Proceedi ngs LREC wor kshop on adapting | exica
and applications, Ganada, 29-35, 1998
Toward Inductive Lexicons. a Case Study

and corpus resources to subl anguages

Walter Daelemans'?, Gert Durieux?, Antal van den Bosch!

L [LK Research Group 2 CNTS
Computational Linguistics Linguistics
Tilburg University University of Antwerp
The Netherlands Belgium

{wal ter, ant al b}@ub. nl

duri eux@i a. ua. ac. be

Abstract
Machine learning techniques can be used to make lexicons adaptive. The main problems in adaptation are the addition of lexical
material to an existing lexical database, and the recomputation of sublanguage-dependent lexical information when porting the lexicon
to a new domain or application. Inductive lexicons combine available lexical information and corpus data to alleviate these tasks. In this
paper, we introduce the general methodology for the construction of inductive lexicons, and discuss empirical results on a case study

using the approach: prediction of the gender of nouns in Dutch.

1. Introduction

In computational lexicography, lexicons of language en-
gineering applications should come with acceptable lexical
coverage, and with the information necessary for the in-
tended applications. They should also come equipped with
methods for the automatic extension and adaptation of the
lexicon with new or modified lexical entries. Computa-
tional lexicology should therefore try to solve the following
problem:

All computational lexicons are inherently in-
complete because of (i) missing lexical entries,
and (ii) missing information about lexical en-
tries.

On closer inspection, missing lexical entries are not re-
ally a problem: either we do not need them in a particular
application or domain, and then we do not have to know that
they exist, or we do need them, but then we will encounter
at least some of their associated information (probably their
spelling or pronunciation), and we will know some of the
contexts they appear in. In that case, they are not miss-
ing, because this information is sufficient to construct a
surprising amount of additional lexical information if we
have some reasonably-sized corpora and lexical databases
available, as we shall see, even if the latter only contain
few lexical entries. The problem of missing lexical entries
therefore reduces to the problem of extending existing lex-
ical entries with additional information. Also the problem
of the adaptation of lexical information to new domains re-
duces to problem (ii): lexical information has to be recom-
puted.

This paper addresses the automatic extension and adap-
tation of lexicons using machine learning techniques. We
believe that machine learning techniques allow the accurate
prediction of lexical information associated with new lexi-
cal items on the basis of extracted regularities from the lex-
ical information already present in a computational lexicon

in addition to corpus data. We propose a general methodol-
ogy to lexical adaptation, and present a case study: the pre-
diction of the gender of Dutch nouns on the basis of their
spelling.

2. Memory-Based L earning

Although various machine learning paradigms are rel-
evant to the lexical adaptation task, we have obtained par-
ticularly good results with Memory-based Learning (MBL).
This approach to learning is founded on the hypothesis that
performance in cognitive tasks (in our case NLP) is based
on reasoning on the basis of similarity of new situations
to stored representations of earlier experiences, rather than
on the application of mental rules abstracted from earlier
experiences (as in rule induction and rule-based process-
ing). The approach has surfaced in different contexts us-
ing a variety of alternative names such as similarity-based,
example-based, exemplar-based, analogical, case-based, in-
stance-based, and lazy learning(Stanfill and Waltz, 1986;
Cost and Salzberg, 1993; Kolodner, 1993; Aha, Kibler,
and Albert, 1991; Aha, 1997). Historically, memory-based
learning algorithms are descendants of the k-nearest neigh-
bor (henceforth k-NN) algorithm (Cover and Hart, 1967;
Devijver and Kittler, 1982; Aha, Kibler, and Albert, 1991).

A MBL system, visualized schematically in Figure 1,
contains two components: a learning component which is
memory-based (from which MBL borrows its name), and
a performance component which is similarity-based. The
learning component of MBL is memory-based as it involves
adding training examples to memory; it is sometimes re-
ferred to as ‘lazy’ as memory storage is done without ab-
straction or restructuring. In the performance of an MBL
system, the product of the learning component is used as
a basis for mapping input to output; in the context of per-
forming NLP tasks, this usually takes the form of perform-
ing classification. During classification, a previously un-
seen test example is presented to the system. Its similarity
to all examples in memory is computed using a similarity

metric, and the category of the most similar example(s) is
used as a basis for extrapolating the category of the test ex-
ample.

