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17 MACHINE LEARNING
APPROACHES

Walter Daelemans

17.1 INTRODUCTION

The usefulness and feasibility of automatically training a syntactic wordclass tagger
instead of hand-crafting it motivated a large body of work on statistical and rule-
learning approaches to the problem. Syntactic wordclass taggers trained on corpora are
claimed to be equally accurate as, and more robust and more portable than,hand-crafted
systems�. Moreover, development time is considerably faster. Recently, inductive
machine learning approaches such as connectionist learning algorithms, decision tree
induction and case-based learning have also been applied to the syntactic wordclass
disambiguation problem. In some cases these approaches have interesting properties
not present in existing statistical and rule-based approaches.

A succesful inductive machine learning algorithm works by extracting generaliza-
tions from a set of examples of a desired input-outputmapping. The relations between
input and output, implicit in these examples, are discovered by the algorithm and are
used to predict the correct output when presented with a new, previously unseen, input

�Although we will report published accuracy figures for the taggers discussed, we should be cautious about
them. Evaluation of the different methods has not been achieved the same way in each case.
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Table 17.1 Tagging as a mapping from sentences to tag strings.

Input Output

John will join the board np md vb dt nn

Table 17.2 Tagging as a mapping from focus words with context to tags.

Input Output

Left context Focus Right context

= = John will join np
= John will join the md
John will join the board vb
will join the board = dt
join the board = = nn

pattern. In other words, the algorithm classifies a new input pattern as belonging to a
particular output category.

Many problems in Natural Language Processing (NLP), especially disambiguation
problems, can be formulated as classification tasks (Magerman 1994; Daelemans 1995;
Cardie 1996). Tagging, e.g., can be seen as a mapping from sentences to strings of
tags. In syntactic wordclass tagging, abbreviated tagging from here, a sentence should
be mapped into a string of morphosyntactic tags (table 17.1).

By approximating this mapping with a function from a focus word and its context
to the disambiguated tag belonging to the focus word in that context (table 17.2),
the mapping becomes a classification task amenable to symbolic and connectionist
Machine Learning (ML) approaches. Context size can vary from one word at each
side of the focus word (comparable to trigram models in statistics) to the complete
sentence. Some machine learning methods dynamically determine the context size
needed to disambiguate a particular focus word. The information provided to the
learning algorithm can consist also of ‘morphological’ features (suffixes, presence or
absence of a hyphen, a capital or a digit), syntactic information (features representing
the syntactic context in which a word has to be tagged), or any other available linguistic
information. In general, there will be as many examples for the learning algorithm as
there are words in the training corpus.

In this chapter, we will provide an overview of basic concepts in inductive learning
methods and discuss recent research on the application of these methods to tagging.
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We will discuss case-based classifiers, decision tree induction methods and neural
networks.

Another promising approach is Inductive Logic Programming (ILP; e.g. Muggle-
ton and De Raedt 1994), in which background knowledge and positive and negative
examples are used to induce a logic program compatible with the background knowl-
edge and all of the positive examples, but none of the negative examples. The induced
logic programs are more expressive than the propositional language of feature vectors,
which makes the approach potentially interesting to induce recursive tagging rules. See
Cussens (1997) for an early example of this approach.

17.2 INDUCTIVE LEARNING FROM EXAMPLES

17.2.1 Concepts

Machine Learning (ML) is a sub-discipline of Artificial Intelligence (AI) which studies
algorithms that can learn either from experience or by reorganizing the knowledge they
already have. See Langley (1996) and Carbonell (ed.) (1990) for introductorymaterial,
Weiss and Kulikowski (1991) for methodological issues and Natarajan (1991) for a
formal-theoretical approach.

Conceptually, a learning system consists ofa performance componentwhich achieves
a specific task (given an input, it produces an output) and a learning component which
modifies the performance component on the basis of its experience in such a way that
performance of the system in doing the same or similar tasks improves (figure 17.1).
Experience is interpreted rather narrowly here and is represented as a set of examples
used to train the system. Examples usually take the form of pairs of inputs with their
associated desired output. In tagging, the input is (a description of) a focus word and
its context and the desired output is the disambiguated tag to be assigned to the focus
word.

To achieve its task, the performance component uses an internal representation.
The task of the learning component may therefore be construed as a search in the
space of possible representations for a representation that is optimal for performing
the mapping. In this chapter, we will consider decision trees, case bases and sets
of connection weights as types of languages/formalisms for internal representations
for trainable taggers. In most cases, finding the optimal representation given a set of
examples and a representation language is computationally intractable. Some form of
heuristic search is therefore used by all learning systems.

