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ABSTRACT

Word pronunciation can be learned by inductive ma-
chine learning algorithms when it is represented as a
classification task: classify a letter within its local word
context as mapping to its pronunciation. On the ba-
sis of generalization accuracy results from empirical
studies, we argue that word pronunciation, particu-
larly in complex spelling systems such as that of En-
glish, should not be modelled in a way that abstracts
from exceptions. Learning methods such as decision
tree and backpropagation learning, while trying to ab-
stract from noise, also throw away a large number of
useful exceptional cases. Our empirical results suggest
that a memory-based approach which stores all avail-
able word-pronunciation knowledge as cases in memory,
and generalises from this lexicon via analogical reason-
ing, is at all times the optimal modelling method.

1. INTRODUCTION

Word pronunciation can be learned by inductive ma-
chine learning algorithms when it is phrased as a classi-
fication task: classify a letter within its local word con-
text as mapping to its pronunciation (e.g., phonemes
and stress markers). Learning cases are drawn from
a (preferrably large) pronunciation lexicon. Standard
learning paradigms that have been applied to this type
of classification-rephrasing of the word pronunciation
task include error back-propagation in multi-layered
perceptrons [12, 15] and decision-tree learning [8]. Both
methods abstract from the learning material by com-
pressing it into a data structure that can be used to
classify new cases. The abstraction capacities of both
artificial neural networks and decision trees are often
highlighted as the cause for the relative success of both
approaches, also on this task [15, 8]. However, several
studies have been published that challenge this claim
[19, 18, 7], by demonstrating that memory-based learn-
ing approaches yield superior accuracy to both back-
propagation and decision-tree learning. In word pro-
nunciation, each atypical spelling-pronunciation map-

ping is potentially a productive one: the word it oc-
curs in (or a morphologically derived or inflected form)
may always reoccur later on. Abstracting methods that
delete noise tend to delete productive atypicalities as
well.

In the memory-based learning approach, examples
(cases) of word pronunciations (which, as in [15], take
the form of a letter surrounded by some left and right
neighbour letters, coupled with its associated pronun-
ciation) are simply stored in memory. After training,
pronunciations of new words can be constructed by de-
composing the new word in similarly-formatted cases,
and matching these cases to those in memory. Exact
matches occur with cases from words that were also in
the learning material, but also with words that are in
part similar to learned words, since cases represent only
parts of words. In these cases, the memorised pronunci-
ation is simply copied. When no exact match between
cases is available, because one or more letters mis-
match, the typical memory-based learning algorithm
performs an analogical reasoning step by searching for
the most similar case or group of cases in memory, and
extrapolating its class to the new case. Memory-based
models of word pronunciation can thus be seen as ”gen-
eralizing” or ”inductive” lexicons: they can fully repro-
duce the information that was originally in the lexicon
used for training, but at the same time they can ex-
trapolate best-guess pronunciations for new words.

In this paper we review the results obtained in ex-
periments in which four abstracting machine learning
algorithms are applied to English word pronunciation,
in comparison to a standard pure memory-based learn-
ing algorithm.

2. EMPIRICAL STUDIES

We synthesize the results obtained in previously re-
ported and new experiments in which abstracting ma-
chine learning algorithms are applied to English word
pronunciation, in comparison to a pure memory-based
learning algorithm 1B1-1G [3]. Before reporting on re-
sults in Subsection 2.3., we briefly introduce the En-



Features
Left context Focus Right context | Class
1 2 3 4 5 6 7 label
- h e a rot s 0A:
o o k i n g 0k
t i e s - - - 0z
- a f a r - 1f

Table 1. Cases of the word pronunciation learning task.

glish word-pronunciation data used in all experiments
in Subsection 2.1., and we describe 1B1-1G in Subsec-
tion 2.2.

2.1. Data set characteristics

As sketched in the introductory section, we define the
word-pronunciation task as the conversion of fixed-
sized cases representing a letter in its local word con-
text to a class representing the phoneme and the stress
marker of that letter. To generate the cases, windowing
is used [15]. Table 1 displays four cases and their clas-
sifications. Classifications, i.e., phonemes with stress
markers, are denoted by composite labels. For exam-
ple, the first case in Table 1, _hearts, maps to class label
0A:, denoting an elonged short ‘a’-sound which is not
the first phoneme of a syllable receiving primary stress.
In this study, we chose a fixed window width of seven
letters, which offers sufficient context information for
adequate generalization performance [16]. From CELEX
[2] we extracted, on the basis of its lexical data base of
77,565 words with their corresponding phonemic tran-
scription with stress markers, a data base containing
675,745 cases. The number of classes (i.e., all possible
combinations of phonemes and stress markers) occur-
ring in this data base is 159.