Memory—Based
Learning
Architecture

EXAMPLES

Learning

Storage
Computation of Metrics

OUTPUT

INPUT — = CASES —

Similarity—Based Reasoning
Performance

Figure 1: General architecture of an MBL system.

TIMBL! is the name of a software package developed
by the ILK group at Tilburg University, containing varia-
tions of the memory-based learning algorithms IB1,IB1-IG,
and MVDM (Aha, Kibler, and Albert, 1991; Daelemans and
van den Bosch, 1992; Daelemans, Van den Bosch, and Wei-
jters, 1997; Cost and Salzberg, 1993), and IGTREE (Daecle-
mans, Van den Bosch, and Weijters, 1997), a decision-tree
optimization of memory-based learning. Below, we outline
the functioning of IB1-1G and IGTREE in Subsections and ,
respectively. We believe these algorithms to be especially
suited for NLP problems in general and inductive lexicons
in particular.

2.1. Weighted MBL in TIMBL: IB1-IG

IB1-1G (Daelemans and van den Bosch, 1992; Daele-
mans, Van den Bosch, and Weijters, 1997) is a memory-
based learning algorithm that gathers a data base of in-
stances (the instance base or case base) during learning. An
instance consists of a fixed-length vector of n feature-value
pairs, and an information field containing the classification
of that particular feature-value vector. After the instance
base is built, new (test) instances are classified by matching
them to all instances in the instance base, and by calculat-
ing with each match the distance between the new instance
X and the memory instance Y.

The most basic metric for patterns with symbolic fea-
tures is the Overlap metric given in equations 1 and 2;
where A(X,Y") is the distance between patterns X and Y,
represented by n features, w; is a weight for feature ¢, and
d is the distance per feature. The k-NN algorithm with this

!The TIMBL software package is freely available for research
purposes from the ILK web pages; consult URL http://ilk kub.nl/.

metric, and equal weighting for all features is called 1B1
(Aha, Kibler, and Albert, 1991). Usually k is set to 1.

AX,Y) =Y w; 8(xi, i) 1
i=1
where:
6(zi,yi) =0if zi =y, elsel 2)

We have made two additions to the original algorithm
(Aha, Kibler, and Albert, 1991) in our version of IB 1. First,
in the case of nearest neighbor sets larger than one instance
(k > 1 or ties), our version of IB1 selects the classification
with the highest frequency in the class distribution of the
nearest neighbor set. Second, if a tie cannot be resolved
in this way because of equal frequency of classes among
the nearest neighbors, the classification is selected with the
highest overall occurrence in the training set.

The distance metric in equation 2 simply counts the
number of (mis)matching feature values in both patterns. In
the absence of information about feature relevance, this is
a reasonable choice. Otherwise, we can add linguistic bias
to weight or select different features (Cardie, 1996) or look
at the behavior of features in the set of examples used for
training. We can compute statistics about the relevance of
features by looking at which features are good predictors of
the class labels. Information Theory gives us a useful tool
for measuring feature relevance in this way (Quinlan, 1986;
Quinlan, 1993).

Information Gain (IG) weighting looks at each feature
in isolation, and measures how much information it con-
tributes to our knowledge of the correct class label. The
Information Gain of feature f is measured by computing
the difference in uncertainty (i.e. entropy) between the sit-
uations without and with knowledge of the value of that
feature (Equation 3).

H(C) = ¥ ey, P(v) x H(C|v)
ws = si(f) ®
si(f) =~) P(v)log, P(v) €)

veVy

Where C'is the set of class labels, V7 is the set of values
for feature f, and
H(C) = =} .cc P(c)log, P(c) is the entropy of the class
labels. The probabilities are estimated from relative fre-
quencies in the training set. The normalizing factor si(f)
(split info) is included to avoid a bias in favor of features
with more values. It represents the amount of information
needed to represent all values of the feature (Equation 4).
The resulting IG values can then be used as weights in equa-
tion 1.

The possibility of automatically determining the rele-
vance of features implies that many different and possibly
irrelevant features can be added to the feature set. This is a
very convenient methodology if theory does not constrain
the choice enough beforehand, or if we wish to measure the
importance of various information sources experimentally.

