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Abstract

Memory-based learning algorithms are lazy learners. Examples of a task are stored
in memory and processing is largely postponed to the time when new instances of the
task need to be solved. This is then done by extrapolating directly from those remem-
bered instances which are most similar to the present ones. Using memory-based learning
for Part-of-Speech tagging has a number of advantages over traditional statistical POS
taggers: (i) there is no need for an additional smoothing component for sparse data,
(ii) even low-frequent or exceptional patterns can contribute to generalization, (iii) the
use of a weighted similarity metric allows for an easy integration of different information
sources, and (iv) both development time and processing speed are very fast (in the or-
der of hours and thousands of words/sec, respectively). In recent work, we have applied
the Memory-Based tagger (MBT) to a number of different languages and corpora (En-
glish, Dutch, Czech, Swedish, and Spanish). Furthermore, we have performed a controlled
experimental comparison of MBT with several other POS tagging algorithms.

1 Introduction

In Part-of-Speech (POS) tagging, the problem is to assign to each word in a sentence
the most appropriate morphosyntactic category from among those listed in the lexicon,
given the context. Annotating a text with POS tags is useful for many subsequent ma-
nipulations of the text. First, the tags provide a useful abstraction from the actual words
themselves if we want to process all words that belong to a certain class in some special
way (e.g. extract all the nouns from a text). Second, the tagger provides a superficial de-
gree of disambiguation which might either be beneficial for following levels of processing
(such as e.g. parsing) or useful in itself (e.g. the same word with different tags might have
different pronunciations or different meanings).

The general solution of the POS tagging problem requires full understanding of the
sentence, but fortunately a fairly accurate solution can be reached by training a sys-
tem on the patterns of tag usage in a large annotated corpus. The earliest statistical
approaches (Church, 1988; DeRose, 1988) which make use of Hidden Markov Models
(HMM) and related techniques have focused on building probabilistic models of tag tran-
sition sequences in sentences. Although these systems have achieved a reasonable level of
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performance (usually around 95 to 96 % correct!), they tend to suffer from a number of
problems. The most notable among these are i) the problems associated with sparse data
and ii) the limits on the types of information that they can take into account.

The sparse data problem is the fact that events that have not been observed in the
training data get a probability of zero, and hence cannot be dealt with in the test data.
A related problem is the fact that the test data also contains words that are not in the
lexicon (which is usualy constructed from the training data). To deal with both types of
sparse data, a practical tagger must use some sort of smoothing strategy (see Chen and
Goodman (1996) for an overview) to estimate the probabilities for unseen events, and a
separate guesser for the lexical probabilities of unknown words (Weischedel et al., 1993).

The second main problem with HMM-type taggers is that the features of the context
are represented as states in the model and hence the incorporation of richer feature-sets
of the context will lead to an explosion of the number of states, leading to an even more
severe version of the sparse data problem.

In recent years it has been shown (see e.g. Ratnaparkhi (1996)) that the remaining
4 % or so of errors can be reduced considerably when richer models of the context are
used. In these approaches, the POS tagger is usualy seen as a classifier, rather than as
a model of the sequence structure of sentences. The context can then be represented in
terms of a rich set of features (e.g. surrounding words, tags, and word-form features such
as suffixes and prefixes). The construal of the POS tagging task as such a classification
problem allows one to use many existing machine learning algorithms.

In our own work, we have advocated the use of Memory-Based Learning (MBL) tech-
niques for POS tagging (Daelemans et al., 1996), and for classification tasks in Natural
Language Processing in general (Daelemans et al., 1998). MBL provides a solution to
both the sparse data problem, via an implicit similarity-based smoothing scheme, and the
challenges of a rich feature set, via automatic feature-weighting. In this paper we will first
review the basic techniques of Memory-Based Learning (Section 2). Next, in Section 3,
we describe the architecture of the tagger. Section 4 reports experimental results of the
application of our Memory-Based tagger (MBT) to a number of different languages and
corpora (English, Dutch, Czech, Swedish, and Spanish). For English, we have performed
a controlled experimental comparison of MBT with several other POS tagging algorithms
(rule-based, HMM, and maximum entropy). In Section 5 we present an analysis of the
strengths and weaknesses of the MBL approach to POS tagging. Finally, in Section 6, we
conclude.

