaves open the extensions <_have> (underscores depict word boundaries),
<ehave>, and <shave>. As mentioned earlier, at the next step, the model,
retrieves the unambiguous phonemic mapping /ej/, when the final <e>
node is reached.

Language-Independent Data-Oriented Grapheme-to-Phoneme Conversion 9

It can be seen that the depth of a path reflects in a certain sense the
ambiguity of the mapping it represents. End nodes near the top of the de-
cision tree typically belong to highly regular pronunciations. For example,
the French model contains at the top layer of the tree the end node <¢>,
as this special character always maps to /s/, regardless of the context. An
example of an extremely ambiguous mapping is that of the first <o> of
<photograph>, /o/, which has the competitor word <photography>, in
which the <o> maps to /o/. In this case, a context to the right of width 8
is needed for disambiguation.

Best Guess Strategy

In our approach, all spelling-to-phonology knowledge contained within the
learning material 1s stored lossless, with the exception of homographs, of
which only one pronunciation is kept. The rule-based aspect of the decision
tree, however, enables the model also to generalise to new cases. To retrieve
the pronunciation of a word that was not in the learning material, each
letter of the new word is taken as a starting point of tree search. The search
then traverses the tree, up to the point where the search successfully meets
an end node, or where the search fails as the specific context of the new
word was not encountered in the learning material, and consequently was
not stored as a path in the tree. In the first case, the phonemic label of
the end node is simply taken as the phonemic mapping of the new word’s
letter. In the second case, the exact matching strategy is taken over by a
best quess strategy.

In present implementations of the system, the best guess strategy is im-
plemented in a straightforward way. When building a path in the tree, the
construction algorithm constantly has to check whether an unambiguous
phonemic mapping has been reached. At each node, the algorithm searches
in the learning material for all phonemic mappings of the path at that point
of extension. In cases when there 1s more than one possible phonemic map-
ping, the algorithm computes what is the most probable mapping at that
point. Computation is based on occurrences: the most frequent mapping in
the learning material is preferred (in case of ties, a random choice is made).
This extra information is stored with each non-ending node. When a search
fails, the system returns the most probable phonemic mapping stored in
the node at which the search fails.

3 Related Approaches

The information gain metric used to select context features while building
the IG-Tree is used in a similar way in C4.5 decision tree learning (Quinlan,
1993). The main difference with C4.5’s approach to decision tree learning is
the fact that our model computes the ordering only once for the complete

10 Walter Daelemans , Antal van den Bosch

tree, whereas in C4.5 the ordering is computed at every node. Another
difference is that in the IG-tree, nodes are created until all training set
ambiguity is resolved (there is no pruning of the tree).

In earlier versions of this system (Daelemans & van den Bosch, 1993, Van
den Bosch & Daelemans, 1993), a different approach was taken to handle
strings which were not found in the IG-Tree. A similar effect to defaults at
leaf nodes was achieved by combining the compression and IG-Tree building
with a form of similarity-based reasoning (based on the k-nearest neigh-
bour decision rule, see e.g. Devijver & Kittler, 1982). During training, a
memory base is incrementally built consisting of ezemplars. In our domain
of grapheme-to-phoneme conversion, an exemplar consists of a string of
graphemes (one focus grapheme surrounded by context graphemes) with
one or more associated phonemes and their distributions (as there may ex-
ist more phonemic mappings for one graphemic string). During testing, a
test pattern (a graphemic string) is matched against all stored exemplars.
If the test pattern is in memory, the category with the highest frequency
associated with 1t is used as output. If it is not in memory, all stored exem-
plars are sorted according to the similarity of their graphemic string pattern
to the test pattern. The (most frequent) phonemic mapping of the high-
est ranking exemplar is then predicted as the category of the test pattern.
Daelemans & Van den Bosch (1992) extended the basic nearest-neighbour
algorithm by introducing Information Gain as a means to assigning differ-
ent weights to different grapheme positions when computing the similarity
between training and test patterns (instead of using a distance metric based
on overlap of patterns).

In the combination of IG-Tree and the Information Gain-aided near-
est neighbour algorithm, the IG-Tree classification algorithm stops when a
graphemic string is not found in the tree. Instead of using the information
on the most probable phoneme at the non-ending leaf node, the nearest-
neighbour algorithm takes over and searches in its exemplar base for the
best matching exemplar to the graphemic pattern under consideration. The
phoneme associated with the best matching exemplar is then taken as ‘best
guess’.

We experimented both with the nearest neighbour approach indepen-
dent from the IG-Tree algorithm, and with the combination of the two.
We found that the current approach (select most probable category at am-
biguous leaf nodes), being computationally simpler and conceptually more
elegant, achieves the same generalisation accuracy. We therefore adopted
this simpler approach. The current approach is also as accurate as using
the nearest neighbour technique independently.