2.2. Optimized MBL in TiMBL: IGTREE

Using information gain rather than Overlap distance to

define similarity in IB 1 improves its performance on several
NLP tasks (Daelemans and van den Bosch, 1992; Van den
Bosch and Daelemans, 1993; Van den Bosch, 1997). The
positive effect of information gain on performance prompted
us to develop an alternative approach in which the instance
memory is restructured in such a way that it contains the
same information as before, but in a compressed decision
tree structure. In this structure, instances are stored as paths
of connected nodes and leaves contain classification infor-
mation. Nodes are connected via arcs denoting feature val-
ues. Information gain is used to determine the order in
which instance feature values are added as arcs to the tree.
The reasoning behind this compression is that when the
computation of information gain points to one feature clearly
being the most important in classification, search can be
restricted to matching a test instance to those memory in-
stances that have the same feature value as the test instance
at that feature. Instead of indexing all memory instances
only once on this feature, the instance memory can then be
optimized further by examining the second most important
feature, followed by the third most important feature, etc.
A considerable compression is obtained as similar instances
share partial paths.

The tree structure is compressed even more by restrict-
ing the paths to those input feature values that disambiguate
the classification from all other instances in the training ma-
terial. The idea is that it is not necessary to fully store an
instance as a path when only a few feature values of the
instance make the instance classification unique. This im-
plies that feature values that do not contribute to the dis-
ambiguation of the instance (i.e., the values of the features
with lower information gain values than the lowest infor-
mation gain value of the disambiguating features) are not
stored in the tree.

Apart from compressing all training instances in the tree
structure, the IGTREE algorithm also stores with each non-
terminal node information concerning the most probable or
default classification given the path thus far, according to
the bookkeeping information maintained by the tree con-
struction algorithm. This extra information is essential when
processing unknown test instances. Processing an unknown
input involves traversing the tree (i.e., matching all feature-
values of the test instance with arcs in the order of the over-
all feature information gain), and either retrieving a clas-
sification when a leaf is reached (i.e., an exact match was
found), or using the default classification on the last match-
ing non-terminal node if an exact match fails.

In sum, it can be said that in the trade-off between com-
putation during learning and computation during classifi-
cation, the IGTREE approach chooses to invest more time
in organizing the instance base using information gain and
compression, to obtain considerably simplified and faster
processing during classification, as compared to 1B1 and
IB1-1G.

The generalization accuracy of IGTREE is comparable
to that of 1B 1-1G; most of the time not significantly differ-
ing, and occasionally slightly (but statistically significantly)
worse or even better. The two reasons for this surprisingly
good accuracy are that (i) most ‘unseen’ instances contain
parts that in fact fully match stored parts of training in-

stances, and (ii) the probabilistic information stored at non-
terminal nodes (i.e., the default classifications) still produce
strong ‘best guesses’ when exact matching fails.

Because of the positive trade-off between storage and
processing speed and accuracy, IGTREE is eminently suited
as an implementation of the inductive lexicon concept, to
which we turn now.

3. Inductive L exicons

In its most general formulation, a computational lexicon
is a set of lexical entries, and a lexical entry a set of predi-
cates about some linguistic object. E.g. the lexical entry for
a linguistic object labeled RED could be

pronunciation(RED) /’rEd/
spelling(RED) red
syncat(RED) (ADJ N)

Lexical entries can correspond to various linguistic types
of units: morphemes, base forms of words, word forms, id-
ioms, phrases. The predicates can represent various types
of linguistic knowledge: orthographic (spelling variants,
hyphenation positions), phonetic/phonological (pronuncia-
tion representation, word stress pattern, syllable structure),
morphological (morphological structure), syntactic (argu-
ments, syntactic category, agreement features, even com-
plete associated lexicalised syntactic trees as in Tree Ad-
joining Grammar), semantic/pragmatic (case frames, selec-
tion restrictions, semantic and pragmatic features). Lexi-
cal predicates may also refer to extra-linguistic knowledge
(e.g. domain concepts). Rules for the derivation of lexical
properties would normally be taken as part of the different
linguistic domains they refer to, but in some lexicon archi-
tectures, these rules can belong conceptually to the lexicon
as well.

The basic idea behind inductive lexicons is to use an
available lexicon (however small), and, if available, a cor-
pus, as a source to bootstrap lexical acquisition. Lexical
predicates of newly encountered words are computed by
reference to similar words previously encountered, for which
the lexical information wanted is available. Depending on
the lexical information to be predicted for the new word,
different sources of information about the word are used as
predictors.