In Machine Learning, the concept of bias refers to domain-dependent constraints on
the search process: knowledge about the task may be used to make the search simpler.
There may also be bias in the way the experience presented to the learning component
(the training examples) is preprocessed. The addition of linguistic bias to a learning
system is the obvious way to let learning taggers profit from linguisticknowledge about
the task.
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Figure 17.1 General architecture of an inductive learning system.

17.2.2 Classification of learning methods

Given this very general model of inductive learning, a number of dimensions can be
distinguished that should be considered in comparing and experimenting with these
techniques.

Amount of Supervision. In supervised learning, experience takes the form of
examples of inputs and the corresponding desired output for each of these inputs.
The examples are presented to the system in a training phase. In unsupervised
learning, examples are presented without information about the desired output.
It is up to the system to find similarities in the examples in such a way that they can
be exploited by the performance component to solve the task. In reinforcement
learning, no examples are given; only an indication of the correctness of the
output the performance component produces given an input (feedback). Most of
the research described in this chapter concerns supervised approaches (learning
from examples).

Input Representation. Representations used in the ML literature include vectors
of bits, vectors of feature-value pairs (numeric or nominal values; compare ‘flat’
feature structures in linguistics) and complex recursive representations such as
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Table 17.3 Comparison of inductive learning methods discussed in this chapter.

Decision Tree Case-based Neural Network

Supervised YES YES YES
Input Rep. feature value vector feature value vector bit string
Output Rep. symbolic category symbolic category bit string
Internal Rep. tree cases connection weights
Incremental NO/yes� YES NO
Noise tolerant YES YES YES

semantic nets (compare recursive feature structures in linguistics). For tagging
problems, vectors of bits and of nominal feature-value pairs have been proposed.

Output Representation. Output can be a binary category (yes/no) decision, a
symbolic category (a finite, discrete set of labels), a continuous category (a real
number) or a vector of any of these. In machine learning for tagging, vectors of
binary categories and symbolic categories are used (see also Chapter 4).

Internal Representation. The representation used by the performance compo-
nent, and optimized by the learning component, can be numeric (e.g. connection
weights with neural networks) or symbolic (semantic nets, rules, decision trees,
examples, � � � ).

Incremental Learning. A learning system can be incremental. In that case,
relevant information in additional examples can be integrated by the learning
component into the performance component without re-learning everything from
scratch. In non-incremental or batch learning systems (such as neural networks),
this is not possible. In batch learning, the complete set of examples has to be
inspected (sometimes several times) before learning is completed and addition
of new examples makes complete relearning necessary.

Noise Tolerance. Different algorithms can be more or less sensitive to noise in the
input (wrongly coded examples, missing values, or even ambiguous examples,
i.e. examples which have been assigned contradictory outputs in the training
set). Algorithms dealing with linguistic data should be noise-resistant.

Table 17.3 gives a characterization of the different inductive learning algorithms dis-
cussed in this chapter along these dimensions.

�In most versions, the decision tree learning algorithm is batch learning, but incremental versions have been
developed (e.g. Utgoff 1989).
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17.2.3 Performance evaluations

The success of a learning component in improving performance can be evaluated using
a number of different quantitative and qualitative measures:

Generalization accuracy. Performance accuracy of the system on previously
unseen inputs (i.e. inputs it was not trained on). This aspect of learning is of
course crucial: it gives an indication of the quality of the inductive leap made
by the algorithm on the basis of the examples. A good generalization accuracy
indicates that the learning system has not overfit its training examples, as would
happen by generalizing on the basis of errors or exceptions present in them. To get
a good estimate of the real generalization accuracy, cross-validation can be used,
e.g. in 10-fold cross-validation an algorithm is tested on ten different partitions
(90% training material, 10% testing material) of the full data set available. Each
data item occurs once in one of the test sets. The average generalization accuracy
on the ten test sets is then a good statistical estimate of the real accuracy (see
also Chapter 6).

Space and time complexity. The amount of storage and processing involved
in learning (training the system) and performance (producing output given the
input).

Explanatory Quality. Usefulness of the representations found by the learning
system as an explanation of the way the task is achieved.

17.2.4 Overview of methods

To sum up this introductory section, we will give an intuitive description of how each
of the studied algorithms works, using tagging as an example application. We discuss
the algorithms in an order of increasing abstraction of the internal representation used
by the performance component and created by the learning component. We start from
storage and table-lookup of the ‘raw’ examples as a non-learning baseline.

Table Look-Up. Store all examples (patterns of target words with their context
and their corresponding disambiguated tag) in a table. When a new input pattern
is given to the performance system, look it up in the table and retrieve the output of
the stored example. In this approach the system does not actually learn anything
and it fails miserably whenever an input pattern is not present in the table (there
is no generalization).