FEarlier work on the application of nearest neighbour approaches (Memory-
Based Reasoning, Stanfill & Waltz, 1986; Stanfill, 1987) to the phone-
misation problem using the NetTalk data (MBRTalk), showed a better
performance than NetTalk (Sejnowski & Rosenberg, 1987) itself, however
at the cost of an expensive, domain-dependent computational measure of

Language-Independent Data-Oriented Grapheme-to-Phoneme Conversion 11

dissimilarity that seems to be computationally feasible only when work-
ing on a massive parallel computer like the Connection Machine. Another
analogy-based system (or rather a hybrid combination of case-based rea-
soning and relaxation in a localist interactive activation network) is PRO
(Lehnert, 1987). However, the reported performance of this system is not
very convincing, neither is the need for a combination of connectionist and
case-based techniques apparent. Dietterich and Bakiri (1991) systemati-
cally compared the performance of ID3 (a predecessor of C4.5, Quinlan
1993) and BP on the NetTalk data. Their conclusion is that BP consis-
tently outperforms ID3 because the former captures statistical information
that the latter does not. However, they demonstrate that ID3 can be ex-
tended to capture this statistical information. Dietterich and Bakiri suggest
that there is still substantial room for improvement in learning methods
for text-to-speech mapping, and it is indeed the case that our approach
significantly outperforms BP.

The application of compression techniques such as our IG-Tree to the
phonemisation problem has not yet been reported on as such in the lit-
erature. In Golding & Rosenbloom (1991), the interaction of rule-based
reasoning and case-based reasoning in the task of pronouncing surnames
is studied. It is claimed that a hybrid approach is preferable, in which the
output of the rules is used unless a compelling analogy exists in the case-
base. If a compelling analogy is found, it overrides the rule output. In this
approach, the (hand-crafted) rules are interpreted as implementing the de-
faults, and the cases the pockets of exceptions. Our IG-Tree method works
along a different dimension: both default mappings (rules) and pockets of
exceptions are represented in the IG-Tree in a uniform way.

4 Evaluation

In this section, we compare the accuracy of our approach to the knowledge-
based approach and to alternative data-oriented approaches for Dutch
grapheme-to-phoneme conversion. More detailed information about the
comparison can be found in and Van den Bosch & Daelemans (1993).

4.1 Connectionism

In our approach, explicit use is made of analogical reasoning. Back-propagation
learning in feedforward connectionist networks (BP), too, uses similarity

(or analogy), but more implicitly. An input pattern activates an output
pattern which is similar to the activation pattern of those items that are
similar to the new item. Complexity 1s added by the fact that an inter-
mediate hidden layer of units “redefines” similarity by extracting features
from the activation patterns of the input layer.

Automatic learning of grapheme-to-phoneme conversion of English (NETtalk,

12 Walter Daelemans , Antal van den Bosch

Sejnowski & Rosenberg, 1987) has been acclaimed as a success story for
BP. The approach was replicated for Dutch in NetSpraak (Weijters & Hop-
penbrouwers, 1990). Tt is therefore appropriate to compare our alternative
data-oriented approach to BP.

The performance scores on randomly selected, unseen test words (gen-
eralisation accuracy) show a best score for the IG-Tree approach. Similar
results were obtained for different training and test sets.

Model Generalisation Accuracy on Phonemes
BP 91.3
IG-Tree 95.1

4.2 The Linguistic Knowledge-Based Approach

The traditional linguistic knowledge-based approach of grapheme-to-phoneme
conversion has produced various examples of combined rule-based and
lexicon-based models. The developers of all of these models shared the
assumption that the presence of linguistic (phonotactic, morphological)
knowledge is essential for a grapheme-to-phoneme model to perform at
a reasonably high level.

In Morpa-cum-Morphon (Heemskerk & van Heuven, 1993, Nunn & van
Heuven, 1993), a state-of-the-art system for Dutch, grapheme-to-phoneme
conversion 1s done in two steps. First, Morpa decomposes a word into a
list of morphemes. These morphemes are looked up in a lexicon. Each mor-
pheme is associated with its category and a phonemic transcription. The
phonemic transcriptions of the consecutive morphemes are concatenated
to form an underlying phonemic representation of the word. Morphon then
applies a number of phonological rules to this underlying representation,
deriving the surface pronunciation of the word. The system is the result of a
five-year research effort, sponsored by the Dutch government and industry,
and 1s generally acclaimed to be the best system available.

We applied the 1G-Tree method to the same test data as they used to
evaluate their system, in order to make a comparison possible. Again, we
see that the IG-Tree scores significantly higher!.

Model Generalisation Accuracy
on Words

IG-Tree 89.5

morpa- 85.3

cum-morphon

!Note that meanwhile, the performance of Morpa-cum-Morphon on the bench-
mark was boosted to 88.7% by incorporating a data-oriented probabilistic mor-
phological analysis component (Heemskerk, 1993).

Language-Independent Data-Oriented Grapheme-to-Phoneme Conversion 13

5 Conclusion

The most surprising result of our research is that an extremely simple
method (based on compressing a training set) yields the best accuracy re-
sults (judged by measuring generalisation accuracy), suggesting that previ-
ous knowledge-based approaches as well as more computationally expensive
learning approaches to at least some aspects of the problem were overkill.