Consider the following example. We have a small lexi-
con of word forms with their spelling, their pronunciation,
and their possible syntactic categories. For each word in
the lexicon we also have an index to positions in the corpus
where that word occurs. Given a word for which no lexi-
cal information is available yet, we have its form (spelling)
and its occurrences and context in the corpus as informa-
tion. To compute lexical predicates for the new word, we
can bootstrap from the available lexical information:

(i) to determine its possible syntactic categories: find known
words which have a similar form (spelling, phonol-
ogy) and a similar syntactic behavior (i.e. occur in
similar syntactic contexts, given some operational-
ization of syntactic context), and extrapolate from
their category,

(ii) to determine its pronunciation, extrapolate from known
words in the lexicon with a spelling similar to the new
word, to the pronunciation of that new word.

In this approach, therefore, an unknown target predi-
cate of a lexical entry is predicted on the basis of known
lexical predicates of the lexical entry itself, known target
predicates and other predicates of other lexical entries, and
(sometimes) also from corpus information (e.g. the con-
texts the lexical entry is found to occur in).

For each lexical predicate to be predicted (the target
predicate), it is decided which sources of information (other
lexical predicates or operationalisable corpus information)
are relevant in its prediction. These sources of information
are represented in terms of a feature-value vector. The next
step is the construction of a classifier using e.g. MBL induc-
tion. The training material for this classifier is built from
those lexical entries for which the target predicate is known.
For each of these entries the input features and the asso-
ciated output category (the target predicate) are collected,
and this is used as training material for training the clas-
sifier. Inductive lexicons are neutral as far as lexical rep-
resentation formalism is concerned. The only addition is
the construction of a classifier for each lexical predicate (as
far as it makes sense to try to predict that particular predi-
cate). When using eager learning methods such as decision
tree or rule induction, this classifier is an actual data struc-
ture; when using a lazy learning method (such as memory-
based learning), the ‘extracted’ classifier is conceptual; the
classification is done dynamically as needed from the lex-
ical entries themselves, rather than from a data structure
extracted from them. In sum, inductive lexicons fit a super-
vised learning paradigm, and can be either eager or lazy. In
case of lazy learning, they are incremental, taking into ac-
count immediately any lexical entries added to the lexicon
in predicting new lexical predicates, whereas eager learning
methods call for explicit retraining when new lexical entries
are added. However, incremental variants of decision tree
learning also exist.

In the remainder of this section, we will illustrate the
feasibility of this inductive lexicon architecture by means
of a recent case study.

3.1. Gender Prediction

This case study will focus on a rather surprising use of
phonological information in a syntactic problem domain:
gender assignment in Dutch. It shows that information which
at first sight should be added to lexicons by hand, can in
some cases be usefully predicted from other lexical infor-
mation (in this case phonology).

Genders form an important part of lexical structure and
denote classes of nouns which can be distinguished syn-
tactically by the agreements they take; agreeing elements
(or agreement targets) are e.g. articles, demonstratives, ad-
jectives or verbs. Under a sufficiently broad definition of
agreement?, control of anaphoric pronouns by their ante-
cedent is covered as well, which is not without importance

’E.g. “some systematic covariance between a semantic or for-
mal property of one element and a formal property of another”
(Steele, 1978).

for Dutch. Historically, Dutch had a three-gender system,
distinguishing the traditional categories of masculine, fem-
inine and neuter (Dekeyser, 1980). Currently, the system
is shifting towards a two-gender system, where the distinc-
tion between masculine and feminine is lost, and only the
neuter/non-neuter opposition persists, as can be witnessed
from Table 1.

Table 1: Agreement targets within singular NPs

article demonstrative adjective
M de deze die -e
F de deze die -e
N het dit dat 0

Remnants of the three gender system, however, are still
observed with pronominal anaphora, as Table 2 shows. Al-
though in The Netherlands the masculine/feminine distinc-
tion is only preserved when the antecedents denote persons
(male/female respectively)?, in Flanders the opposition ex-
tends to non-human antecedents as well.

