
Artificial Intelligence Review 11, 407-423, 1997

IGTree� Using Trees for Compression and Classi�cation

in Lazy Learning Algorithms

Walter Daelemans�i�� Antal van den Bosch�ii�� Ton Weijters�ii�

�i� Walter�Daelemans�kub�nl �ii� fantal�weijtersg�cs�rulimburg�nl

Computational Linguistics MATRIKS

Tilburg University� The Netherlands Maastricht University� The Netherlands

Abstract

We describe the IGTree learning algorithm� which compresses an instance base into

a tree structure� The concept of information gain is used as a heuristic function for per�

forming this compression� IGTree produces trees that� compared to other lazy learning

approaches� reduce storage requirements and the time required to compute classi�ca�

tions� Furthermore� we obtained similar or better generalization accuracy with IGTree

when trained on two complex linguistic tasks� viz� letter�phoneme transliteration and

part�of�speech�tagging� when compared to alternative lazy learning and decision tree

approaches �viz�� IB�� information�gain�weighted IB�� and C���	� A third experiment�

with the task of word hyphenation� demonstrates that when the mutual di
erences in

information gain of features is too small� IGTree as well as information�gain�weighted

IB� perform worse than IB�� These results indicate that IGTree is a useful algorithm

for problems characterized by the availability of a large number of training instances

described by symbolic features with su�ciently di
ering information gain values�

keywords� lazy learning� eager learning� decision trees� information gain� data com�

pression� instance base indexing
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� Introduction

In previous research� we have applied lazy learning techniques to a variety of problems

in language technology �e�g�� converting spelling to phonetic transcription� stress assign�

ment� predicting morphological su�xes� and assigning syllable structure to words	� See

Daelemans ���	 for an overview� and Cardie ���	 for a similar case�based approach�

This type of linguistic problem can be characterized by the following observations�

�� The problem can be described as �nding a mapping from a pattern of symbolic

�nominal and unordered	 features �letters� phonemes� part�of�speech tags� etc�	

to a symbolic class �phonemes� boundary symbols� a�xes� tags� etc�	�

�� The problem can be described as classi�cation in context� given a target symbol

and its immediate local context� produce one of a �nite number of possible classes

for that symbol� For example� given a spelling symbol and its three left and three

right neighbor letters� decide which phonetic symbol it corresponds to�

�� The instance features display an outspoken variation in their relevance to solving

the task� and can be ordered according to this relevance� In general� the further

away a feature �representing context	 from the target� the less relevant it is�

�� The instance space is reasonably large �e�g�� seven features with �� possible values

each� in the spelling�to�phonetic�transcription problem	 and� typically� there are

also many training instances available �on the order of ������� or more	�

�� The problem is usually described �in terms of linguistic rules	 as noisy and com�

plex� with many subregularities and �pockets of	 exceptions� In other words�

apart from a core of generalizations� there is a relatively large periphery of irreg�

ularities�

In lazy learning �e�g�� the IB� algorithm in Aha� Kibler� and Albert� ��	� sim�

ilarity of a new instance to stored instances is used to �nd the nearest neighbors of

the new instance� The classes associated with the nearest neighbor instances are then

used to predict the class of the new instance� In IB�� all features are assigned the

same relevance� which is undesirable for our linguistic problems� We noticed that IB��

when extended with a simple feature weighting similarity function� sometimes out�

performs both connectionist approaches and knowledge�based �linguistic�engineering�
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approaches �Daelemans and Van den Bosch� ��� ��� Van den Bosch and Daele�

mans� ��	� The similarity function we introduced in lazy learning �Daelemans and

Van den Bosch� ��	 consisted simply of multiplying� when comparing two instances�

the similarity between the values for each feature with the corresponding information

gain for that feature �information gain is also implemented in C���� Quinlan� ��� to

guide decision tree building	� We will call this version of lazy learning IB��IG�

To compute similarity in IB��IG� the similarity function sim in Equation � is used�

in which X and Y are two instances of which the similarity must be computed� G�fi	 is

the information gain of the ith feature� and ��xi� yi	 is the overlap between the values

of the ith feature in instances X and Y � Both instances contain n features�

sim�X� Y 	 �
nX

i��

G�f i	��xi� yi	 ��	

As we are only investigating the learning of instances with symbolic features� the

overlap function proposed by Stan�ll and Waltz ����	 is used �Equation �	�

��xi� yi	 � � if xi � yi� else � ��	

The main idea of information gain weighting is to interpret the training material

as an information source capable of generating a number of messages �the classes

associated with stored instances	 with a certain probability� Data base information

entropy is equal to the average number of bits of information needed to know the class

given an instance� It is computed by Equation �� where pi �the probability of class i	

is estimated by its relative frequency in the training set�

H�D	 � �
X

pi

pilog�pi ��	

For each feature� its relative importance in the data base can be calculated by

computing its information gain� To do this� we compute the average information

entropy for this feature and subtract it from the information entropy of the data base�

To compute the average information entropy for a feature �Equation �	� we take the

average information entropy of the database restricted to each possible value for the

feature� The expression D�f�v� refers to those instances in the database that have value

v for feature f � where V is the set of possible values for feature f � Finally� jDj is the

number of instances in data base D�
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H�D�f �	 �
X

vi�V

H�D�f�vi�	
jD�f�vi�j

jDj
��	

Information gain is then obtained by Equation ��

G�f	 � H�D	�H�D�f �	 ��	

The classi�cation function of IB��IG computes the similarity between a new in�

stance and all stored instances� and returns the class label of the most similar instance�

During experimentation� we noticed that accuracy �generalization performance	

decreased considerably when instance memory was pruned in some way �e�g�� using IB��

Aha et al�� ��� or by eliminating nontypical instances	� Storing all training items by

lazy learning �e�g�� IB�	 seems essential for achieving a high generalization performance

in many linguistic tasks we investigated� The observation that the problems exhibit

a lot of sub�regularity and exceptions may explain why full memory produces better

results than an approach in which not all training items are kept in memory �cf� Aha�

��	�

Unfortunately� as the prediction function in lazy learning has to compare a test

instance to all stored instances� and our linguistic data sets typically contain hundreds

of thousands of instances� processing of new instances is prohibitively slow� Hardware

solutions to this problem have been proposed �e�g� data�level parallelism on massively

parallel machines� Stan�ll and Waltz� ���� or wafer�scale integration� Kitano� ��	�

We will not discuss these here as we focus on comparing implementations of di
erent

algorithms on serial machines� What we needed was an algorithmic variant of IB��IG

in which the instance base is reorganized �by compression rather than by pruning	 in

such a way that access to relevant instances is faster� and no generalization performance

is lost�

We developed an algorithm� IGTree �a �rst version is described in Van den Bosch

and Daelemans� ��	� which uses the di
erences in information gain of features for

ordering the instance base and optimizing access to the instance base� For the type

of problem described above� IGTree produces a tree structure which is considerably

smaller than the original data base� furthermore� tree retrieval is considerably faster

than retrieval in IB��IG�
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In Section �� we describe the IGTree model and its relationships to k�d trees and

decision trees� Section � describes comparative experiments with IGTree� IB�� IB��IG�

and C��� on learning the linguistic tasks� We present our conclusions in Section ��

� IGTree

The positive e
ect of using information gain weights in the overlap function to de�

�ne similarity in IB� for our tasks� prompted us to develop an alternative approach

in which the instance memory is reorganized� using Information Gain as a heuristic

guide� in such a way that it contains the information essential for retrieval� but is com�

pressed into a decision tree structure� In this Section� we will provide both an intuitive

and algorithmic description of IGTree� discuss its relations to k�d trees and top down

induced decision trees� and provide some analyses on complexity issues�

��� The IGTree model

IGTree combines two algorithms� one for constructing decision trees� and one for

retrieving classi�cation information from these trees� During the construction of IGTree

decision trees� instances are stored as paths of connected nodes� All nodes contain a

