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ABSTRACT
The need for software modules performing natural language
processing (NLP) tasks is growing. These modules should
perform efficiently and accurately, while at the same time
rapid development is often mandatory. Recent work has
indicated that machine learning techniques in general, and
memory-based learning (MBL) in particular, offer the tools
to meet both ends. We present examples of modules trained
with MBL on three NLP tasks: (i) text-to-speech conversion,
(ii) part-of-speech tagging, and (iii) phrase chunking. We
demonstrate that the three modules display high generaliza-
tion accuracy, and argue why MBL is applicable similarly
well to a large class of other NLP tasks.

1. INTRODUCTION

The task of language technology is to develop efficient, high-
accuracy software modules that perform NLP tasks or sub-
tasks. The increasing market pull for NLP applications in
human-computer interaction intensifies the need for solv-
ing the knowledge acquisition bottleneck problem identified
with many NLP tasks. As is usually argued and shown in
present-day NLP applications, some targets are hard to ac-
complish as they involve many linguistic levels such as syn-
tax and semantics simultaneously (e.g., domain-free multi-
lingual translation, or dialoguemodeling); it is time-consum-
ing, if not plainly impossible to gather and compile knowl-
edge covering the many-to-many mappings between these
levels. On the other hand, we argue [9, 10] that all NLP
tasks can be seen as either

� light NLP tasks, involving disambiguation or segmen-
tation [9] locally at one language level or between two
closely-related language levels; or as

� compositions of light NLP tasks, when the task sur-
passes the complexity of single light NLP tasks.

This research was performed in the context of the “Induction of Lin-
guistic Knowledge” research programme, partially supported by the Foun-
dation for Language Speech and Logic (TSL), funded by the Netherlands
Organization for Scientific Research (NWO).

Rapid development of a system that has to perform a
very complex (or heavy) NLP task efficiently and accurately,
may not be a problem when a good decomposition can be
found, and high-accuracymodules performing the light NLP
subtasks are available.

In this paper, we consider light NLP tasks which can
easily be rephrased as classification tasks. Such tasks can
be learned relatively accurately by generic inductive learn-
ing techniques. We show that within this class of tech-
niques, MBL is particularly suited for learning light NLP
tasks rapidly. MBL is in essence a simple learning method
in which examples are massively retained in memory and
similarity between memory examples and new examples is
used to predict the outcomes of new examples. In Section 2
we briefly describe the functioning of MBL in the context of
the TIMBL software package developed at Tilburg Univer-
sity. Section 3 illustrates some of our findings with applying
MBL to three light NLP tasks: text-to-speech conversion,
part-of-speech tagging, and phrase chunking. In Section 4
we provide explanations for the success of applying MBL
to NLP tasks. In Section 5 we mention our ongoing and
planned work with combinations of light modules, and we
conclude by summarizing our findings, and draw some con-
clusions on the feasibility of applying TIMBL to light NLP
tasks.

2. TIMBL: TILBURG MEMORY-BASED
LEARNING

Memory-based learning is founded on the hypothesis that
performance in cognitive tasks (in our case NLP) is based
on reasoning on the basis of similarity of new situations
to stored representations of earlier experiences, rather than
on the application of mental rules abstracted from earlier
experiences (as in rule induction and rule-based process-
ing). The approach has surfaced in different contexts us-
ing a variety of alternative names such as similarity-based,
example-based, exemplar-based, analogical, case-based, in-
stance-based, and lazy learning[23, 7, 17, 2, 3]. Historically,
memory-based learning algorithms are descendants of the



k-nearest neighbor (henceforth k-NN) algorithm [8, 16, 2].

A MBL system, visualized schematically in Figure 1,
contains two components: a learning component which is
memory-based (from which MBL borrows its name), and
a performance component which is similarity-based. The
learning component of MBL is memory-based as it involves
adding training examples to memory; it is sometimes re-
ferred to as ‘lazy’ as memory storage is done without ab-
straction or restructuring. In the performance of an MBL
system, the product of the learning component is used as
a basis for mapping input to output; in the context of per-
forming NLP tasks, this usually takes the form of perform-
ing classification. During classification, a previously unseen
test example is presented to the system. Its similarity to all
examples in memory is computed using a similarity metric,
and the category of the most similar example(s) is used as a
basis for extrapolating the category of the test example.