Table 2: Pronominal agreement targets (singular)

personal possessive relative
M hij zijn die
F zj haar die
N het zijn dat

Thus, gender identification, as exemplified by Dutch
above, is ultimately a syntactic matter. Nevertheless, syntax
may not always provide the necessary cues: consider e.g. a
Natural Language Understanding system for Dutch, where
the pronoun resolution component is faced with a feminine
pronoun, while possible antecedents can only be diagnosed
as non-neuter on the basis of agreement evidence. Clearly,
proper assignment of the relevant items to their respective
genders would be an important step towards disambigua-
tion. Appropriate gender information in computational lex-
icons would therefore be an asset.

This problem of gender assignment is, of course, well-
known and has traditionally been handled by the formu-
lation of gender assignment rules (Corbett, 1991), which
draw upon a number of different information sources: in
semantics-based gender systems, meaning is sufficient to
determine gender; here, oppositions such as animate/inan-
imate, human/non-human, etc. assign words to their respec-
tive genders. In morphological systems, word structure
(both derivational and/or inflectional) is an important factor
in gender assignment. In phonological systems, finally, the
sound shape of a single wordform reliably indicates gender.
The rule-based approach, however, is not without problems
of its own. First, although all assignment systems are taken
to have at least a semantic core, most languages employ

3For non-human antecedents, the masculine forms are used.

different combinations of assignment criteria, which ren-
ders the identification of adequate rules difficult. Second,
most assignment rules cover only specific portions of the
lexicon, and complete coverage of the lexicon by the whole
rule set is often not attained. Finally, varying numbers of
exceptions exist, and having to list them separately begs the
question of lexicon extension. For Dutch, a number of gen-
der assignment rules have been formulated (Geerts et al.,
1984), but none of them are entirely satisfactory. This has
led some researchers to flatly deny the possibility of solving
the gender assignment problem for Dutch: “The relation-
ship between article and noun in Dutch is, except for a few
exceptions, more or less arbitrary: the form the article takes
is not systematically determined by any phonological, mor-
phosyntactic, semantic, or conceptual features of the noun.”
(Deutsch and Wijnen, 1985).

To take up the challenge within the context of Induc-
tive Lexicons, we conducted some exploratory experiments
with MBL. The only assumptions made in constructing the
classifier were that gender and phonological information
are available (or can be obtained) for a sizeable part of the
noun lexicon. Building on the observation that, crosslin-
guistically, there is often considerable overlap among var-
ious types of assignment criteria, the expectation was that
—pace (Deutsch and Wijnen, 1985)—phonological infor-
mation should make at least some headway in supplying
gender information for unknown lemmata.

1. Data was extracted from the CELEX (Baayen, Piepen-
brock, and Van Rijn, 1993) lexical database. Two se-
ries of 3 experiments were carried out, one for each
relevant gender distinction. Experiments 1-3 involved

6090 noun lemmas; target categories were Masculine),

F(eminine), N(euter). Experiments 4—6 involved 7651
noun lemmas); here, target categories were DE and
HET, for non-neuter and neuter resp. For each of the
two series, the number of features was gradually in-
creased over the three experiments: the simplest en-
coding (Experiments 1 and 4) only used onset, nu-
cleus, and coda of the final syllable as features. For
Experiments 2 and 5, onset, nucleus and coda of the
initial syllable was added. Finally, for Experiments 3
and 6, the stress pattern and number of syllables were
included as well, yielding a total of eight features per
input example. An overview of the different encod-
ings is given in Table 3.

Table 3: Encodings for Experiments 1-6

feature Expl Exp2 Exp3 Exp4 Exp5 Exp6
Onset last +
Nucleus last +
Coda last +
Onset first —
Nucleus first —
Coda first -
Stress - -
Syllables —

++++++
++++ 4+t

++ 4+ +++
++ 4+t

2. All tests were run with IB1-1G (Daelemans and Van
den Bosch, 1992), basic memory-based learning aug-
mented with information gain for feature weighting,
using a single nearest neighbor. The test regime was
leave-one-out. Results for the experiments are dis-
played in Tables 4 and 5*. From Table 4 it can be
seen that the three-way gender distinction remains
fairly well predictable, even though agreement mark-
ing for this distinction is disappearing from the lan-
guage. The overall success rates are situated around
84%, which is significantly better than the claims
of “arbitrariness of the Dutch gender system” would
lead one to suspect. For the individual target cate-
gories, F is predicted best, with success scores around
90%, while the other two target categories reach scores
of about 80%. Augmenting the number of features
increases predictive accuracy.