Case-Based Learning. Store all examples in a table. When a new input pattern
is given to the performance system, look up the most similar examples (in terms
of number of feature values common to the stored pattern and the new pattern,
for example) and extrapolate from the tags assigned to these nearest matches
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to the new case. Various statistical and information-theoretic techniques can be
used to design the similarity metric. The similarity metric is also a place where
linguistic bias can be introduced in the learning algorithm.

Rule and Decision Tree Induction. Use similarities and differences between
examples to construct a decision tree or a rule set (these two are largely equivalent
and can be translated to each other) and use this constructed representation to
assign a tag to a new input pattern. Forget the individual examples.

Connectionism, Neural Networks. Use the examples to train a network. In
back-propagation learning, this training is done by repeatedly iterating over all
examples, comparing for each example the output predicted by the network
(random at first) to the desired output and changing connection weights between
network nodes in such a way that performance increases. Keep the connection
weight matrix and forget the examples.

The place of stochastic (statistical) approaches deserves some discussion at this
point. In this popular approach to tagging, statistical models (e.g. about the N-grams
occurring in a language) are computed on the examples (the corpus) and these are used
to extrapolate to the most probable analysis of new input. In terms of abstraction versus
data-orientation, stochastic, neural network and rule induction approaches are greedy
learning techniques. These techniques abstract knowledge from the examples as soon
as they are presented. Case-Based Learning is a lazy learning technique: generalization
only occurs when a new pattern is offered to the performance component and abstraction
is therefore implicit in the way the contents of the case base and the similarity metric
interact.

One succesful statistical approach, recently applied to the tagging problem, is Rat-
naparkhi’s use of Maximum Entropy Models (1996). In this classification-based ap-
proach, diverse sources of contextual information (comparable to those used by the
machine learning approaches discussed below) are expressed as binary features, and
are combined in a statistical model that makes no further distributional assumptions on
the training data by maximizing the entropy of the distributionsubject to the constraints
of the training data. The model parameters for the distribution are estimated using an
iterative procedure called generalized iterative scaling.

In the remainder of this chapter, we will discuss each of the learning methods
and their application to tagging in turn. We conclude with a general discussion and
evaluation of the methods described.

17.3 CASE-BASED LEARNING

The case-based learning paradigm is founded on the hypothesis that performance in
cognitive tasks (in our case language processing) is based on reasoning on the basis of
analogy of new situations to stored representations of earlier experiences rather than on
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the application of mental rules abstracted from representations of earlier experiences
as in rule induction and rule-based processing.

The concept has appeared in several AI disciplines (from computer vision to robotics)
several times, using apart from case-based also labels such as similarity-based, example-
based, exemplar-based, analogical, nearest-neighbour, instance-based and memory-
based (Stanfill and Waltz 1986; Kolodner 1993; Aha et al. 1991; Salzberg 1990).
These different names are conveniently captured under the term lazy learning (Aha
1997).

17.3.1 Algorithm

Examples are represented as a vector of feature values with an associated category label.
Features define a pattern space. During training, a set of examples (the training set)
is presented in an incremental fashion to the learning algorithm and added to memory.
During processing, a vector of feature values (a previously unseen test pattern) is
presented to the system. Its distance to all examples in memory is computed using a
similarity metric and the category of the most similar instance(s) is used as a basis to
predict the category for the test pattern.

In this type of lazy learning, performance crucially depends on the similarity metric
used. The most straightforward metric for a problem like tagging with nominal (non-
numeric) feature values would be an overlap metric: similarity is defined as the number
of feature values that are equal in two patterns being compared. In such a distance
metric, all features describing an example are interpreted as being equally important
in solving the classification problem, but this is not necessarily the case: the category
of the word immediately before a word to be tagged is obviously more important than
the category of the word three positions earlier in the sentence. We call this problem
the feature relevance problem. Various feature weighting and selection methods have
been proposed to differentiate between the features on the basis of their relevance for
solving the task (see Wettscherek et al. (1996) for an overview).

Another addition to the basic algorithm that has proved relevant for many natural
language processing tasks is a value difference metric (Stanfill and Waltz 1986; Cost
and Salzberg 1993). Such a metric assigns different distances to pairs of values for the
same feature. In tagging, e.g., such a metric would assign a smaller distance between
np andnn than betweennn andvbg. These biases can of course also be added by hand
to the learner (e.g. by a domain expert). Several other improvements and modifications
to the basic case-based learning scheme have been proposed and should be investigated
for linguistic problems. Two promising further extensions are weighting the examples
in memory and minimizing storage by keeping only a selection of examples. In example
weighting, examples are differentiated according to their quality as predictors for the
category of new input patterns. This quality can be based on their typicality or on their
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actual performance as predictors on a held-out test set. In example selection, memory
is pruned by deleting those examples which are bad predictors or which are redundant.