test �based on one of the features	 and a class label �representing the default class at

that node	� Nodes are connected via arcs denoting the outcomes for the test �feature

values	� Information gain is used to determine the order in which instance features

are used as tests in the tree� This order is �xed in advance� so the maximal depth of

the tree is always equal to the number of features� and at the same level of the tree�

all nodes have the same test� The reasoning behind this reorganization �which is in

fact a compression	 is that when the computation of information gain points to one

feature clearly being the most important in classi�cation� search can be restricted to

matching a test instance to those stored instances that have the same feature value at

that feature� Instead of restricting search to those memory instances that match only

on this feature� the instance memory can then be optimized further by examining the

second most important feature� followed by the third most important feature� etc� A

considerable compression is obtained as similar instances share partial paths�

Instead of converting the instance base to a tree in which all instances are fully
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represented as paths� storing all feature values� we compress the tree even more by

restricting the paths to those input feature values that disambiguate the classi�cation

from all other instances in the training material� The idea is that it is not necessary

to fully store an instance as a path when only a few feature values of the instance

make the instance classi�cation unique� This implies that feature values that do not

contribute to the disambiguation of the instance classi�cation �i�e�� the values of the

features with lower information gain values than the the lowest information gain value

of the disambiguating features	 are not stored in the tree� Although one could opt

for storing these features� not storing them does not a
ect the accuracy of IGTree�s

generalization performance�

Leaf nodes contain the unique class label corresponding to a path in the tree� Non�

terminal nodes contain information about the most probable or default classi�cation

given the path thus far� according to the bookkeeping information on class occurrences

maintained by the tree construction algorithm� This extra information is essential when

using the tree for classi�cation� Finding the classi�cation of a new instance involves

traversing the tree �i�e�� matching all feature�values of the test instance with arcs in the

order of the overall feature information gain	� and either retrieving a classi�cation when

a leaf is reached� or using the default classi�cation on the last matching non�terminal

node if a feature�value match fails�

A �nal compression is obtained by pruning the derived tree� All leaf�node daughters

of a mother node that have the same class as that node are removed from the tree�

as their class information does not contradict the default class information already

present at the mother node� Again� this compression does not a
ect the accuracy of

IGTree�s generalization performance�

In sum� in the trade�o
 between computation during learning and computation

during classi�cation� the IGTree approach chooses to invest more time in organizing

the instance base using information gain and compression� at the gain of considerably

simpli�ed and faster processing during classi�cation� as compared to lazy learning

approaches that maintain instances in a �at �le rather than using an reorganizing

scheme�

A tree produced by the IGTree algorithm is oblivious because all nodes at a certain

level in the tree test the same feature� The IGTree approach di
ers in two aspects

from other oblivious decision tree �cf� Langley and Sage� ��	 and oblivious decision
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graph �cf� Kohavi and Li� ��	 approaches� First� in IGTree� information gain of

features is used to determine the order in which they are expanded in the decision

tree� The second di
erence is more fundamental� and is also related to the use of

information gain as a guiding function in IGTree� in trees generated by IGTree� leaves

are not necessarily stored at the same level� During tree building� expansion of the

tree is stopped when all instances in the subset indexed by a node are of the same

class� At that point� which may be at any level in the tree� all remaining features with

a lower information gain value are ignored� Similarly� IGTree classi�es a new instance

by investigating a variable and often limited number of features� rather than a �xed

number of �relevant	 features� as in Kohavi and Li ���	�

The recursive algorithms for tree construction and retrieval are given in Figure ��

��� Asymptotic complexity

As far as an asymptotic analysis of the complexity of storage� search and tree�building

is concerned� it should be noted that only worst�case results are given� The actual com�

pression �on which complexity of search� building� and storage depend	 is completely

task�dependent� and should be observed in empirical tests such as those in Section ��

The worst�case complexity of searching an instance in the tree is proportional to

