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Abstract

We describe a case study in the application of symbolic machine learning techniques for
the discovery of linguistic rules and categories. A supervised rule induction algorithm is
used to learn to predict the correct diminutive suffix given the phonological representation
of Dutch nouns. The system produces rules which are comparable to rules proposed by
linguists. Furthermore, in the process of learning this morphological task, the phonemes used
are grouped into phonologically relevant categories. We discuss the relevance of our method
for linguistics and language technology.

1 Introduction

This paper shows how machine learning techniques can be used to induce linguistically relevant
rules and categories from data. Statistical, connectionist, and machine learning induction (data-
oriented approaches) are currently used mainly in language engineering applications in order to
alleviate the linguistic knowledge acquisition bottleneck (the fact that lexical and grammatical
knowledge usually has to be reformulated from scratch whenever a new application has to be
built or an existing application ported to a new domain), and to solve problems with robustness
and coverage inherent in knowledge-based (theory-oriented, hand-crafting) approaches. Linguistic
relevance or inspectability of the induced knowledge is usually not an issue in this type of research.
In linguistics, on the other hand, it is usually agreed that while computer modeling is a useful
(or essential) tool for enforcing internal consistency, completeness, and empirical validity of the
linguistic theory being modeled, its role in formulating or evaluating linguistic theories is minimal.

In this paper, we argue that machine learning techniques can also assist in linguistic theory
formation by providing a new tool for the evaluation of linguistic hypotheses, for the extraction of
rules from corpora, and for the discovery of useful linguistic categories. As a case study, we apply
Quinlan’s C4.5 inductive machine learning method (Quinlan, 1993) to a particular linguistic task
(diminutive formation in Dutch) and show that it can be used (i) to test linguistic hypotheses
about this process, (ii) to discover interesting morphological rules, and (iii) discover interesting
phonological categories. Nothing hinges on our choice of C4.5 as a rule induction mechanism. We
chose it because it is an easily available and sophisticated instance of the class of rule induction
algorithms.

A second focus of this paper is the interaction between supervised and unsupervised machine
learning methods in linguistic discovery. In supervised learning, the learner is presented a set of
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examples (the experience of the system). These examples consist of an input—output association
(in our case, e.g., a representation of a noun as input, and the corresponding diminutive suffix as
output). Unsupervised learning methods do not provide the learner with information about the
output to be generated; only the inputs are presented to the learner as experience, not the target
outputs.

Unsupervised learning is necessarily more limited than supervised learning; the only informa-
tion it has to construct categories is the similarity between inputs. Unsupervised learning has
been successfully applied e.g. for the discovery of syntactic categories from corpora on the basis of
distributional information about words (Finch and Chater 1992, Hughes 1994, Schiitze 1995). We
will show that it is possible and useful to make use of unsupervised learning relative to a particular
task which is being learned in a supervised way. In our experiment, phonological categories are
discovered in an unsupervised way, as a side-effect of the supervised learning of a morphological
problem. We will also show that this raises interesting questions about the task-dependence of
linguistic category systems.

2 Supervised Rule Induction with C4.5

For the experiments, we used C4.5 (Quinlan, 1993). Although several decision tree and rule
induction variants have been proposed, we chose this program because it is widely available and
reasonably well tested. C4.5 is a TDIDT (Top Down Induction of Decision Trees) decision tree
learning algorithm which constructs a decision tree on the basis of a set of examples (the training
set). This decision tree has tests (feature names) as nodes, and feature values as branches between
nodes. The leaf nodes are labeled with a category name and constitute the output of the system.
A decision tree constructed on the basis of examples is used after training to assign a class to
patterns. To test whether the tree has actually learned the problem, and has not just memorized
the items it was trained on, the generalization accuracy is measured by testing the learned tree
on a part of the dataset not used in training.

The algorithm for the construction of a C4.5 decision tree can be easily stated. Given are a
training set T' (a collection of examples), and a finite number of classes C; ... C,,.

1. If T contains one or more cases all belonging to the same class C;, then the decision tree for
T is a leaf node with category Cj;.

2. If T is empty, a category has to be found on the basis of other information (e.g. domain
knowledge). The heuristic used here is that the most frequent class in the initial training
set is used.

3. If T contains different classes then

(a) Choose a test (feature) with a finite number of outcomes (values), and partition T" into
subsets of examples that have the same outcome for the test chosen. The decision tree
consists of a root node containing the test, and a branch for each outcome, each branch
leading to a subset of the original set.