Table 4: Success rates for Experiments 1-3

target Expl Exp2 Exp3
M 7999% 80.26% 81.54%
F 89.03% 8891% 91.97%
N 81.58% 81.96% 80.75%
total 83.15% 8335% 84.30%

Table 5: Success rates for Experiments 4—-6

target Exp4 Exp5 Exp6
DE 90.25% 90.49% 91.00%
HET 76.17% 7726% 78.04%
total 86.37% 86.84% 87.65%

The results from Table 5 for the two-way distinc-

tion confirm the previous finding that augmenting the

number of features yields higher success rates. Over-

all success rates are higher than for the previous ex-

periment, with about 87% correct predictions; suc-

cess rates for the individual target categories are com-

parable: around 90% for DE (non-neuter) and (slightly
under) 80% for HET (neuter).

Even though these experiments were largely exploratory
in nature, and little effort was made to maximize perfor-
mance, the results indicate that an Inductive Lexicon ap-
proach to this problem is feasible. Whether these results are
good enough to warrant practical application remains to be
seen, although a glance at the confusion matrix for Experi-
ment 3 (Table 6) might be instructive. Returning to our pro-
noun resolution problem from the introduction to this sec-
tion, the main difficulty resided in the masculine/feminine
distinction, for which agreement evidence within NPs is

*Exhaustive comparative experiments with IGTREE and C4.5
are subject of current work. Preliminary results indicate that
IGTREE performs overall slightly worse than IB1-1G

lacking. It is precisely for this distinction that the classi-
fier makes relatively few errors.

Table 6: Confusion matrix for Experiment 3

target predicted

M F N
M — 77 339
F 74 — 68
N 311 87 —

4. Conclusion

In this paper we introduced a machine learning solution
to the problem that computational lexicons are never com-
plete, and that to be useful, computational lexicons should
have adaptive properties. Inductive Lexicons associate with
each lexical predicate in the lexicon a classifier (a trained
performance system) which makes it possible to compute
this predicate for new lexical entries. Inductive Lexicons
bootstrap on the knowledge implicit in the lexical entries al-
ready present in the lexicon (however small it may be), and
if present, on information from corpora. We have shown on
the basis of a case study that the approach is feasible.

We are well aware that a single successful case study
does not prove the viability of an idea. However, in our
research groups in Antwerp and Tilburg, several relevant
lexical acquisition results have been obtained in different
contexts with the same algorithms: assignment of syllable
structure (Daelemans and van den Bosch, 1992), spelling-
to-phonetics translation (Daelemans, Van den Bosch, and
Weijters, 1997), word stress assignment (Daelemans, Gillis,
and Durieux, 1994), various morphological problems (Daele-
mans, Berck, and Gillis, 1997; Van den Bosch, Daelemans,
and Weijters, 1996), and as yet unpublished results for sub-
categorisation. Also in acquiring the interaction of con-
textual and lexical information, good results were obtained
with part of speech tagging (Daelemans et al., 1996), PP-
attachment (Zavrel, Daelemans, and Veenstra, 1997), word
sense disambiguation, and chunking (partial parsing). Al-
though many lexical features are much more structured and
complex than the gender feature, the experiments mentioned
in this paragraph show that by reformulating complex ac-
quisition tasks as (cascades of) classification tasks, our ma-
chine learning methods are applicable to them.

5. Acknowledgements

This research was partially performed in the context
of the “Induction of Linguistic Knowledge” research pro-
gramme, partially supported by the Foundation for Lan-
guage Speech and Logic (TSL), funded by the Netherlands
Organization for Scientific Research (NWO). The research
is also partially funded by a grant from the Flemish Govern-

ment (Concerted Research Action University of Antwerp
on Computational Psycholinguistics).

6. References

Aha, D. W., D. Kibler, and M. Albert. 1991. Instance-
based learning algorithms. Machine Learning, 6:37—
66.

Aha, D. W. 1997. Lazy learning: Special issue editorial.
Artificial Intelligence Review, 11:7-10.

Baayen, R. H.,R. Piepenbrock,and H. van Rijn. 1993. The
CELEX lexical data base on CD-ROM. Linguistic Data
Consortium, Philadelphia, PA.

Cardie, C. 1996. Automatic feature set selection for case-
based learning of linguistic knowledge. In Proc. of
Conference on Empirical Methods in NLP. University
of Pennsylvania.