F � log�V 	� where F is the number of features �equal to the maximal depth of the tree	�

and V is the average number of values per feature �i�e�� the average branching factor in

the tree	� This complexity presupposes alphabetic sorting of the values so that binary

search and storage are possible� Retrieval by search in the tree is independent from the

number of training instances� and therefore especially useful for large instance bases�

In IB�� search complexity is O�N � F 	 �with N the number of stored instances	� In

the grapheme�phoneme transliteration experiment described in Section �� the average

branching factor V is ��� �the number of possible values for each feature is ��	�

The number of nodes necessary in the worst case to store the instances of the

training set is N �maximal number of leaves	 � �N � �	 � �V � �	 �number of non�

terminal nodes	� For each non�terminal node� a default class label and a pointer for

each occurring value of the feature denoted by the node should be stored� This makes

the storage requirements proportional to N �compare O�N �F 	 for IB�	� In Section ��

we show that trained on the grapheme�phoneme transliteration problem� the IGTree
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Procedure BUILD�IG�TREE�

Input�

� A training set T of instances with their classes �start value� a full instance base��

� an information�gain�ordered list of features �tests� Fi���Fn �start value� F����Fn��

Output� A subtree�

�� If T is unambiguous �all instances in T have the same class c�� or i � �n � ��� create a leaf node

with class label c�

	� Otherwise� until i � n �the number of features�

� Select the 
rst feature �test� Fi in Fi���Fn� and construct a new node N for feature Fi� and

as default class c �the class occurring most frequently in T ��

� Partition T into subsets T����Tm according to the values v����vm which occur for Fi in T

�instances with the same value for this feature in the same subset��

� For each j�f�� ����mg�

if not all instances in Tj map to class c� BUILD�IG�TREE �Tj � Fi�����Fn��

connect the root of this subtree to N and label the arc with vj�

Procedure SEARCH�IG�TREE�

Input�

� The root node N of an subtree �start value� top node of a complete IGTree��

� an unlabeled instance I with information�gain�ordered feature values fi���fn �start value� f����fn��

Output� A class label�

�� If N is a leaf node� output default class c associated with this node�

	� Otherwise� if test Fi of the current node does not originate an arc labeled with fi� output default

class c associated with N �

�� Otherwise�

� new node M is the end node of the arc originating from N with as label fi�

� SEARCH�IG�TREE �M� fi�����fn�

Figure �� Algorithms for building IGTrees 	
BUILD�IG�TREE� and searching IGTrees

	
SEARCH�IG�TREE�
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decision trees use on the average �� less memory than the IB� instance bases�

Finally� the cost of building the tree on the basis of a set of instances is proportional

to N � log�V 	 � F in the worst case �compare O�N	 for training in IB�	�

��� Relation to k�d trees and induced decision trees

The IGTree approach has strong similarities to both decision tree learning �Top Down

Induction of Decision Trees� TDIDT� used for abstraction of knowledge from instances

bases or indexing instance bases	 and k�d trees �used for indexing instance bases	�

A fundamental di
erence with decision trees concerns the purpose of IGTrees� The

goal of Top Down Induction of Decision Trees� as in the state�of�the�art program C���

�Quinlan� ��	� is to abstract from the training examples� In contrast� we use decision

trees for lossless compression of the training examples� Pruning of the resulting tree

in order to derive understandable decision trees or rule sets is therefore not an issue

in our approach� By lossless� we mean that the classi�cations of the training instances

can be completely reconstructed� not that all feature�value information in the original

training set can be reconstructed� Generalization is achieved by the defaults at each

node� not by pruning� It should be noted here that IGTree decision trees can easily

be expanded in such a way that compression is also lossless in terms of feature�value

information� when node construction is not halted at the point where classi�cation

becomes unambiguous� However� we will refer in this paper only to the variant of

IGTree in which features not relevant to classi�cation are not stored�

A simplici�cation of IGTree as opposed to TDIDT approaches such as C���� is

that IGTree generates oblivious decision trees� i�e�� it computes information gain only

once to determine a �xed feature ordering� TDIDT approaches� in contrast� recompute