EXAMPLES
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Figure 1: General architecture of an MBL system.

TIMBL1 is the name of a software package developed
by the ILK group at Tilburg University, containing varia-
tions of the memory-based learning algorithms IB1,IB1-IG,
and MVDM [2, 13, 12, 7], and IGTREE [12], a decision-tree
optimization of memory-based learning. Below, we outline
the functioning of IB1-IG and IGTREE in Subsections 2.1
and 2.2, respectively.

1The TIMBL software package is freely available for research purposes
from the ILK web pages; consult URL http://ilk.kub.nl.

2.1. Weighted MBL in TIMBL: IB1-IG

IB1-IG [13, 12] is a memory-based learning algorithm that
builds a data base of instances (the instance base or case
base) during learning. An instance consists of a fixed-length
vector ofn feature-value pairs, and an informationfield con-
taining the classification of that particular feature-value vec-
tor. After the instance base is built, new (test) instances are
classified by matching them to all instances in the instance
base, and by calculating with each match the distance be-
tween the new instanceX and the memory instance Y .

The most basic metric for patterns with symbolic fea-
tures is the Overlap metric given in equations 1 and 2;
where ��X�Y � is the distance between patterns X and Y ,
represented by n features, wi is a weight for feature i, and
� is the distance per feature. The k-NN algorithm with this
metric, and equal weighting for all features is called IB1 [2].
Usually k is set to 1.

��X�Y � �

nX

i��

wi ��xi� yi� (1)

where:

��xi� yi� � � if xi � yi� else � (2)

We have made two additions to the original algorithm
[2] in our version of IB1. First, in the case of nearest neigh-
bor sets larger than one instance (k � � or ties), our version
of IB1 selects the classification with the highest frequency
in the class distribution of the nearest neighbor set. Sec-
ond, if a tie cannot be resolved in this way because of equal
frequency of classes among the nearest neighbors, the clas-
sification is selected with the highest overall occurrence in
the training set.

The distancemetric in equation 2 simply counts the num-
ber of (mis)matching feature values in both patterns. In the
absence of information about feature relevance, this is a rea-
sonable choice. Otherwise, we can add linguistic bias to
weight or select different features [6] or look at the behavior
of features in the set of examples used for training. We can
compute statistics about the relevance of features by look-
ing at which features are good predictors of the class labels.
Information Theory gives us a useful tool for measuring fea-
ture relevance in this way [19, 20].

Information Gain (IG) weighting looks at each feature
in isolation, and measures how much information it con-
tributes to our knowledge of the correct class label. The
Information Gain of feature f is measured by computing
the difference in uncertainty (i.e. entropy) between the situ-
ations without and with knowledge of the value of that fea-
ture (Equation 3).
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Where C is the set of class labels, Vf is the set of values
for feature f , and H�C� � �

P
c�C P �c� log

�
P �c� is the

entropy of the class labels. The probabilities are estimated
from relative frequencies in the training set. The normal-
izing factor si�f� (split info) is included to avoid a bias in
favor of features with more values. It represents the amount
of information needed to represent all values of the feature
(Equation 4). The resulting IG values can then be used as
weights in equation 1.

The possibility of automatically determining the rele-
vance of features implies that many different and possibly
irrelevant features can be added to the feature set. This is
a very convenient methodology if theory does not constrain
the choice enough beforehand, or if we wish to measure the
importance of various information sources experimentally.

2.2. Optimized MBL in TIMBL: IGTREE

Using information gain rather than Overlap distance to de-
fine similarity in IB1 improves its performance on several
NLP tasks [13, 26, 24]. The positive effect of information
gain on performance prompted us to develop an alternative
approach in which the instance memory is restructured in
such a way that it contains the same information as before,
but in a compressed decision tree structure. In this structure,
instances are stored as paths of connected nodes and leaves
contain classification information. Nodes are connected via
arcs denoting feature values. Information gain is used to de-
termine the order in which instance feature values are added
as arcs to the tree. The reasoning behind this compression
is that when the computation of information gain points to
one feature clearly being the most important in classifica-
tion, search can be restricted to matching a test instance to
those memory instances that have the same feature value as
the test instance at that feature. Instead of indexing all mem-
ory instances only once on this feature, the instance memory
can then be optimized further by examining the secondmost
important feature, followed by the third most important fea-
ture, etc. A considerable compression is obtained as similar
instances share partial paths.