(b) Apply the procedure recursively to subsets created this way.

In this algorithm, it is not specified which test to choose to split a node into subtrees at some
point. Taking one at random will usually result in large decision trees with poor generalization
performance, as uninformative tests may be chosen. Considering all possible trees consistent with
the data is computationally intractable, so a reliable heuristic test selection method has to be
found. The method used in C4.5 is based on the concept of mutual information (or information
gain). Whenever a test has to be selected, the feature is chosen with the highest information gain.
This is the feature that reduces the information entropy of the training (sub)set on average most,
when its value would be known. For the computation of information gain, see Quinlan (1993).

Decision trees can be easily and automatically transformed into sets of if-then rules (production
rules), which are in general easier to understand by domain experts (linguists in our case). In C4.5



this tree-to-rule transformation involves additional statistical evaluation resulting sometimes in a
rule set more understandable and accurate than the corresponding decision tree.

The C4.5 algorithm also contains a wvalue grouping method which, on the basis of statistical
information, collapses different values for a feature into the same category. That way, more concise
decision trees and rules can be produced (instead of several different branches or rule conditions
for each value, only one branch or condition has to be defined, making reference to a class of
values). The algorithm works as a heuristic search of the search space of all possible partitionings
of the values of a particular feature into sets, with the formation of homogeneous nodes (nodes
representing examples with predominantly the same category) as a heuristic guide. See Quinlan
(1993) for more information.

3 Diminutive Formation in Dutch

In the remainder of this paper, we will describe a case study of using C4.5 to test linguistic
hypotheses and to discover regularities and categories. The case study concerns allomorphy in
Dutch diminutive formation, “one of the more vexed problems of Dutch phonology (...) [and]
one of the most spectacular phenomena of modern Dutch morphophonemics” (Trommelen 1983).
Diminutive formation is a productive morphological rule in Dutch. Diminutives are formed by
attaching a form of the Germanic suffix -#je to the singular base form of a noun. The suffix shows
allomorphic variation (Table 1).

Noun Form Suffix
huis (house) huisje -je
man (man) mannetje | -etje
raam (window) | raampje | -pje
woning (house) | woninkje | -kje
baan (job) baantje -tje

Table 1: Allomorphic variation in Dutch diminutives.

The frequency distribution of the different categories is given in Table 2. We distinguish
between database frequency (frequency of a suffix in a list of 3900 diminutive forms of nouns we
took from the CELEX lexical database!) and corpus frequency (frequency of a suffix in the text
corpus on which the word list was based).

Suffix | Frequency | Database % | Corpus %
tje 1897 48.7% 50.9%
je 1462 37.5% 30.4%
etje 357 9.7% 10.9%
pje 104 2.7% 4.0%
kje 7 2.0% 3.8%

Table 2: Lexicon and corpus frequency of allomorphs.

Historically, different analyses of diminutive formation have taken a different view of the rules
that govern the choice of the diminutive suffix, and of the linguistic concepts playing a role in these
rules (see e.g. Te Winkel 1866, Kruizinga 1915, Cohen 1958, and references in Trommelen 1983). In
the latter, it is argued that diminutive formation is a local process, in which concepts such as word
stress and morphological structure (proposed in the earlier analyses) do not play a role. The rhyme
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of the last syllable of the noun is necessary and sufficient to predict the correct allomorph. The
natural categories (or features) which are hypothesised in her rules include obstruents, sonorants,
and the class of bimoraic vowels (consisting of long vowels, diphtongs and schwa).

Diminutive formation is a small linguistic domain for which different competing theories have
been proposed, and for which different generalizations (in terms of rules and linguistic categories)
have been proposed. What we will show next is how machine learning techniques may be used
to (i) test competing hypotheses, (ii) discover generalizations in the data which can then be
compared to the generalizations formulated by linguists, and (iii) discover phonological categories
in an unsupervised way by supervised learning of diminutive suffix prediction.

4 Experiments

For each of the 3900 nouns we collected, the following information was kept.

1. The phoneme transcription describing the syllable structure (in terms of onset, nucleus, and
coda) of the last three syllables of the word. Missing slots are indicated with =.

2. For each of these three last syllables the presence or absence of stress.

3. The corresponding diminutive allomorph, abbreviated to E (-etje), T (-tje), J (-je), K (-kje),
and P (-pje). This is the ‘category’ of the word to be learned by the learner.