2 Memory-Based Learning

Memory-based learning is founded on the hypothesis that performance in cognitive tasks
(in our case language processing) is founded on reasoning on the basis of similarity of new
situations to stored representations of earlier experiences, rather than on the application
of mental rules abstracted from earlier experiences (as in rule induction and rule-based
processing).

An MBL system? contains two components: a learning component which is memory-
based, and which is sometimes called ‘lazy’ as memory storage is done without abstraction
or restructuring, and a performance component which does similarity-based classification.
During classification, a previously unseen test example is presented to the system. Its
similarity to all examples in memory is computed using a similarity metric, and the

lwhen tested on the same corpus that training was performed on, and depending on the type of corpus and
tagset.
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category of the most similar example(s) is used as a basis for extrapolating the category
of the test example. We will now outline the functioning of the 1B1-1G and IGTREE
algorithms.

2.1 Weighted MBL: IB1-IG

B1-1¢ (Daelemans and Van den Bosch, 1992) is a memory-based learning algorithm that
builds a data base of instances (the instance base or case base) during learning. An
instance consists of a fixed-length vector of n feature-value pairs, and an information field
containing the classification of that particular feature-value vector. After the instance
base is built, new (test) instances are classified by matching them to all instances in the
instance base, and by calculating with each match the distance between the new instance
X and the memory instance Y. In IB1-1G, the distance metric is a weighted sum of the
distances per feature. The distance for a particular feature is zero when the values of
both instances for this feature are equal, and one otherwise. Because not all features
are of equal importance their contributions are weighted in the total summed distance.
The weight for a feature is its Information Gain (Quinlan, 1993), a measure of how much
information it contributes to our knowledge of the correct class label. The Information
Gain of feature f is measured by computing the difference in uncertainty (i.e. entropy)
between the situations without and with knowledge of the value of that feature.

The possibility of automatically determining the relevance of features implies that
many different and possibly irrelevant features can be added to the feature set. The
weighting factors make the integration of diverse sources of information, with differing
degrees of relevance to the task, relatively painless.

2.2 Optimized weighted MBL: IGTREE

Because the search for the nearest neighbors in IB1-1G is computationaly expensive, and
POS tagging needs to be very fast, we use a decision tree approximation to the search.
This algorithm is called IGTREE (Daelemans, Van den Bosch, and Weijters, 1997). In
IGTREE the instance memory is restructured in such a way that it contains the same
information as before, but in a compressed decision tree structure. Information gain is
used to determine the order in which instance feature values are added as arcs to the
tree, so that, during testing, search can be restricted to matching a test instance to those
memory instances that have the same feature value as the test instance at the feature with
the highest weight. Instead of indexing all memory instances only once on this feature, the
instance memory can then be optimized further by examining the second most important
feature, followed by the third most important feature, etc. A considerable compression
is obtained as similar instances share partial paths. Furthermore, it is not necessary to
fully store an instance as a path when only a few feature values of the instance make the
instance classification unique.

Processing an unknown input involves traversing the tree (i.e., matching all feature-
values of the test instance with arcs in the order of the overall feature information gain),
and either retrieving a classification when a leaf is reached (i.e., an exact match was
found), or using the most probable classification on the last matching non-terminal node
if an exact match fails.

In sum, it can be said that the IGTREE approach chooses to invest more time in orga-
nizing the instance base using information gain and compression, to obtain considerably
simplified and faster processing during classification, as compared to 1B1-1¢. The gener-
alization accuracy of IGTREE is usualy comparable or slightly lower to that of 1B1-1G.



word case representation

D D F A T
Pierre = e np np np
Vinken | = np np , np
, np np , cd ,
61 np , cd nns cd
years , cd nns  jj-np | nns
old cd nns jjnp i

Table 1: Example of instances of the POs learning task (known words case base). Instances
represent fixed-sized snapshots of a focus (an ambiguous tag), surrounded by a left and right
context (of disambiguated tags on the left, and ambiguous tags on the right).