The tree structure is compressed even more by restrict-
ing the paths to those input feature values that disambiguate
the classification from all other instances in the training ma-
terial. The idea is that it is not necessary to fully store an
instance as a path when only a few feature values of the
instance make the instance classification unique. This im-
plies that feature values that do not contribute to the disam-
biguation of the instance (i.e., the values of the features with
lower information gain values than the lowest information

gain value of the disambiguating features) are not stored in
the tree.

Apart from compressing all training instances in the tree
structure, the IGTREE algorithm also stores with each non-
terminal node information concerning the most probable or
default classification given the path thus far, according to
the bookkeeping information maintained by the tree con-
struction algorithm. This extra information is essential when
processing unknown test instances. Processing an unknown
input involves traversing the tree (i.e., matching all feature-
values of the test instance with arcs in the order of the over-
all feature information gain), and either retrieving a clas-
sification when a leaf is reached (i.e., an exact match was
found), or using the default classification on the last match-
ing non-terminal node if an exact match fails.

In sum, it can be said that in the trade-off between com-
putation during learning and computation during classifi-
cation, the IGTREE approach chooses to invest more time
in organizing the instance base using information gain and
compression, to obtain considerably simplified and faster
processing during classification, as compared to IB1 and
IB1-IG.

The generalization accuracy of IGTREE is comparable
to that of IB1-IG; most of the time not significantly differ-
ing, and occasionally slightly (but statistically significantly)
worse or even better. The two reasons for this surprisingly
good accuracy are that (i) most ‘unseen’ instances contain
parts that in fact fully match stored parts of training in-
stances, and (ii) the probabilistic information stored at non-
terminal nodes (i.e., the default classifications) still produce
strong ‘best guesses’ when exact matching fails.

3. MEMORY-BASED LANGUAGE ENGINEERING:
TIMBL APPLICATIONS

Applying MBL algorithms to NLP tasks (which we will re-
fer to henceforth as memory-based language engineering,
MBLE) deviates considerably from traditional, mainstream
approaches to language engineering,most particularly in the
following three aspects:

1. MBLE models can fit themselves to data automati-
cally using domain-independent heuristics (e.g., from
information theory). They are thus essentially task-
independent, language-independent and in principle
independent of expert knowledge, assuming that the
task can be described as a classification problem.

2. Regularities, sub-regularities, and exceptions under-
lying the NLP task at hand are not modeled explicitly,
as is done in traditional rule-based systems, but auto-
matically, using a uniform representation.

3. Analogously, generalization to unseen instances is not
modeled by rules, but by best-guess estimation using



similarity-based reasoning with full memory of all in-
stances of the task that the system has seen during
learning.

MBLE shares these properties with statistical approaches
to NLP. However, because of its computational efficiency
and its non-parametric nature, the approach is better equipped
than current statistical techniques to handle tasks described
with relatively large numbers of features without estimation
problems [29].

As described in the Introduction, MBLE treats NLP tasks
either as light classification tasks, or as decomposed into
multiple light classification subtasks. In this section we il-
lustrate some examples of recent work on MBLE on three
‘light’ NLP tasks: (i) text-to-speech conversion in TREETALK,
(ii) part-of-speech tagging in MBT, and (iii) phrase chunk-
ing in MBC.

3.1. TREETALK: Text-to-speech conversion

The TREETALK system [26, 25, 11, 24] has originally been
designed for isolated word pronunciation, i.e., converting
a written word to its phonemic representation as found in
a pronunciation dictionary, and efforts are underway to ex-
tend it to modeling speech phenomena in texts, such as sen-
tence accents and prosody. In this subsection we concen-
trate on word pronunciation; in the research mentioned we
have applied MBL to word pronunciation in English, Dutch,
Flemish, and French.