17.3.2 Case-based tagging

kenmore (Cardie 1994, 1996) is presented as a general framework for knowledge
acquisition for NLP using different symbolic machine learning techniques. As an
instance of this general methodology, a case-based learning approach is suggested for
both morphosyntactic and semantic tagging. The architecture presupposes a corpus, a
sentence analyser and a learning algorithm. During knowledge acquisition (training)
for a specific disambiguation task (e.g. tagging), a case is created for each instance of
the problem in the corpus. Each case is an example of the input-output mapping to be
learned; the input part is a context describing the ambiguity and the output part is the
solution to the particular ambiguity. The examples may be produced from an annotated
version of the corpus or through human interaction. During application, the case-base
is used to predict the solution to a new instance of the ambiguity given the input (the
context) without intervention.

In a tagging experiment based on 2056 cases from the Tipster JV corpus, a fairly
complex case representation based on output from the circus conceptual sentence
analyser is used. Figure 17.2� shows the case representation containing context features
of the focus word “parts”, for which the word sense and the part of speech has to be
decided.

Local context features describe the syntactic and semantic information about a five-
word window centered on the word to be tagged (the words themselves, their part of
speech and their word sense). Global context features provide information about the
major constituents parsed already (word sense of the subject and type, concept and
semantic feature associated with the last parsed constituent). The class to be predicted
is the part of speech and the semantic sense of the middle word. All words (except 129
function words) are initially assumed unknown.

As a solution to the feature relevance problem, Cardie (1993) applies a decision
tree learning algorithm (see below) to the dataset and uses only those features which
have been selected by the decision tree induction algorithm as being relevant during
similarity comparison. This turns out to be an effective way to discard irrelevant
features.

mbt (Memory-Based Tagging; Daelemans 1995; Daelemans et al. 1996) is a case-
based approach in which the feasibility of the approach on a larger scale is investigated,
with simpler case representations and with a more elegant solution to the feature rele-

�Reprinted from Cardie (1996) with permission.
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Subject 
     word sense: company-name
Last Constituent
     type: prepositional-phrase
     concept: production
     semantic feature: industry
2nd Preceding Word 
     word: of
     part of speech: preposition
Preceding Word 
     word: auto
     part of speech: noun modifier
     word sense: product
Current Word 
     word: parts 
     word sense: product
     part of speech: noun
Following Word 
     word: and
     part of speech: conjunction
2nd Following Word 
     word: engines
     part of speech: noun
     word sense: product�

Retrieved Case

Daihatsu...
has so far been
in alliance
w/ Astra Motor
in production
of
auto
parts
and
engines...�

Training Sentence

context feature
solution feature

Figure 17.2 Case representation in kenmore.

vance problem. Experiments were performed on the 3 million word tagged Wall Street
Journal corpus�.

In order to adopt the memory-based approach to the problem of tagging, the follow-
ing procedure is used:

Lexicon Construction. A lexicon is extracted from the training corpus by computing
for each word the number of times it occurs with each category. A new, possibly
ambiguous tag (e.g. n�v for words which can be both a noun and a verb) is assigned
to each word based on this lexical definition.

�ACL Data Collection Initiative CD-ROM 1, September 1991; the tagset is the Penn Treebank tagset,
consisting of 40 tags. See Appendix 17.6 for a full list.



MACHINE LEARNING APPROACHES 295

Case-Base Construction. Two case bases are constructed, one for known words and
one for unknown words. The former contains as information the possibly ambiguous
category of the word to be tagged (the focus word) and of one context word to the right
and the disambiguated category of two words to the left. The latter contains the same
context information, but instead of the ambiguous category of the focus word (which
is unknown), the first letter and the last three letters of the focus word are added as
features. These features provide information about the ‘morphology’ of the word. The
unknown-words case base is constructed on the basis of open class words only.

Tables 17.4 and 17.5 list samples of the known-words and unknown-words case
bases for part of the first sentence of the corpus. In the first table, we use the fol-
lowing abbreviations for the known-words case base: f for focus word (the word to
be disambiguated, represented by its ambiguous category), d for disambiguated word
(a previously contextually disambiguated word to the left of the focus word), a for
ambiguous word, a still to be disambiguated word to the right of the focus word, repre-
sented by its ambiguous category, and t for the target, disambiguated, category of the
focus word. In the unknown-words case base, we find features for left (d) and right (a)
context, and instead of the lexical representation of the focus word, we have features
representing prefix letters (p) and suffix letters (s) of the focus word.