The system described constructs a grapheme-to-phoneme conversion mod-
ule on the basis of an unaligned corpus of spelling words and their pho-
netic representations. The approach is data-oriented (eliminates linguistic
engineering), language-independent (reusable for different dialects or lan-
guages), and accurate (when compared to knowledge-based and alternative
data-oriented methods).

Current limitations are the absence of word stress computation (but
see Daelemans et al. 1994 for a compatible data-oriented approach to this
problem) and sentence accent computation (for which syntactic, seman-
tic/pragmatic and discourse information is required). The present word
pronunciation modules output by our system can be combined with exist-
ing approaches to this problem, however. This raises the problem of mod-
ularity in the design of data-oriented (learning) approaches to grapheme-to-
phoneme conversion. Should stress assignment be integrated with grapheme-
to-phoneme conversion or should two separate systems be trained to learn
these two aspects of the problem, one using as input the output of the
other? This is a subject for further research.

Finally, as we mentioned earlier, our approach fails miserably in all cases
where different pronunciations correspond to the same spelling string (as
soon as two pronunciations differ in their spelling, if only in a single letter,
there is no problem, but in that case, useful generalisations may be missed).
For languages such as Russian this is clearly an important shortcoming.
However, our approach is not limited to using only spelling information.
Additional features (e.g. lexical category) can be added to the spelling
features as input, and these would then be used in the construction of the
IG-tree without any change to the present system. In that case, the added
features would be used in generalisation as well.

Acknowledgments: We thank the two anonymous referees for useful com-
ments on an earlier version of this article.

6 References

[AHK87] J. Allen, S. Hunnicut, and D. H. Klatt. From Text to Speech:
The MITalk System. Cambridge University press, Cambridge,
U.K., 1987.

14 Walter Daelemans , Antal van den Bosch

[BD93]

[DBY2]

[DB93]

[DGDY4]

[DK82]

[DBY1]

[GRO1]

A. van den Bosch & W. Daelemans, Data-oriented methods
for grapheme-to-phoneme conversion. Proceedings of the Sizth
conference of the European chapter of the ACL, ACL, 45-53,
1993.

W. Daelemans & A. van den Bosch. Generalization perfor-
mance of backpropagation learning on a syllabification task.
In M. Drossaers & A. Nijholt (Eds.), Proceedings of the 3rd
Twente Workshop on Language Technology. Enschede: Univer-
siteit Twente, 27-37, 1992.

W. Daelemans & A. van den Bosch. TABTALK: Reusability in
Data-oriented grapheme-to-phoneme conversion. Proceedings of
Furospeech, Berlin, 1459-1466, 1993.

W. Daelemans, S. Gillis, & G. Durieux. The Acquisition of
Stress, a data-oriented approach. Computational Linguistics 20

(3), 421-451, 1994.

P.A. Devijver, & J. Kittler. Pattern recognition. A statistical
approach. London: Prentice-Hall, 1982

T. G. Dietterich & G. Bakiri. Error-correcting output codes: a
general method for improving multiclass inductive learning pro-

grams. Proceedings AAAI-91, Menlo Park, CA, 572-577, 1991.

A. R. Golding & P. S. Rosenbloom. Improving rule-based sys-
tems through Case-Based Reasoning. Proceedings AAAI-91,
Menlo Park, CA, 22-27, 1991.

J. Heemskerk & V. J. van Heuven. MORPA, a lexicon-based
MORphological PArser. In V.J. van Heuven and L.C.W. Pols
(Eds.), Analysis and synthesis of speech; strategic research to-
wards high-quality text-to-speech generation. Berlin: Mouton de

Gruyter, 1993.

J. Heemskerk. A probabilistic context-free grammar for disam-
biguation in morphological parsing. In Proceedings FACL-93,
Utrecht, 1993.

W. Lehnert. Case-based problem solving with a large knowledge
base of learned cases. In Proceedings AAAI-87, Seattle, WA,
1987.

A. Nunn & V. J. van Heuven. MORPHON, lexicon-based
text-to-phoneme conversion and phonological rules. In V.J.
van Heuven and L.C.W. Pols (Eds.), Analysis and synthesis
of speech; strategic research towards high-quality text-to-speech
generation. Berlin: Mouton de Gruyter, 1993.

Language-Independent Data-Oriented Grapheme-to-Phoneme Conversion 15

[Qui93]

[SR87]

[SWS6]

[Stas7]

[WHO0]

J.R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

T. J. Sejnowski and C. R. Rosenberg. Parallel networks that
learn to pronounce English text. Complex Systems, 1, 145-168,
1987.

C. W. Stanfill and D. Waltz. Toward memory-based reasoning.
Communications of the ACM, 29:12, 1213-1228, 1986.

C. W. Stanfill. Memory-based reasoning applied to English pro-
nunciation. Proceedings AAAI-87, Seattle, WA, 577-581, 1987.

A. Weijters & G. Hoppenbrouwers. NetSpraak: een neuraal
netwerk voor grafeem-foneem-omzetting. Tabu, 20:1, 1-25, 1990.