3 MBT: Memory-Based Part-of-Speech Tagging

The MBT tagger (Daelemans et al., 1996) takes an annotated corpus as input, and pro-
duces a lexicon and memory-based POS tagger as output. In this section we describe the
architecture of the tagger.

The construction of a POS tagger for a specific corpus is achieved in the following
way. Given an annotated corpus, three data structures are automatically extracted: a
lexicon, associating words to ambiguity classes of tags as evidenced in the training corpus,
a case base for known words (words occurring in the lexicon), and a case base for unknown
words. Case Bases are compressed using IGTREE for efficiency.

During tagging, each word in the text to be tagged is looked up in the lexicon. If it
is found, its lexical representation is retrieved and its context is determined, and the re-
sulting pattern is disambiguated using extrapolation from nearest neighbors in the known
words case base. When a word is not found in the lexicon, its lexical representation is
computed on the basis of its form, its context is determined, and the resulting pattern
is disambiguated using extrapolation from nearest neighbors in the unknown words case
base. In each case, the output is a best guess of the category for the word in its current
context.

The cases are represented by a variety of features, whose relevance is automatically
determined by the Information Gain weights. The reason for the split into known and
unknown words is that for known words, the ambiguity class of the focus word turns
out to be the most important feature, and is therefore found at the top of the IGTREE.
However, for unknown words we do not known the ambiguity class, and hence we would
get a mismatch at the highest level of the tree. In the separate unknown words classifier,
we proceed directly to the context and word-form features. Below we will use the following
notation for the features. As we go from left to right, we can assume that the words to the
left of the word to be tagged have been disambiguated already. These tags are denoted
with ’D’, the position of the (ambiguity class) of the focus word is given by 'F’, and the
ambiguous tags to the right are denoted by ’A’. Features referring to particular word
forms are denoted as 'w’. Further, there are a number of features referring to the parts
of the word form: its suffix letters ’s’, prefix letters ’P’, a capitalization feature ’c’, the
presence of a hyphen ’H’, and the presence of numerals 'N’. For training cases 'T’ denotes
the correct target.

Table 1 and 2 display example instances from the known words and the unknown
words case bases respectively.



word case representation

P D A s s s |T
Pierre P = np r T e |np
Vinken | V. np , k e n|np
61 6 , nns = 6 1 ]|cd
years y cd jjnp a r s | nns
old o nns , o I d|ij

Table 2: Example of instances of the POS learning task (unknown words case base). Instances
represent ‘morphological’ information about the focus word (first letter and the three last
letters), surrounded by a left and right context (of one disambiguated tags on the left, and
one ambiguous tag on the right).

4 Experiments

In the first paper on MBT (Daelemans et al., 1996), we trained it on the English Wall
Street Journal corpus (ACL/DCI version), tagged with the Penn Treebank tagset (Marcus,
Santorini, and Marcinkiewicz, 1993). For the known words we used 'DDFA’ features and
for the unknwon words 'PDFASSS’™®. The results are reiterated in Table 3. Since then
we have experimented with a number of different languages and corpora, and we have
gradually increased the richness of our feature set. For our experiments on Dutch we used
the WOTAN annotated Eindhoven corpus (Berghmans, 1995), with the same feature
set as for the WSJ, attaining very competitive results (for more details, see Daelemans,
Zavrel, and Berck (1996)). For the experiments on Czech we used an annotated corpus of
newspaper texts obtained from the Institute for the Czech Language, Prague.?. Again the
features were the same as on the WSJ corpus. For Spanish, the CRATER Multi-Lingual
Aligned Corpus was used. In this case the known words case base was constucted using
'DDFWAA’ features; i.e. in addition to the ambiguity class of the focus word, information
was also provided about its identity (only for the 100 most frequent words). For unknown
words, we used the 'CHNDFASSS’ feature set. For Swedish, the Stockholm Umea Corpus
(SUC) was used. Tuned on a held-out portion of the training data, we found slightly
better performance for the known feature set DDWFWA (with word form features for the
directly neighboring words) than for the 'DDFWAaA’ used for Spanish. We also found that
performance measured solely on the unknown words, rose from 77.3% to 81.0% if the
unknown words cases were constructed only from words that had five or less occurrences
in the training set. The results of all these experiments are summarized in Table 3. As
a practical remark, it should be noted that the whole cycle of feature-validation training
and testing is very fast, and was usualy completed in about 8 hours of work for all of the
taggers described above.