information gain �or similar feature selection functions	 at each arc of the tree to guide

selection of the next test� Finally� in IGTree� defaults are computed at each node of

the tree �i�e�� defaults are local	� whereas in TDIDT� global defaults are used �although

in C���� a similar local default assignment procedure is used	�

In terms of high compression without generalisation performance loss� C���rules

�Quinlan� ��	 appears a strong alternative to IGTree� However� C���rules� which

extracts compact rule sets from trees generated by C���� becomes disproportionally

slow when the C����tree is large� as in our experiments� e�g�� a C����tree of � ��� ���
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nodes� generated within about a half hour �which is similar to IGTree�s processing

time	� takes several days to be processed by C���rules�

K�d trees �Friedman� Bentley� and Finkel ���	 are binary trees that have been

proposed for indexing databases of instances �with ordered feature values� e�g�� numeric

values	 for use in k�nearest neighbor approaches� The basic idea is to make use of

the observed density of the instance space to structure it for e�cient retrieval of the

m nearest neighbors of a new �query	 instance� To build the k�d tree� the original

instance space is partitioned into disjoint subsets by selecting a feature �e�g�� the one

with the highest inter�quartile�distance	 and a threshold value� and creating nodes for

each of these subsets� Instances with values for that feature less than or equal to

the threshold are stored in one daughter� the others in the other daughter� Nodes

therefore represent subsets of the instances� This process is recursively repeated until

the number of instances in a node becomes less than a parameter called bucket size

�maximal allowed number of instances in a leaf node	� in which case a leaf node is

constructed� The leaf node does not contain class information� as in IGTree� but

pointers to the instances in the original instance base that are captured in the bucket�

During retrieval of nearest neighbors� given a query instance� the k�d tree is traversed as

in decision trees and IGTrees� and at leaf nodes� a queue with the m nearest neighbors

is updated� Two tests� based on the similarity of the most similar instance in the

queue to the query� are used to determine whether it is necessary to inspect the sister

of the current leaf node� and whether all nearest neighbors have been found �if not�

backtracking is necessary	� Recently� there has been renewed interest in k�d trees and

related approaches for e�ciently indexing instance bases in lazy learning �Omohundro�

��� Deng � Moore� ��� Wess� Altho
� � Derwand� ��� Wess� ��	�

In contrast to k�d trees� the purpose of IGTrees is classi�cation� not e�cient nearest

neighbor search� IGTrees cannot be used to �nd the nearest neighbors because the

defaults on the leaf nodes do not contain information about the number nor the identity

of instances on which they were based� Instances sharing the same subset of feature�

value pairs and having the same class in the training set� are not di
erentiated� Another

di
erence between k�d trees and IGTrees is that the former are restricted to ordered

feature values� while the latter are restricted to unordered symbolic features�

E
orts are under way �Wess et al�� ��� Wess� ��	 to extend k�d trees with

symbolic values� However� extending the test determining whether backtracking is
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needed for the case of symbolic features signi�cantly increases the computational cost

of executing this test� and the test can perform poorly under certain circumstances�

There is no gain in retrieval time because the test has to verify each dimension of the

attribute space� which can be high for unordered symbolic attributes �Altho
� personal

communication	� No empirical studies addressing this issue have been published yet�

Although we developed IGTree to deal with the nominal� unordered features with

which we describe our linguistic instances� IGTree can be extended to handle continuous

features by means of discretization techniques �cf� Dougherty� Kohavi� and Sahami�

��	�

Figure � graphically shows the di
erences between k�d trees� IGTrees and C���

decision trees on a small symbolic dataset� On the basis of size� shape� and number of

holes� an object is to be classi�ed as nut� screw� key� pen� or scissors� The instance base

contains �� instances� It should be noted that �i	 instances � and �� are ambiguous �i�e��

they have the same feature values but map to di
erent classes	� �ii	 the information

gain� computed over the full set of instances� of feature �size� is ����� of �shape� is ����

and of �number of holes� is ����� �iii	 in the case of k�d trees� �size� and �shape� are not

treated as numeric features as their values in the instance base are not numeric� in