Tagging. In tagging, new input text is transformed into case representations for case-
based reasoning on the basis of either the known- or unknown-words case base.
In mbt, the feature relevance problem is solved by weighting each feature with the
average amount of case base information entropy reduction it can provide (i.e. its
Information Gain, IG; see Daelemans et al. (1996) for more information). The weights
for the different features are also listed in tables 17.4 and 17.5. They express the
relative relevance of the features and are used as a weight during similarity computation.
Advantages of this approach (compared to kenmore’s) are that feature relevance is
not interpreted as a yes/no property but as a gradual one and that it does not presuppose
using two inductive classification learning algorithms (decision tree induction and case-
based learning), one of which is only used for feature selection.

To solve the computational complexity problem inherent in matching all feature
values of a new case to the corresponding values of all stored cases, mbt uses igtree,
a memory- and processing-time-saving heuristic implementation of memory-based
reasoning. This formalism (fully described in Daelemans et al. 1996, 1997) compresses
a memory base into a tree using an information-theoretic heuristic, reducing storage and
retrieval complexity considerably without an adverse effect on generalization accuracy.
An additional advantage is that this tree structure allows dynamic selection of context
width (see also 17.4 below on decision trees).
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Table 17.4 Case representation and information gain pattern for known words.

Word Case Representation
d d f a t

IG .06 .22 .82 .23

Pierre = = np np np
Vinken = np np , np
, np np , cd ,
61 np , cd nns cd
years , cd nns jj-np nns
old cd nns jj-np , jj

Table 17.5 Case representation and information gain pattern for unknown words.

Word Case Representation
d p s s s a t

IG .21 .21 .15 .20 .32 .14

Pierre = P r r e np np
Vinken np V k e n , np
61 , 6 = 6 1 nns cd
years cd y a r s jj-np nns
old nns o o l d , jj

17.3.3 Evaluation

In the experiment with kenmore, accuracy of tagging turned out to be 95% overall
and 91% on contents words only. In mbt on the Wall Street Journal corpus, over-
all generalization accuracy was 96.4% (96.7% on known words, 90.6% on unknown
words). The level of accuracy attained by probabilistic taggers seems to be well in
reach of case-based taggers. Already at small data set sizes, performance is relatively
high. We obtained similar scores when adapting the tagger architecture to Dutch by
training it on a Dutch tagged corpus.

An important advantage of the case-based approach is the flexibility of case repre-
sentations: there are several types of information which can be stored in the memory
base, ranging from the words themselves to intricate lexical representations. Combined
with feature-weighting approaches, this flexibility offers a new approach to informa-
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tion source integration (data fusion) in tagging. The unknown-wordscase base inmbt,
e.g., integrates context information and ‘morphological’ information (suffix letters) in
a smooth way. It would be impossible at present, for reasons of sparseness of data
and computational complexity, to estimate probabilities for such intricate contexts in
a stochastic approach.

Additional advantages include incremental learning (new cases can be added incre-
mentally to the case bases without need for relearning�), explanation capabilities (the
best memory matches serve as explanations for the tagging behaviour of the system)
and, at least in mbt, fast learning and tagging (more than 1000 words per second).

17.4 DECISION TREE INDUCTION

The decision tree learning paradigm is based on the assumption that similarities be-
tween examples can be used to automatically extract decision trees and categories with
explanatory and generalization power. In other words, the extracted structure can be
used to solve new instances of a problem and to explain why a performance system
behaves the way it does. In this paradigm, learning is greedy and abstraction occurs at
learning time. There are systematic ways in which decision trees can be transformed
into rule sets (the two representations are equivalent).

Decision tree induction is a well-developed field within AI. See, e.g., Quinlan (1993)
for a synthesis of major research findings. More ancient statistical pattern recognition
work (such as Hunt et al. 1966; Breiman et al. 1984) also stillmakes for useful reading.

17.4.1 Algorithm

A decision tree is a data structure in which nodes represent tests, and arcs between
nodes represent possible answers to tests. Leaf nodes represent answers to problems. A
problem is solved by followinga path from the root node through the decision tree until
a leaf node is reached. The path taken depends on the answers that a particular problem
provides to the tests at the nodes. Decision tree learning works by repeatedly dividing
the set of examples into subsets according to whether the examples in a particular
subset have a feature-value pair in common, until the subsets are homogeneous, i.e. all
examples in the subset have the same category. The algorithm achieves this according
to the simplified recursive scheme in Figure 17.3.
To classify new input patterns with a decision tree, start at the root node of the tree
and find the value in the input pattern for the corresponding feature. Take the branch
corresponding to that value and perform this process recursively until a leaf node is
reached. The category corresponding to this leaf node is the output.