We define the word-pronunciation task as the conver-
sion of fixed-sized instances representing a letter and its
context to a class representing the phoneme and, if desired
(i.e., as input to a speech synthesizer), the stress marker as-
sociated with the focus letter. We henceforth refer to the
task as GS, an acronym of Grapheme-phoneme conversion
and Stress assignment. To generate the instances, window-
ing is used [22]. Table 1 displays four example instances (of
English word pronunciation) and their classifications. Clas-
sifications, i.e., phonemes with stress markers, are denoted
by composite labels. For example, the first instance in Ta-
ble 1, hearts, maps to class label 0A:, denoting an elon-
gated short ‘a’-sound which is not the first phoneme of a
syllable receiving primary stress. In this study, we chose a
fixed window width of seven letters, which offers sufficient
context information for adequate performance.

Table 2 lists the generalization accuracy results obtained
with the different languages tested, along with the size of
the dictionary (number of words) that the respective MBL
algorithms were trained and tested on. The accuracy results
indicate the percentages of correctly produced phonemes of
test words. The error levels produced for all three languages
are close to, or fall within, generally accepted boundaries
of error tolerance as input for speech synthesis (viz. 2.5%

Features
Left context Focus Right context Class

h e a r t s 0A:
b o o k i n g 0k
t i e s 0z

a f a r 1f

Table 1: Example of instances of the GS learning task. In-
stances represent fixed-sized snapshots of a focus (a letter),
surrounded by a left and right context (of neighboring let-
ters).

# Words � 1000 % Correct test
Language MBL train test phonemes
Dutch IGTREE 279 31 98.5� 0.04
English IB1-IG 69 7 96.9� 0.09
French IGTREE 18 2 98.3

Table 2: Results for TREETALK on the GS task for different
languages. For each language the algorithm used and the
size of training and test sets is given, as well as generaliza-
tion accuracy.

to 5% errors on phonemes [28]). Thus, MBL of word pro-
nunciation using the simple classification task definition as
displayed in Table 1 leads to systems performing at a high
level of accuracy.

Development of these systems is extremely rapid in the
sense that the time required by the learning component is in
the order of a few seconds or minutes. Data preprocessing
takes some time, depending of the completeness of annota-
tion of the source data. For many languages, well-annotated
electronic pronunciation dictionaries are available that can
be used for this purpose directly; for example, our English
and Dutch data was extracted from the CELEX lexical data
base [4]. Preprocessing of this type of data typically does
not take more than a few days.

3.2. MBT: Part-of-speech tagging

The MBT tagger-generator [15, 14] takes an annotated cor-
pus as input, and produces a lexicon and memory-based
part-of-speech (POS) tagger as output. The problem of POS
tagging (morphosyntactic disambiguation) is the following:
given a text, provide for each word in the text its contex-
tually disambiguated part of speech (morphosyntactic cat-
egory). I.e. transform a string of words into a string of
tags. E.g., in the sentence “They can can a can”, the word
can is tagged as a modal verb, main verb, and noun respec-
tively. The target category inventory (tag set) may range
from extremely simple (order 10) to extremely complex (or-
der 1000). Tagging is a difficult task because of the massive



word case representation
d d f a t

Pierre = = np np np
Vinken = np np , np
, np np , cd ,
61 np , cd nns cd
years , cd nns jj-np nns
old cd nns jj-np , jj

Table 3: Example of instances of the POS learning task
(known words case base). Instances represent fixed-sized
snapshots of a focus (an ambiguous tag), surrounded by a
left and right context (of disambiguated tags on the left, and
ambiguous tags on the right).

ambiguity in natural language text. An accurate tagger is
instrumental in a large number of language engineering ap-
plications (ranging from text-to-speech over parsing to in-
formation retrieval). We will refer to this task as the POS
task.