Corbett, G. 1991. Gender. Cambridge Textbooks in Lin-
guistics. Cambridge University Press, Cambridge, UK.

Cost, S. and S. Salzberg. 1993. A weighted nearest
neighbour algorithm for learning with symbolic fea-
tures. Machine Learning, 10:57-78.

Cover, T. M. and P. E. Hart. 1967. Nearest neighbor
pattern classification. Institute of Electrical and Elec-

tronics Engineers Transactions on Information Theory,
13:21-27.

Daelemans, W., S. Gillis, and G. Durieux. 1994. The ac-
quisition of stress: a data-oriented approach. Computa-
tional Linguistics,20(3):421-451.

Daelemans, W. and A. Van den Bosch. 1992. A neural net-
work for hyphenation. In I. Aleksander and J. Taylor,
editors, Artificial Neural Networks 2, volume 2, pages
1647-1650, Amsterdam. North-Holland.

Daelemans, W., A. Van den Bosch, and A. Weijters. 1997.
IGTree: using trees for compression and classification in

lazy learning algorithms. Artificial Intelligence Review,
11:407-423.

Daelemans, W., P. Berck, and S. Gillis. 1997. Data mining
as a method for linguistic analysis: Dutch diminutives.
Folia Linguistica, XXXI(1-2).

Daelemans, W. and A. van den Bosch. 1992. Generalisa-
tion performance of backpropagation learning on a syl-
labification task. In M. F. J. Drossaers and A. Nijholt,
editors, Proc. of TWLT3: Connectionism and Natural
Language Processing, pages 27-37, Enschede. Twente
University.

Daelemans, W., J. Zavrel, P. Berck, and S. Gillis. 1996.
MBT: A memory-based part of speech tagger genera-
tor. In E. Ejerhed and I.Dagan, editors, Proc. of Fourth
Workshop on Very Large Corpora, pages 14-27. ACL
SIGDAT.

Devijver, P. A. and J. Kittler. 1982. Pattern recognition. A
statistical approach. Prentice-Hall, London, UK.

Dekeyser, X. 1980. The diachrony of the gender systems
in english and dutch. In J. Fisiak, editor, Historical
Morphology,number 17 in Trends in Linguistics: Stud-
ies and Monographs. Mouton, The Hague, The Nether-
lands, pages 97-111.

Deutsch, W. and F. Wijnen. 1985. The article’s noun and
the noun’s article: explorations into the representation
and access of linguistic gender in dutch. Linguistics,
23:793-810.

Geerts, G., W. Haeserijn, J. de Rooij, and M. C.
van den Toorn, editors. 1984. Algemene Neder-
landse Spraakkunst. Wolters-Noordhof, Groningen,
The Netherlands.

Kolodner, J. 1993. Case-based reasoning. Morgan Kauf-
mann, San Mateo, CA.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann, San Mateo, CA.

Quinlan,J.R. 1986. Induction of Decision Trees. Machine
Learning, 1:81-206.

Stanfill, C. and D. Waltz. 1986. Toward memory-based
reasoning. Communications of the ACM, 29(12):1213—
1228, December.

Steele, S. 1978. Word order variation: a typology study.
InJ. H. Greenberg, C. A. Ferguson, and E. A. Moravc-
sik, editors, Universals of Human Language, volume 4.
Stanford University Press, Stanford, pages 585-623.

Van den Bosch, A. 1997. Learning to pronounce written
words: A study in inductive language learning. Ph.D.
thesis, Universiteit Maastricht.

Van den Bosch, A. and W. Daelemans. 1993. Data-
oriented methods for grapheme-to-phoneme conver-
sion. In Proceedings of the 6th Conference of the EACL,
pages 45-53.

Van den Bosch, A., W. Daclemans, and A. Weijters. 1996.
Morphological analysis as classification: an inductive-
learning approach. In K. Oflazer and H. Somers, ed-
itors, Proceedings of the Second International Confer-
ence on New Methods in Natural Language Processing,
NeMLaP-2, Ankara, Turkey, pages 79-89.

Zavrel, J., W. Daelemans, and J. Veenstra. 1997. Resolv-
ing PP Attachment Ambiguities with Memory-Based
Learning. In M. Ellison (Ed.), Proceedings of the
Workshop on Computational Natural Language Learn-
ing (CoNLL’97),Madrid, 1997, pages 136-144.