Some examples are given below (the word itself and its gloss are provided for convenience and
were not used in the experiments).

-bi=-2z@=+mAnt J biezenmand (basket)
========4+b1Ix Ebig (pig)
====+DbK=-ban T bijbaan (side job)
====+bK=-b@1l T bijbel (bible)

4.1 Experimental Method

The experimental set-up used in all experiments consisted of a ten-fold cross-validation experiment
(Weiss & Kulikowski 1991). In this set-up, the database is partitioned ten times, each with a
different 10% of the dataset as the test part, and the remaining 90% as training part. For each of
the ten simulations in our experiments, the test part was used to test generalization performance.
The success rate of an algorithm is obtained by calculating the average accuracy (number of
test pattern categories correctly predicted) over the ten test sets in the ten-fold cross-validation
experiment.

4.2 Learnability

The experiments show that the diminutive formation problem is learnable in a data-oriented
way (i.e. by extraction of regularities from examples, without any a priori knowledge about the
domain?). The average accuracy on unseen test data of 98.4% should be compared to baseline
performance measures based on probability-based guessing. This baseline would be an accuracy
of about 40% for this problem. This shows that the problem is almost perfectly learnable by
induction. It should be noted that CELEX contains a number of coding errors, so that some of
the ‘wrong’ allomorphs predicted by the machine learning system were actually correct, we did
not correct for this.

In the next three sections, we will describe the results of the experiments; first on the task of
comparing conflicting theoretical hypotheses, then on discovering linguistic generalizations, and
finally on unsupervised discovery of phonological categories.

2Except syllable structure.



5 Linguistic Hypothesis Testing
On the basis of the analysis of Dutch diminutive formation by Trommelen (1983), discussed briefly
in Section 3, the following hypotheses (among others) can be formulated.

1. Oaly information about the last syllable is relevant in predicting the correct allomorph.

2. Information about the onset of the last syllable is irrelevant in predicting the correct allo-
morph.

3. Stress is irrelevant in predicting the correct allomorph.

In other words, information about the rhyme of the last syllable of a noun is necessary and
sufficient to predict the correct allomorph of the diminutive suffix. To test these hypotheses, we
performed four experiments, training and testing the C4.5 machine learning algorithm with four
different corpora. These corpora contained the following information.

1. All information (stress, onset, nucleus, coda) about the three last syllables (3-SYLL corpus).
2. All information about the last syllable (SONC corpus).
3. Information about the last syllable without stress (ONC corpus).

4. Information about the last syllable without stress and onset (NC corpus).

5.1 Results

Table 3 lists the learnability results. The generalization error is given for each allomorph for the
four different training corpora.

| I Errors and Error percentages |

Suffix 3 SYLL SONC ONC NC

Total 61 1.6 79 2.0 80 2.0 7 2.0
-tje 13 0.7 | 13 0.7 | 14 0.7 | 14 0.7
-je 16 1.1 15 1.0 16 1.1 14 1.0
-etje 26 7.3 | 49 13.7 | 48 13.5 44 12.3
-kje 4 5.2 0 0 0 0 0 0
-pje 2 1.9 2 1.9 2 1.9 5 4.8

Table 3: Error of C4.5 on the different corpora.

The overall best results are achieved with the most elaborate corpus (containing all information
about the three last syllables), suggesting that, contra Trommelen, important information is lost
by restricting attention to only the last syllable. As far as the different encodings of the last
syllable are concerned, however, the learnability experiment coroborates Trommelen’s claim that
stress and onset are not necessary to predict the correct diminutive allomorph. When we look
at the error rates for individual allomorphs, a more complex picture emerges. The error rate on
-etje dramatically increases (from 7% to 14%) when restricting information to the last syllable.
The -kje allomorph, on the other hand, is learned perfectly on the basis of the last syllable alone.
What has happened here is that the learning method has overgeneralized a rule predicting -kje
after the velar nasal, because the data do not contain enough information to correctly handle the
notoriously difficult opposition between words like leerling (pupil, takes -etje) and koning (king,
takes -kje). Furthermore, the error rate on -pje is doubled when onset information is left out from
the corpus.

We can conclude from these experiments that although the broad lines of the analysis by
Trommelen (1983) are correct, the learnability results point at a number of problems with it
(notably with -kje versus -etje and with -pje). We will move now to the use of inductive learning
algorithms as a generator of generalizations about the domain, and compare these generalizations
to the analysis of Trommelen.