2.2. Memory-based learning in IB1-IG

1B1-1G [4, 6] is a lazy learning algorithm that builds
a data base of cases (the case base) during learning.
A case consists of a fixed-length vector of n feature-
value pairs (letters), and information field containing
the classification of that particular feature-value vec-
tor (stress + phoneme). After the case base is built,
new cases are classified by matching them to all cases
in the case base, and by calculating with each match
the distance between the new case X and the memory
case Y, A(X,Y) = 3" | w; 8(z;,y;), where n is the
number of features, w; is a weight for feature i, and
0 =01if z; = vy;, else 1 is the distance per feature.
Classification in memory-based learning is performed
by the k-NN algorithm, that searches for the k ‘near-
est neighbors’ (best-matching cases) of a new case us-
ing the A(X,Y) function. The majority class of the
k nearest neighbours then determines the class of the

new case. Usually, and in our experiments, k is set to
1.

The weight (importance) of a feature ¢, w;, is esti-
mated by computing its information gain (IG), which
is the difference in uncertainty (entropy) within the
set of cases between the situations without and with
knowledge of the value of that feature: w; = H(C) —
> vev, P(v) x H(C|v), where C is the set of class la-
bels, V; is the set of values for feature i, and H(C) =
— > ccc P(c)logy P(c) is the entropy of the class labels.
The probabilities are estimated from relative frequen-
cies in the training set.

2.3. Effects of abstraction

We present four approaches to abstraction in inductive
learning: error back-propagation in multi-layer feedfor-
ward networks, top-down induction of decision trees,
editing exceptional cases in memory-based learning,
and generalizing cases in memory-based learning. The
order in which they are presented reflects a decreasing
amount of abstraction performed during learning; error
backpropagation learning in artifical neural networks
represents very strong abstraction, while generalizing
cases tends to result in limited abstraction.

2.3.1. Error back-propagation in multi-layer feed-

forward networks

Error back-propagation (BP) [12] is a learning al-
gorithm designed for multilayer feed-forward networks
(MFNs), a well-known type of artificial neural networks.
MFNs are composed of interconnected simple comput-
ing elements organised in three or more layers: an in-
put layer representing feature values, an output layer
representing the class, and one or more hidden layers.
Usually, the numbers of units in hidden layers are be-
low those of the number of cases of the task to be
learned; the network learns the task by encoding the
input-output mapping in a relatively compact way.

We used a bitwise (local) encoding of feature values
and classes, resulting in an input layer of 294 units,
and an output layer of 159 units. In two experiments,
we set the hidden layer to contain 50 and 200 units,
respectively. For all technical details regarding other
parameter settings in this particular experiment, the
reader is referred to [16].

€5.0, a commercial version of ¢4.5 [11], is a top-down
induction of decision trees (TDIDT) algorithm. On the
basis of an case base of, ¢5.0 constructs a decision tree
which compresses the classification information in the
case base by exploiting differences in relative impor-
tance (information gain) of different features. Cases
are stored in the tree as paths of connected nodes end-

Top-down induction of decision trees



ing in leaves which contain classification information.
Nodes are connected via arcs denoting feature values.

In our experiments, we chose to use the default pa-
rameter settings of ¢5.0, which are set to moderate
pruning of parts of the tree estimated to represent noisy
or exceptional cases. Two parameters determine the
amount of pruning in ¢5.0. The ¢ parameter denotes
the pruning confidence level, which ranges between 0%
and 100%. This parameter computes the binomial
probability of misclassifications within the set of cases
represented at that node. By default, ¢ = 25%. The m
parameter governs the minimum number of cases rep-
resented by a node. When m > 1, single exceptional
or noisy cases are not stored in the tree. By default,
m = 2.

2.3.83. FEditing exceptional cases in memory-based
learning

When cases in a memory-based learning system are
never used as nearest neighbors in classifying other
cases, or when they are even disruptive for classifica-
tion, they may be discarded from memory. These two
options form the bases of two approaches to editing
found in the literature: (1) delete cases that can be
deleted without harming the classification performance
of the memory-based classifier [10], and (2) delete cases
of which the classification is different from the majority
class of their nearest neighbors [1].