�Computation of feature weights is not incremental, it presupposes access to a complete batch of training
examples, but usually, the weight values become stable after only a few hundred training examples.
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Given a set of examples T

If T contains one or more cases all belonging to the same classC j ,
then the decision tree for T is a leaf with categoryCj .

If T contains different classes then

Choose a feature, and partition T into subsets that have the same value for the
feature chosen. The decision tree consists of a node containing the feature name
and a branch for each value leading to a subset.

Apply the procedure recursively to subsets created this way.

Figure 17.3 Recursive scheme for constructing decision trees.

Again, we are confronted with a feature relevance problem in this approach. In order
to obtain a concise tree with good generalization performance (i.e. a tree reflecting the
structure of the domain), we have to select at each recursion of the above algorithm a
test which is optimal in achieving this goal). The algorithm is non-backtracking and
considering all trees consistent with the data is an NP-complete problem, so a reliable
heuristic feature selection criterion is essential. Information-theoretic or statistical
techniques maximizing homogeneity of subsets by selecting a particular feature are
usually applied to this end. Several variants and extensions have been developed to
the basic algorithm for pruning (making the tree more compact by cutting off subtrees
on the basis of a statistical criterion), grouping similar values of a feature into classes,
making tree building incremental, etc.

17.4.2 Decision tree tagging

Work on parsing (including tagging) of text with decision trees was pioneered at IBM
(Black et al. 1992; Magerman 1994, 1995). spatter (Magerman 1995) starts from
the premise that a parse tree can be viewed as the result of a series of classification
problems (tagging, choosing between constituents, labelling constituents, etc.). The
most probable sequence of decisions for a sentence, given a training corpus, is its most
probable analysis. In the statistical decision tree technology used (based on Breiman
et al. 1984), decision trees are constructed for each sub-problem in the parsing task
(tagging is one of them). In such a decision tree, leaf nodes contain distributions over
categories instead of a single category. E.g., in tagging, the feature associated with the
root node of the decision tree might be the word to be tagged. In case its value is “the”,
the category “article” can be returned with certainty. In case its value is “house”, a
test at the next level of the tree corresponds to the feature “tag of the previous word”.
In case its value is “article”, the probability distribution returned by the decision tree
would be “noun (.8); verb (.2)” (Magerman 1995). In practice, spatter uses binary
trees, however. Searching for the most probable tag series for a sentence is done by
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Focus Word

the

Art: 1.0
Previous Tag

Art

N:0.8, V:0.2

house

Figure 17.4 A statistical decision tree for tagging.

means of stack decoder search with a breadth-first algorithm and probabilistic pruning.
Figure 17.4 shows such a tree, based on Magerman (1995).

Schmid (1994b) describes treetagger, a tagger which takes basically the same
approach as spatter. Transition probabilities between tags in a tag sequence are
estimated using a decision tree induced from a set of N-grams occurring in the Penn
Treebank corpus. The features are the tags of the words preceding the word to be
tagged. He experimented with one, two and three such context features. The category
to be predicted is the tag of the focus word. Using an information-theoretic heuristic
feature selection method, the tree is built using the recursive algorithm discussed ear-
lier. As in spatter, all tests have binary results. Instead of having a subtree for each
possible tag in a context position, corresponding to questions like “what is the tag of
the word before the target?”, tests are instead individual feature-value combinations
with a binary branching, corresponding to questions like “is the tag of the word before
the target equal to ADJ?”. This results in deeper trees. Again as in spatter, at the
leaf nodes a probability distribution over the categories is given for those patterns for
which the sequence of tests leading to this leaf node are true. The information-theoretic
feature selection method ensures that the test chosen maximizes the distinctiveness of
the probability distribution of the subtrees. For pruning the resulting decision tree, an
information-theoretic heuristic is used as well. Finally, the Viterbi algorithm (Viterbi
1967; see also Chapter 16) is used to find the best tag sequence for a sentence, given
the probability distributions obtained by decision tree lookup. The approach is com-
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bined with a lexicon system containing a priori tag probabilities for each word and a
probabilistic suffix analyser.

17.4.3 Evaluation

Decision tree models are equivalent in expressive power to interpolatedN-gram models
(Magerman 1995), but whereas in N-gram models the number of parameters to be
estimated grows exponentially withN , in decision-tree learning, the size of the model
depends on the number of training examples and remains constant with the number of
decisions taken into account. Also, the decision tree approach automatically selects
relevant context size: uninformative context positions are not used in the tree and
because of its computational properties (constant with wider context) larger contexts
(corresponding to 4 or 5-grams) can initially be considered. That way, decision tree
approaches are potentially more sensitive to context and therefore better equiped to
solve long-distance dependencies. Finally, Schmid also reports robustness relative to
training set size: treetagger ‘degrades gracefully’ with smaller training set sizes.