The construction of a POS tagger for a specific corpus is
achieved in the following way. Given an annotated corpus,
three data structures are automatically extracted: a lexicon
(associating words to possible tags as evidenced in the train-
ing corpus), a case base for known words (words occurring
in the lexicon), and a case base for unknown words. Case
Bases are compressed using IGTREE for efficiency. Dur-
ing tagging, each word in the text to be tagged is looked
up in the lexicon. If it is found, its lexical representation
is retrieved and its context is determined, and the resulting
pattern is disambiguated using extrapolation from nearest
neighbors in the known words case base. When a word is
not found in the lexicon, its lexical representation is com-
puted on the basis of its form, its context is determined, and
the resulting pattern is disambiguated using extrapolation
from nearest neighbors in the unknown words case base. In
each case, output is a best guess of the category for the word
in its current context.

For known words, cases consist of information about a
focus word to be tagged, its left and right context, and an
associated category (tag) valid for the focus word in that
context. For unknown words, a tag can be guessed only on
the basis of the form or the context of the word. In our lazy
learning approach, we provide word form information (es-
pecially about suffixes) indirectly to the tagger by encoding
the three last letters of the word as separate features in the
case representation. The first letter is encoded as well be-
cause it contains information about prefix and capitalization
of the word. Context information is added to the case rep-
resentation in a similar way as with known words.

Table 3 and 4 display example instances from the known
words and the unknown words case bases respectively.

For English, the complete tagger generation process was
performed on a 2 million words training set (lexicon con-

word case representation
p d a s s s t

Pierre P = np r r e np
Vinken V np , k e n np
61 6 , nns = 6 1 cd
years y cd jj-np a r s nns
old o nns , o l d jj

Table 4: Example of instances of the POS learning task (un-
known words case base). Instances represent ‘morpholog-
ical’ information about the focus word (first letter and the
three last letters), surrounded by a left and right context (of
one disambiguated tags on the left, and one ambiguous tag
on the right).

Tag-set # Words � 1000 % Correct test
Language size train test words
Dutch 13 611 100 95.7
English 44 2000 200 96.4
Spanish 484 711 89 97.8
Czech 42 495 100 93.6

Table 5: Results for the POS task for different languages.
The size of the tag-set used, the size of train and test set
and the generalization accuracy (combines known and un-
known) are given. All taggers use the IGTREE algorithm.

struction and known and unknown words case-base con-
struction), and tested on 200,000 test words, both from the
Penn Treebank tagged [18]Wall Street Journal corpus. Gen-
eralization performance on knownwords (96.7%), unknown
words (90.6%), and total (96.4%) is competitive with al-
ternative hand-crafted and statistical approaches, and both
training and testing speed are excellent (text tagging is pos-
sible with a speed of 1200 words per second). In this case,
the use of IGTrees as a heuristic approximation to IB-IG did
not result in a loss of generalization accuracy while at the
same time accounting for a spectacular decrease in memory
and time consumption: IGTree retrieval is 100 to 200 times
faster than IB-IG retrieval, and uses over 95% less memory.

As with the text-to-speech application, tagger develop-
ment time with these methods is rapid once a suitable anno-
tated training corpus is available. Currently, the MBT ap-
proach has been applied to Dutch [14], English [15], Span-
ish (CRATER Multi-Lingual Aligned Corpus), and Czech
(An annotated corpus of newspaper texts from the Institute
for the Czech Language). The results are shown in Table 5.

3.3. MBC: Chunking and Bracket Prediction

Phrase chunking is defined as the detection of boundaries
between phrases (e.g., noun phrases, verb phrases) in sen-
tences. Chunking can be seen as light parsing. In this sec-



tion we present two applications of MBL to light parsing:
NP chunking, and the more complicated task of bracket pre-
diction.

InNP chunking sentences are segmented into non-recursive
NP’s, so called baseNP’s [1]. NP chunking can e.g. be used
to reduce the complexity of sub-sequential parsing, or to
identify named entities for information retrieval. To per-
form this task, we used the baseNP tag set as presented
in [21]: I for inside a baseNP, O for outside a baseNP, and
B for the first word in a baseNP following another baseNP.
As an example, the IOB tagged sentence: “The/I postman/I
gave/O the/I man/I a/B letter/I ./O” will result in the follow-
ing baseNP bracketed sentence: “[The postman] gave [the
man] [a letter].” We applied IB1-IG and IGTREE to a cor-
pus of Wall Street Journal text from the parsed Penn Tree-
bank [18] corpus, using the same train and test set as [21].
A case is constructed for each focus word. The features are
words and POS tags of the focus and adjacent words. In
one test we used Ramshaw &Marcus’ tags as assigned by a
Brill tagger [5], and in another test we used the tags assigned
by MBT as discussed in section 3.2. As can be seen in the
upper half of table 6, the results are comparable, although
Ramshaw &Marcus’ error-driven transformation-based ap-
proach slightly outperforms the memory-based methods. In
a second experiment the IOB tags that were predicted in the
first experiment were added as features of the context words
for a second stage learner. Using IGTREE this improved the
correct score up to 98.0%, see the lower part of table 6. Such
a high accuracy combined with the speed of IGTREE offers
an attractive preprocessing stage for parsing.