We have implemented the latter type of editing on
top of 1B1-1G, for which we have implemented the class-
prediction strength (cPs) function as proposed by [13].
This the ratio of the number of times a case is a nearest
neighbour of another case with the same class and the
number of times that the case is the nearest neighbour
of another case regardless of the class. A ¢Ps close to
0.0 indicates that the case is a bad predictor of classes
of other cases, presumably indicating that the case is
exceptional. After ranking all cases in the training sets
of each experiment, we removed, in subsequent trials,
the top 1%, 5%, 10%, and 50% of the cases with the
lowest CPs.

2.3.4. Generalizing cases in memory-based learning

Algorithms that carefully merge cases start with
storing all individual cases in memory, and then care-
fully merge pairs or groups of same-class nearest-
neighbor cases to become single, more general cases,
only when there is some evidence that these merging
operations are not harmful to generalization perfor-
mance. Generalised cases can be represented by con-
junctions of disjunctions of feature values, or rules with
wild-cards.

Although overall memory is compressed, the mem-
ory still contains individual items on which the same

k-NN-based classification can be performed as in the
pure memory-based case. The abstraction occurring in
this approach is that after a merge, the merged cases
incorporated in the new generalized case cannot be re-
constructed individually. Example approaches to merg-
ing cases are NGE [14] and RISE [9]. The experiments
reported here are performed with FAMBL, which fea-
tures roughly the same functionality as NGE and RISE,
but is optimized for learning speed (see [17] for more
details).

2.8.5. A comparison of memory requirements and
generalization accuracy

All mentioned learning algorithms and the pure
memory-based learner 1B1-1G were presented to the
675,745-case data set described at the onset of this sec-
tion. They were applied to this data set using a 10-
fold cross-validation setup, which means that the data
set was divided ten times into a 90% training set and
a 10% test set, and all algorithms were trained and
tested on each of these ten partitionings. All reported
results are averaged over the ten folds. The results are
summarized in Table 2. The results show that the algo-
rithm that uses most memory, the pure memory-based
learner, 1B1-1G, performs best. All other algorithms
perform significantly worse, when analysed with one-
tailed t-tests, with p < 0.05. Error back-propagation
compresses most, and performs worst on test material;
with more hidden units (200 rather than 50), general-
ization accuracy improves. ¢5.0 with default parame-
ter yields a fair compression, but at the cost of about
1% in accuracy. Also, editing in 1B1-1G leads to signif-
icant accuracy losses, even at the level of 1% editing.
Only FAMBL, which merges cases in a careful manner,
yields a generalization accuracy that is fairly close to
that of 1B1-1aG; still, it suffers a significant loss.

3. CONCLUSIONS

On the basis of the unequivocal results from the em-
pirical studies, we conclude that word pronunciation
should not be modelled by an abstracting paradigm.
In word pronunciation, there are no exceptions that
can be reliably abstracted from: each atypical spelling-
pronunciation mapping that a spelling system may hold
(and even the most regular ones do, e.g. with loan
words), is a productive one: the word it is a part of
(or a morphologically derived or inflected form) may
always reoccur later on. Abstracting methods discard
noise but have no basis to distinguish real noise from
these productive exceptions and therefore do not incor-
porate the latter into the induced model.

As an better alternative, we suggest a memory-based
approach in which all available lexical pronunciation



Generalization accuracy Memory requirement
Algorithm % Kilobytes
error back-propagation, 50 hidden units 87.86 105
error back-propagation, 200 hidden units 90.32 415
5.0 decision trees 92.48 1187
50 % low cps-editing in IB1-1G 59.50 890
10 % low cps-editing in 1B1-1G 88.25 1602
5 % low cPs-editing in IB1-1G 91.04 1691
1 % low cps-editing in IB1-1G 93.01 1762
generalizing cases in 1B1-1G (FAMBL) 93.22 1725
IB1-1G 93.45 1780

Table 2. Average generalization accuracies (percentages of correctly classified cases) and data storage memory require-
ments (Kilobytes) of five abstracting algorithms and pure memory-based learning (1B1-1G).

knowledge is stored as cases in memory. Such an ap-
proach can be made to generalise by combining memory
lookup with analogical reasoning for previously unseen
cases, thus constituting an “inductive lexicon” [5].
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