As far as performance is concerned, decision tree methods seem to be comparable
to stochastic appoaches: Schmid reports 96.4% generalization on the Penn Treebank
using 4-grams (0.3% better than a similar probabilistic trigram tagger, which, however,
uses a different lexicon system). Magerman reports 96.5% for sentences up to 40
words in length in the Wall Street Journal corpus. Schmid also reports fast tagging
speed performance (10,000 words per second).

In the examples discussed here, decision tree technology does not deliver a solution
to the complete tagging problem. The tag probabilities returned by the tree are used
by a search mechanism (stack decoder or Viterbi) to find the best series of tags. Also,
both versions of the decision tree approach are not completely non-parametric; spat�
ter requires smoothing of the decision trees and treetagger requires a pruning
threshold. In principle, however, it would be possible to produce a complete tagger on
the basis of a learned statistical decision tree. Recently, this approach has indeed been
explored (M�arquez & Rodr��guez, 1998).

17.5 NEURAL NETWORK METHODS

Multilayer Perceptrons (Rumelhart et al. 1986) are the most popular neural network
architecture. As an inductive learning technique, supervised neural network learning
is a greedy learning approach. During learning, the set of examples is repeatedly
inspected to find an optimal set of connection weights between layers of simple units.
The training material is thus abstracted into a set of numeric weights which is then
used to predict the output of new input patterns. There is an immense literature on
neural network algorithms (see Aleksander and Morton (1990), Bishop (1995) and
Fausett (1994) for recent introductions). There is also a considerable body of research
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Figure 17.5 A simple neural network architecture for tagging. Activation of units is
shown by colouring. In a situation where the previous word is an adjective and the
following word a verb, this hypothetical 3-layer network would predict the current word
to be a noun.

on applying neural network technology to language processing problems (Reilly and
Sharkey (eds.) 1992; Sharkey 1992).

17.5.1 Algorithm

A multilayer perceptron consist of an input and an output layer of simple processing
units and one or more intermediate, ‘hidden’ layers (figure 17.5). The input layer is
used to code the input part of an example, the output layer to encode the output part.
We will assume a single hidden layer here. All adjacent layers are fully interconnected,
i.e. each unit in each layer connected to each unit in the next layer. Each unit has an
activation and a threshold. Each connection between twounits has a weight. Activation
can be expressed as 1 or 0, or as a real number; thresholds and connection weight are
usually expressed as real numbers. Activation flows from the input layer to the output
layer via the hidden layer.

Two simple rules govern the training and use of a multilayer perceptron. The
activation rule is a local rule which is used by each unit to compute its activation.
Consider for instance the activation flow from input layer to hidden layer. The input
activation of a particular unit of the hidden layer (aj), is equal to

P
i ai �wi�j, where

the ai are the activations of the units in the input layer connected to that unit at the
hidden layer and the wi�j are the weights of the connections from those input layer
units to that hidden layer unit. The threshold value determines whether, given the input
activation to a unit, that unit will become active (if the input activation exceeds the
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threshold the unit becomes active, otherwise it stays ‘off’). By making use of such a
threshold value, the activation of a unit is a non-linear function of activation values of
the units in the previous layer connected to it.

The learning rule (in this case back-propagation learning) incrementally adapts the
connection weights until an acceptable performance is reached by the system (this
involves repeatedly cycling through all training examples). This adaptation process
works by changing the connection weights depending on the quality of the output of
the network (i.e. the activation pattern at the output layer). The output of the network
is compared to the desired output. Those connections that contributed to the wrong
activation of an output unit are weakened, those that were responsible for not activating
an output unit that should have been active are strengthened. These error corrections
are also ‘back-propagated’ to the connections between input and hidden layer.

17.5.2 Neural network tagging

netgram (Nakamura et al. 1980) is a multilayer neural network for word category
prediction in the context of a speech recognition system. The input consists of the
category of two (or more) preceding words, the output is the category of the current
word. Words are encoded the following way. Each word is represented by a number
of units equal to the number of categories. The unit associated with the category of the
word is made active, the other units are inactive. Given two words preceding context
and 89 categories, the network has an input layer of 178 units and an output layer of
89 units. Back-propagation is used to train the network. When an input is presented to
the network, the two input units corresponding to the categories of the two preceding
words are made active and the output unit with the highest activation is taken as the
category of the current word.