In bracket prediction a full parse tree is approximated
by combination of local predictions. The task is to predict
the sequence of (closing and opening) brackets preceding
a word. Closing all pending open brackets at the end of
the sentence suffices to construct an unlabeled parse tree of
the sentence out of the sequence of predictions. The input
of the bracket predictor is a tagged sentence (e.g. The/DT
men/NN liked/VBD him/PP), the output an unlabeled, brack-
eted sentence (e.g. [[[The ][men ]][[liked ][[him ]]]].). The
work on this task is still in progress, although the prelim-
inary results show that the ’light module’ approach can be
taken to interesting length. As a training set we used four
sections of parsed WSJ text, and we tested on another sec-
tion. Again, a case is constructed for each focus word with
locally adjacent words and POS tags as features. The ex-
periment shows that the bracket prediction task, while in-
tuitively different from the classification paradigm (i.e. the
number of different classes is unbounded, in theory) and
rather complex, produces over 80% correctly predicted bracket
sequences and around 25% sentences correct (exact unla-
beled match).

% Correct test
Algorithm POS tagger second phase words
R&M Brill – 97.4
IB1-IG Brill – 97.2
IB1-IG MBT – 97.3
IGTREE MBT – 96.8
IGTREE MBT IOB 98.0

Table 6: Results of NP chunking, on the same dataset as
Ramshaw and Marcus (1996), their results are given in row
1. The measured score is percentage correct predicted IOB-
tags. IOB in the column “second phase” indicates that IOB
predictions of surrounding words are taken into account as
features for a second phase (see text).

4. WHY MBL WORKS FOR NLP TASKS

We presented MBLE applications that show sufficient to ex-
cellent generalization performance on NLP tasks that can be
considered light, but are relatively complex in their own
right. Furthermore, we showed that they could be devel-
oped rapidly as soon as data is available. In this section we
provide arguments in favor of using MBL algorithms over
other generic learning algorithms, specifically decision-tree
learning. The arguments relate to inherent characteristics of
NLP data in general.

One of the most salient characteristics of natural lan-
guage processing mappings is that from the point of view
of a rule-based approach to the task, these mappings are
noisy and complex with, apart from some regularities, also
many sub-regularities and (pockets of) exceptions. In other
words, apart from a core of generalizations, there is a rel-
atively large periphery of irregularities [10]. In rule-based
NLP, this problem has to be solved using mechanisms such
as rule ordering, subsumption, inheritance, or default rea-
soning (in linguistics this type of “priority to the most spe-
cific” mechanism is called the elsewhere condition). In the
feature-vector-based classification approximations of these
complex language processing mappings, as employed by
MBLE, this property is reflected in the high degree of dis-
junctivity of the instance space: classes exhibit a high de-
gree of polymorphism. One way to visualize this disjunctiv-
ity is by looking at the average number of friendly neighbors
for each instance in a leave-one-out experiment [27].

For each instance in the GS, POS, and CHUNK data sets a
distance ranking of the 50 nearest neighbors to an instance
was produced. In case of ties in distance, nearest neighbors
with an identical class as the left-out instance are placed
higher in rank than instances with a different class. Within
this ranked list we count the ranking of the nearest neigh-
bor of a different class. This rank number minus one is
then taken as the cluster size surrounding the left-out in-
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Figure 2: Cumulative percentages of occurrences of
friendly-neighbor clusters of sizes 0 to 45, as found in the
GS, POS, and NP data sets.

stance. If, for example, a left-out instance is surrounded
by three instances of the same class at distance 0.0 (i.e., no
mismatching feature values), followed by a fourth nearest-
neighbor instance of a different class at distance 0.3, the
left-out instance is said to be in a cluster of size three. The
results of the three leave-one-out experiments are displayed
graphically in Figure 2. The x-axis of Figure 2 denotes the
numbers of friendly neighbors found surrounding instances;
the y-axis denotes the cumulative percentage of occurrences
of friendly-neighbor clusters of particular sizes.