Figure � the situation is shown of a k�d tree algorithm which tests a symbolic feature

by expanding the tree for every occurring value of that feature� As can be seen in

Figure �� the tree generated by IGTree di
ers from the tree generated by C��� in the

number of tests �i�e�� IGTree performs less tests than C���	� and in the number of

nodes and leaves �e�g�� the sum amount of nodes and leaves is smaller in the case of

IGTree than in the case of C���	� The di
erence between IGTree and k�d tree is that

the buckets in the k�d tree point to instances in the instance base� whereas the nodes

and leaves in IGTree do not denote instances� but classi�cations�

Section � describes experiments illustrating the comparative performance �i�e�� gen�

eralization accuracy and storage requirements	 of IGTree� IB�� IB��IG� and C���� for

several linguistic tasks�

� Experiments

In this Section we describe in detail empirical results achieved with IGTree on the

letter�phoneme transliteration problem for Dutch� We compare the performance of
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Figure �� K�d tree� C��� decision tree� and IGTree decision tree constructed on the basis of

a small instance base�

IGTree in terms of generalization accuracy and storage to IB�� IB��IG� and C���� We

provide similar but less detailed results on two other tasks� part�of�speech tagging and

hyphenation�

��� Letter�Phoneme Transliteration

Letter�phoneme transliteration is a well�known benchmark problem� �rst discussed in

the context of Machine Learning by Sejnowski and Rosenberg ����	� They report

on several experiments with the standard connectionist Back�propagation algorithm

�Rumelhart et al�� ���	 on the NETtalk data� In our experiments� we employ the

same encoding scheme that Sejnowski and Rosenberg used to generate their instances

�i�e�� by moving a �xed�length window over a spelling word� and generating an instance

by taking a snapshot of the word visible in the window	� Each instance contains a target

letter �in the middle	 surrounded by left and right context letters� The class associated

with the spelling input window is� in our case� the phonemic mapping of the target
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Table �� Example generation of �xed�length window instances 	� left context characters� �

right context characters from the word�pronunciation pair �boek� � �buk�� Underscores

depict word boundaries� The 
�� is the phonemic null mapping to the �e��

Letter in Context Phoneme

b o e k b

b o e k u

b o e k �

b o e k k

letter� As with Sejnowski and Rosenberg ����	� a class may be any of the phonemes

in the phonemic alphabet� or a phonemic null inserted at points where a cluster of

two or more spelling letters maps to one phoneme� An example of the generation of

instances from a word�pronunciation pair� �boek� �book	 � �buk�� is shown in Table

��

Automatic learning of letter�phoneme transliteration of English �NETtalk� Se�

jnowski � Rosenberg� ���	 has been claimed as a success story for Back�propagation

�but see Stan�ll and Waltz� ���� Wolpert� ��� Weijters� ��� and van den Bosch

� Daelemans� �� for examples of k�nn algorithms outperforming Back�propagation	�

The connectionist approach was replicated for Dutch in NetSpraak �Weijters � Hop�

penbrouwers� ��	�

From celex� a lexical data base of English� German� and Dutch� we derived a data

base consisting of ������ Dutch word�pronunciation pairs� Words and phonemic tran�

scriptions were made of equal length by inserting phonemic nulls ����	 in the phonemic

transcriptions �by an alignment algorithm described in Daelemans and Van den Bosch�

��	� By using the windowing technique described above� the ������ word set was

converted into a data base containing ������ instances� Each instance thus contains

seven feature values �each of which is one out of �� values� the alphabet including

letters with diacritics� and the space that occurs before and after words	� and is asso�

ciated with one out of �� possible phonemes� In our experiments� we used a ���fold

CV setup� i�e�� we trained and tested each algorithm on ten di
erent partitions ���

training material� ��� testing material	 of the full data base� All performance results
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reported below are averaged over these experiments�

In Table �� the performance scores on correctly classi�ed test instances �i�e�� cor�

rectly transliterated phonemes	 and their standard deviations are displayed� We re�

port the scores of IG�Tree� IB� with the overlap similarity function� IB� with the

information�gain�weighted similarity function �IB��IG	� C��� without pruning� and

C��� with pruning �C����p	� It should be noted that C��� was run with �i	 the

information�gain�criterion rather than the gain�ratio�criterion �as our data does not

contain value variance anomalies which would be handled by the gain�ratio�criterion�

and as this is the same function as used in IG�Tree	� �ii	 when pruning� the default

pruning con�dence level of ��� is used� and �iii	 a minimum number of instances on

either side of a test is set at �� which is similar to IGTree� rather than the default value

of �� Furthermore� Table � reports the average number of bytes needed to store the

instance base or decision tree in memory� Given the fact that in our problem feature�

values and classes are represented by one byte� the memory allocated by IB� �and

IB��IG	 can be computed by multiplying the number of instances with the number of

features plus one �the class	� In our implementation of IGTree� seven bytes per node

are used� a ��byte pointer� a feature�value� a �default	 class� and one byte indicating

the number of daughter nodes� If the same compact memory storage method would

be implemented in C���� this algorithm would need eight bytes per node �including

one byte to denote the feature number	� However� in C��� �version �	� each feature

is expanded for all its possible values� leading to a very large number of �empty� end

nodes that contain no feature�values� Needing only seven bytes per node in this case�

the results in Table � are based on the numbers of nodes reported by C����

Table � indicates the signi�cance levels of the di
erences between the generalization

accuracy scores reported in Table ��

The performance results in Table � and Table � indicate that IB� with the overlap

distance similarity function and C��� with pruning are at a signi�cant disadvantage as

compared to IGTree� IB��IG� and C��� without pruning� IB��IG outperforms� with a

slight but signi�cant margin� both IGTree and C����

The average memory usage displayed in Table � demonstrates the considerable com�

pression �����	 obtained with IGTree as compared to IB��IG� without losing much

generalization performance� In comparison� with pruning� C��� obtains ����� com�

pression�

��



Table �� Average generalization performance in terms of correctly transliterated phonemes

of unseen Dutch word�pronunciation pairs� with standard deviation� and average memory

usage in bytes needed to store the instance base or decision tree in memory� for IGTree� IB��

IB� with an IG�weighted similarity function 	IB��IG� C��� without pruning� and C��� with

pruning 	C����p�

Generalization accuracy Standard Memory usage

Algorithm on test phonemes deviation �bytes	

IGTree ���� ���� �����

IB� ���� ���� ���������

IB��IG ���� ���� ���������

C��� ���� ���� �����

C����p ���� ���� �������

As a second illustration of accuracy� we mention the results of a comparison between

IGTree trained on a set of ������ Dutch word�pronunciation pairs� and Morpa�cum�

Morphon �Nunn and Van Heuven� ��	� a state�of�the�art �linguistic�engineering�

system for Dutch� Tested on an identical test set �provided by the developers of

Morpa�cum�Morphon	� IGTree produced ���� correctly transliterated words� whereas

Morpa�cum�Morphon only converted ����� words correctly �Van den Bosch and Daele�

mans� ��	�

��� Hyphenation and Part�of�Speech Tagging

In order to obtain a better insight into the properties of IGTree� we provide some

additional results obtained with IGTree on di
erent datasets�

Hyphenation

The problem of hyphenation �assigning syllable structure to the spelling of a word	

is de�ned as a classi�cation problem by using windowing as in grapheme�phoneme

transliteration� For each target symbol �with a context of letters to the left and to the

right of it	� the class is either yes �start of a syllable at that position	 or no �no start

of syllable at that position	� The experiment was based on ���fold cross�validation on

��



Table �� Signi�cance levels of the di�erences between the generalization performances of

IGTree� IB�� IB��IG� C���� and C����p� One or two asterisks 	
�� in a cell in this Table

indicate that the algorithm in the row is signi�cantly better than the algorithm in the column�


��� indicates a probability of a Type�I error of ����� 	t������ 
�� indicates a Type I�error

probability of ���� 	t������ A blank cell indicates that the di�erence is not signi�cant�

IB� C����p C��� IGTree

IB��IG �� �� � �

IGTree �� �� �

C��� �� �� � �

C����p �� � � �

a dataset derived from ������ hyphenated English words�

The performance results indicate that IGTree ������	 performs signi�cantly better

than C��� ������	 and C��� with pruning ������	� but performs signi�cantly worse

than IB� ������	 and IB��IG ������	� Interestingly� there is no signi�cant di
erence

between IB� and IB�IG� The information gain weights �re�ecting feature accuracy	 are

insu�ciently di
erent in this case to make a di
erence�

The averagememory usage again demonstrates the considerable compression �����	

obtained with IGTree as compared to IB� and IB��IG� In comparison� with pruning�

C��� obtains ����� compression�

Part�of�Speech Tagging

In part�of�speech tagging� the task is to disambiguate the syntactic category of a word

on the basis of preceding and following context� Again a windowing approach can be

used to translate a corpus of tagged sentences into an instance base� The experiment

was based on a single partitioning of a dataset into a training set of ������� instances�

and a test set of ������ instances�

The performance results indicate that IGTree �����	 performs signi�cantly better

than IB� ������	 and IB��IG �����	� In this experiment we used Quinlan�s ���	

gain ratio criterion rather than information gain� as not all features have an equal num�

ber of values in this problem� Memory compression with IGTree was ��� compared

��



Table �� Information gain values of the seven input features 	the focus letter F surrounded

by context letters of the grapheme�phoneme�transliteration task and the hyphenation task�

and the gain ratio values of the four input features of the part�of�speech�tagging task�

Task F�� F�� F�� F F�� F�� F��

Grapheme�phoneme transliteration ����� ����� ����� ���� ����� ����� �����

Hyphenation ����� ���� ����� ����� ����� ����� �����

Part�of�speech Tagging � ���� ���� ��� ���� � �

to IB��

In Table �� the information gain values of the seven input features of the grapheme�

phoneme�transliteration task �cf� Section ���	 and the hyphenation task �cf� Section

���	 are displayed� as well as the gain ratio values of the four input features of the

part�of�speech�tagging task �cf� Section ���	�

� Conclusions

We have shown that for two tasks� which are typical for a large class of real�world

problems in natural language processing �cf� the characterisation of these problems

in Section �	� IGTree performs only slightly worse or better in terms of generalization

performance than IB� augmented with an information�gain�weighted similarity func�

tion �IB��IG	� gaining considerably in memory resources needed for storage ���� and

���� compression in our experiments	� and in search complexity �O�F �log�V 		 rather

than O�F �N	� which becomes especially favorable when N� the number of instances�

is very large	� Comparing IGTree with C���� which is aimed more at abstracting from

training examples� we note that the current implementation of C��� �with pruning	 gen�

eralizes less accurately than IGTree and IB��IG� and uses more memory than IGTree�

For a third task� viz� word hyphenation� in which there is no outspoken variation in the

information gain values of the features� we have shown that both IGTree and IB��IG

generalise worse than IB� with the overlap similarity function�

IGTree�s tree building procedure is not aimed at indexing individual cases� as with

��



k�d trees� but is aimed at compressed storage of those parts of training instances

relevant to classi�cation� Retrieval of class information from IGTree decision trees is

speedy and deterministic� and does not involve backtracking� As the generalization

accuracy of k�d trees �with symbolic values	 can be assumed equal to that of IB��IG�

and since IB��IG does not signi�cantly perform better than IGTree� we conclude that�

for the type of problem we investigated� it is not necessary to put extra processing

e
ort in �nding the absolute nearest neighbor to a new instance�

Given the fact that for many tasks large numbers of instances are available �several

orders of magnitude more than the ����� instances of typical benchmark problems	�

the IGTree approach appears interesting and useful� especially for the type of problem

characterized in this paper�
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