net�tagger (Schmid 1994a) also used back-propagation learning, but in this case
the problem handled is disambiguation (tagging) rather than tag prediction. In the
input layer, information about the word to be tagged and one or more preceding and
following words is encoded. Again, for each tag and each word pattern position, a unit
is created. E.g., supposing 40 tags, 3 words left context, a focus word and 2 words right
context, an input layer of 240 (��� �) units is needed. For the left context words, the
previous output of the network (the activation levels of the output layer units) is used
as input. For the focus word and the right context, the lexical probabilities of the words
are used. Adding a hidden layer to a two-layer network did not improve performance.
The output layer has one unit for each possible wordclass. The output unit with the
highest activation, given an input pattern, is interpreted as the tag of the focus word.
In order to attach lexical probabilities to words, a lexicon system based on Cutting et
al. (1992) is used, combined with an unknown-word guesser using information about
suffix letters.
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17.5.3 Evaluation

Accuracy of netgram and net�tagger is comparable to stochastic trigram meth-
ods, the main advantage being that unseen patterns are interpolated effectively, without
requiring expensive special interpolation methods as in stochastic approaches. Connec-
tionist approaches also require the computation of fewer parameters (weights) than sta-
tistical models (N-gram probabilities), which becomes especially useful when consid-
ering a wider context than trigrams. The number of weight-parameters grows quadratic
with the number of inputnodes. As in the learning methods discussed earlier, it is possi-
ble to output more than one possible tag for a word, e.g. a list of tags ordered according
to their likelihood.

17.6 DISCUSSION

With the availability of only a relatively small body of empirical data and theoretical
analysis on the applicability of inductive machine learning techniques to tagging, it is
too early for strong conclusions. On the empirical side, there is a hard-felt need for
a methodologically sound, reliable, empirical comparison of statistical and machine
learning approaches to automatic tagging. On the theoretical side, there is a need for
more insight into the differences and similarities in how generalization is achieved in
this area by different statistical and machine learning techniques. In the absence of this
knowledge, our discussion will necessarily turn out to be preliminary and superficial.
Our discussion will take the form of a number of theses.

Learning is preferable to programming. Compared to hand-crafted rule-based
(or constraint-based approaches), an inductive learning approach, such as in
the methods discussed here and in stochastic approaches, provides a solution
to the knowledge-acquisition and reusability bottlenecks and to robustness and
coverage problems. As an example, a fast and accurate tagger for Dutch was
learned with thembt tagger-generator in half a day,with a minimum of linguistic
engineering. On the other hand, it should be noted that the accuracy which can
be obtained using hand-crafted constraint-based methods (cf. Chapter 14) still
seems to be out of reach for automatic learning approaches.

Machine Learning is a different type of statistics. Decision tree induction, case-
based learning and neural networks are statistical methods, but they use a dif-
ferent kind of statistics than the well-known maximum-likelihood and Markov
model methods, e.g. in case-based learning, no assumptions are made about the
distribution of the data whereas most statistical techniques presuppose normal
distributions. Different statistical methods have different properties which make
them more or less suited for a particular type of application. If only for that
reason, the applicability of all types of statistics to the tagging problem should
be studied thoroughly. Already from the preliminary empirical data, important
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advantages of these methods compared to current statistical methods suggest
themselves:

1. They require less training data.

2. They require less parameters to be computed and can therefore take into
account more context.

3. They provide elegant and computationally attractive solutions to the smooth-
ing problem and to the integration of different information sources.

4. Training is often much faster.

Abstraction can be harmful. In many linguistic tasks, we have found (see Daele-
mans, Van den Bosch and Zavrel 1999) that an approach keeping complete
memory of all training data provides better performance than techniques that ab-
stract from low-frequency and exceptional events, such as rule(learning)-based
systems. Neural networks and stochastic approaches are similar to rule- and
decision-tree-induction methods in that they abstract from their experience (to
a matrix of connection weights in neural networks, to a set of probabilities in
stochastic approaches and to a set of rules in rule-induction approaches) and
forget about the original data on which these abstractions were based. The effect
that full memory of all examples yields better generalization is probably related
to the fact that natural language processing tasks such as morphosyntactic disam-
biguation can be characterised by the interaction of regularities, sub-regularities
and pockets of exceptions. Abstracting away from these exceptions causes a
performance degradation because new similar exceptions are overgeneralized:
being there is better than being probable.

Compared to the well-developed theoretical and empirical foundations of statistical
approaches to tagging, the machine learning approach to this problem has only just
started. In all methods described, there is still a lot of room for improvement, espe-
cially in three areas: exploring variations or extensions of the basic algorithms, adding
linguistic bias to the learning algorithms and combining them with other approaches
in hybrid architectures. A fourth area where machine learning methods may provide
increased tagging accuracy is in the development of machine learning algorithms that
take as input the outputs of different taggers (trained, statistical or even hand-crafted)
and learn when to trust which tagger. Initial work on this approach is described by van
Halteren, Zavrel and Daelemans (1998) and by Brill and Wu (1998).