6 Supervised Learning of Linguistic Generalizations

When looking only at the rhyme of the last syllable (the NC corpus), the decision tree generated
by C4.5 looks as follows:

Decision Tree:

coda in {rk,nt,lt,rt,p,k,t,st,s,ts,rs,rp,f,
x,1k,Nk,mp,xt,rst,ns,nst,
rx,kt,ft,1f,mt,1p,ks,1s,kst,1x}: J

coda in {n,=,1,j,r,m,N,rn,rm,w,1m}:

nucleus in {I,A,},0,E}:

coda in {n,l,r,m}: E
coda in {=,j,rn}: T
coda in {rm,1lm}: P

coda = N:
| nucleus in {A,0,E}: E
ucleus in {K,a,e,u,M,@,y,0,i,L,),|,<}:

I

I I

I I

I I

I I

| | | nucleus = I: K
I I

| 0

| | coda in {mn,=,1,j,r,rn,w}: T

| | coda = m: P

Notice that the phoneme representation used by CELEX (called DISC) is shown here instead
of the more standard IPA font, and that the value grouping mechanism of C4.5 has created a
number of phonological categories by collapsing different phonemes into sets indicated by curly
brackets.

This decision tree should be read as follows: first check the coda (of the last syllable). If it
ends in an obstruent, the allomorph is -je. If not, check the nucleus. If it is bimoraic, and the coda
is /m/, decide -pje, if the coda is not /m/, decide -tje. When the coda is not an obstruent, the
nucleus is short and the coda is /ng/, we have to look at the nucleus again to decide between -kje
and -etje (this is where the overgeneralization to -kje for words in -ing occurs). Finally, the coda
(nasa-liquid or not) helps us distinguish between -etje and -pje for those cases where the nucleus
is short. It should be clear that this tree can easily be formulated as a set of rules without loss of
accuracy.

An interesting problem is that the -etje versus -kje problem for words ending in -ing could not
be solved by referring only to the last syllable (C4.5 and any other statistically based induction
algorithm overgeneralize to -kje). The following is the knowledge derived by C4.5 from the full
corpus, with all information about the three last syllables (the 3 SYLL corpus). We provide the
rule version of the inferred knowledge this time.

Default class is -tje

1. IF coda last is /1m/ or /rm/
THEN -pje
2. IF nucleus last is [+bimoraic]
coda last is /m/
THEN -pje
3. IF coda last is /N/

THEN IF nucleus penultimate is empty
(monosyllabic word) or schwa

THEN -etje
ELSE -kje
4. IF nucleus last is [+short]
coda last is [+nas] or [+liq]
THEN -etje
5. IF coda last is [+obstruent]
THEN -je



The default class is -tje, which is the allomorph chosen when none of the other rules apply.
This explains why this rule set looks simpler than the decision tree earlier.

The first thing which is interesting in this rule set, is that only three of the twelve presented
features (coda and nucleus of the last syllable, nucleus of the penultimate syllable) are used in the
rules. Contrary to the hypothesis of Trommelen, apart from the rhyme of the last syllable, the
nucleus of the penultimate syllable is taken to be relevant as well.

The induced rules roughly correspond to the previous decision tree, but in addition a solution is
provided to the -etje versus -kje problem for words ending in -ing (rule 3) making use of information
about the nucleus of the penultimate syllable. Rule 3 states that words ending in /ng/ get -
etje as diminutive allomorph when they are monosyllables (nucleus of the penultimate syllable is
empty) or when they have a schwa as penultimate nucleus, and -kje otherwise. As far as we now,
this generalization has not been proposed in this form in the published literature on diminutive
formation.

We conclude from this part of the experiment that the machine learning method has succeeded
in extracting a sophisticated set of linguistic rules from the examples in a purely data-oriented
way, and that these rules are formulated at a level that makes their use in the development of
linguistic theories possible.

7 Discovery of Phonological Categories

To structure the phoneme inventory of a language, linguists define features. These can be inter-
preted as sets of speech sounds (categories): e.g. the category (or feature) labial groups those
speech sounds that involve the lips as an active articulator. Speech sounds belong to different cat-
egories, i.e., are defined by different features. E.g. t is voiceless, a coronal, and a stop. Categories
proposed in phonology are inspired by articulatory, acoustic or perceptual phonetic differences be-
tween speech sounds. They are also proposed to allow an optimally concise or elegant formulation
of rules for the description of phonological or morphological processes. E.g., the so-called major
class features (obstruents, nasals, liquids, glides, vowels) efficiently explain syllable structure com-
putation, but are of little use in the definition of rules describing assimilation. For assimilation,
place of articulation features are best used. This situation has led to the proposal of many different
phonological category systems.