The cumulative percentage graphs in Figure 2 display
that for the case of the GS task, many instances have only
a handful of friendly neighbors; 59.9 % of the GS instances
have five friendly neighbors or less, while 35.8 % has no
friendly neighbors at all. Instances of the POS and the NP
task tend to havemore friendly neighbors surrounding them.
In sum, the GS task appears to display very high disjunctiv-
ity (i.e., a high degree of polymorphism) of its 159 classes;
for the other two tasks, disjunctivity appears to be slightly
lower, but still the classes are scattered across many uncon-
nected clusters in the instance space.

Given these properties of NLP datasets, a learningmethod
should be able to represent and recognize the ‘different faces’
of the categories to be learned, in order to be useful. MBL
is particularly well-suited for this task, as it is based on the
premise that all information in the training data is poten-
tially relevant. The information-gain weighted similarity
metric used in IB1 and approximated by IGTREE has the fol-
lowing two effects: (i) the more overlap there is with a new
pattern to be classified, the more chance a training item has
in contributing to the decision about the category of the new
pattern (this implements a specificity ordering), and (ii) the
information-gain weighting modifies the specificity order-
ing according to the relevance of the parts matching. The

combined effect is that the extrapolation is always based
on the most specific relevant training instances in the train-
ing set (including low-frequency items), and that back-off
to more general relevant instances is automatic [29].

Statistical approaches and eagermachine learningmeth-
ods such as rule and decision tree induction methods on the
other hand, often need to abstract from the infrequent pat-
terns (e.g. by using pruning methods), in order to avoid
overfitting, thereby losing some of the training data as a ba-
sis for extrapolation.
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Figure 3: Percentage correct for two of our datasets plotted
as a function of specificity. Specificity is the distance be-
tween a test item and its nearest neighbor. The distances are
normalized to be between zero and one to make a compari-
son across data sets possible.

Figure 3 shows why this elimination of specific data can
be harmful. In this figure the percentage correct for two of
our datasets is plotted as a function of specificity. The de-
crease of the accuracy seen in the graph clearly confirms the
intuition that an extrapolation from a more specific support
set is more likely to be correct. Reasoning in the other direc-
tion, it suggests that any forgetting of specific information
from the training set will push at least some test items in
the direction of a less specific support set, and thus of lower
accuracy.

5. CONCLUSIONS

We have shown that MBL makes the rapid development of
accurate NLP modules possible. The approach is based on
the definition of light language processing tasks as classifi-
cation problems, on the storage of example classifications,
and the use of similarity-based reasoning and an information-
theoretic relevanceweighting technique for solving new prob-
lems. Efficient approximations of the approach such as IG-
TREE were shown to operate with competitive efficiency
and accuracy, at extremely rapid development times.



We have constructed several of these modules, as de-
scribed in this paper, and are currently extending the ap-
proach to more languages and more NLP tasks (word sense
disambiguation, subcategorization frame induction, light pars-
ing, sentence accent computation, intonation phrase chunk-
ing, structural disambiguation, etc.)2.

A next step in our research strategy is to combine and
integrate several of these light modules into more complex
language processing systems. E.g. we are at present work-
ing on the integration of word pronunciation, POS tagging,
and chunking modules into a sentence-level text-to-speech
system which also computes intonation and sentence ac-
cent, and on a text analysis system which combines tagging,
chunking, subcategorization, and structural disambiguation
modules.

Finally, from the results in this paper and those reported
earlier [10, 24], it appears that the properties of NLP tasks
are such that non-abstracting approaches such as MBL are at
an advantage in learning from the highly disjunctive datasets
typical in NLP in contrast to eager methods such as decision
tree induction and statistical inference.
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