While constructing the decision tree (see previous section), several phonologically relevant
categories are ‘discovered’ by the value grouping mechanism in C4.5, including the nasals, the
liquids, the obstruents, the short vowels, and the bimoraic vowels. This last category corresponds
completely with the (then new) category hypothesised by Trommelen and containing the long
vowels, the diphtongs and the schwa. In other words, the learning algorithm has discovered this
set of phonemes to be a useful category in solving the diminutive formation problem by providing
an extensional definition of it (a list of the instances of the category).

This raises the question of the task-dependence of linguistic categories. Similar experiments in
Dutch plural formation, for example, fail to produce the category of bimoraic vowels, and for some
tasks, categories show up which have no ontological status in linguistics. In other words, making
category formation dependent on the task to be learned, undermines the traditional linguistic ideas
about absolute, task-independent (and even language-independent) categories. We present here a
new methodology with which this fundamental issue in linguistics can be investigated: category
systems extracted for different tasks in different languages can be studied to see which categories
(if any) truely have a universal status. This is subject for further research. It would also be useful
to study the induced categories when intensional descriptions (feature representations) are used
as input instead of extensional descriptions (phonemes).

We also experimented with a simpler alternative to the computationally complex heuristic
category formation algorithm used by C4.5. This method is inspired by machine learning work on
value difference metrics (Stanfill & Waltz, 1986; Cost & Salzberg, 1993). Starting from the training
set of the supervised learning experiment (the set of input—output mappings used by the system
to extract rules), we select a particular feature (e.g. the coda of the last syllable), and compute a



table associating with each possible value of the feature the number of times the pattern in which
it occurs was assigned to each different category (in this case, each of the the five allomorphs).
This produces a table with for each value a distribution over categories. This table is then used
in standard clustering approaches to derive categories of values (in this case consonants). The
following is one of these clustering results. The example shows that this computationally simple
approach also succeeds in discovering categories in an unsupervised way on the basis of data for
supervised learning.

- > 1
I >r
-1 | = >n
l---  _____ |--—-- >t
| | | D |----> k
| === | |---=>s
| [-->p
| |--> f
| __ |-—-->m
l____l--———> 1N
l____I-->x
l__1->3
|-> w

Several categories, relevant for diminutive formation, such as liquids, nasals, the velar nasal,
semi-vowels, fricatives etc., are reflected in this hierarchical clustering.

8 Conclusion

We have shown by example that machine learning techniques can profitably be used in linguistics
as a tool for the comparison of linguistic theories and hypotheses or for the discovery of new
linguistic theories in the form of linguistic rules or categories.

The case study we presented concerns diminutive formation in Dutch, for which we showed
that (i) machine learning techniques can be used to corroborate and falsify some of the existing
theories about the phenomenon, and (ii) machine learning techniques can be used to (re)discover
interesting linguistic rules (e.g. the rule solving the -etje versus -kje problem) and categories (e.g.
the category of bimoraic vowels).

The extracted system can of course also be used in language technology as a data-oriented
system for solving particular linguistic tasks (in this case diminutive formation). In order to test
the usability of the approach for this application, we compared the performance of the extracted
rule system to the performance of the hand-crafted rule system proposed by Trommelen. Table
4 shows for each allomorph the number of errors by the C4.5 rules (trained using corpus NC, i.e.
only the rhyme of the last syllable) as opposed to an implementation of the rules suggested by
Trommelen. One problem with the latter is that they often suggest more than one allomorph (the
rules are not mutually exclusive). In those cases where more than one rule applies, a choice was
made at random.

Suffix | Trommelen | C4.5
-tje 53 11
-je 12 12
-etje 28 39
-kje 38 0
-pje 21 4
Total 152 66

Table 4: Comparison of accuracy between handcrafted and induced rules.



The comparison shows that C4.5 did a good job of finding an elegant and accurate rule-based
description of the problem. This rule set is useful both in linguistics (for evaluation, refinement,
and discovery of theories) and in language technology.
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