4.1 A Comparison of MBT with Alternative Tagging Methods

The results in the previous section by themselves are difficult to interpret in terms of
comparison to other tagging approaches. Therefore, we also conducted some experi-
ments, comparing a number of alternative tagging methods (R: rule-based (Brill, 1994),
T: trigram (Steetskamp, 1995), and E: maximum entropy (Ratnaparkhi, 1996)) on the
same corpus, the tagged LOB corpus (Johansson, 1986). This work is described in more
detail in (van Halteren, Zavrel, and Daelemans, 1998). Each of these taggers uses different

3The F in the unknown words pattern only indicates the position of the focus, it is not included as a feature
in the actual pattern.
“Thanks go to Prof. Jifi Kraus of the Czech Academy of Sciences for permission to use this corpus.



Tag-set | # Words x 1000 | % Correct test
Language size train test | words
English - WSJ | 44 2000 200 | 96.4
English - LOB | 170 931 115 | 97.0
Dutch 13 611 100 | 95.7
Czech 42 495 100 | 93.6
Spanish 484 711 89 | 97.8
Swedish 23 1156 11 | 95.6

Table 3: Results for the POS task for different languages/corpora. The size of the tag-set used,
the size of train and test set and the generalization accuracy (combines known and unknown)
are given. All taggers use the IGTREE algorithm. Details of the used corpora can be found in
the main text.

Tagger | accuracy (%)
T 96.1
R 96.5
MBT 97.0
E 97.4

Table 4: Accuracy of different taggers (T: trigram, R: Rule-Based Learner, MBT: Memory-
Based, E: Maximum Entropy) on the LOB corpus.

features of the text to be tagged, and each has a completely different representation of
the language model. Due to lack of space we will not go into detailed descriptions of these
systems here. The training set consists of 80% of the data (931062 tokens), constructed
by taking the first eight utterances of every ten. 10 % was used as a validation set to
tune the individual taggers. The results are given on the test set, which consists of the
remaining 10% (115101 tokens).

The results, given in Table 4, show that MBT performs at state-of-the-art levels,
providing better generalization accuracy than two widely-used methods (trigram tagging
and transformation-based tagging), which is remarkable given the minimal language en-
gineering involved and the computational efficiency of the method (both in training and
testing). The E tagger performs significantly better, which is due, in our opinion, to the
fact that Maximum Entropy weighting is better able to deal with the dependecies in the
rich feature-set. However, E uses a slightly more elaborate feature set than MBT, and
a preliminary comparison of learning algorithms on the data from Ratnaparkhi (1996)
resulted in a close tie (IGTREE 95.5 % correct vs. Maximum Entropy 95.4 % correct).
Moreover, compared to MBT, E is very slow in training.

An interesting side-result for high accuracy tagging is the fact that in van Halteren,
Zavrel, and Daelemans (1998), an error reduction of 19 % (to 97.9 % accuracy) was
achieved over the best tagger (E) by a combination of the results from all four taggers.

5 Discussion

In contrast to explicitly probabilistic methods, there is no need for an additional smoothing
component for sparse data in MBL, as this is already embodied in the similarity-based
extrapolation itself (Zavrel and Daelemans, 1997). The use of the weighted similarity



metric allows for an easy integration of different information sources (e.g. context tags,
words, morphology, spelling etc.) with no clear a-priori ordering. Moreover, the fact that
only one parameter is needed per feature (i.e. its IG weight) makes MBL more robust
to overfitting than approaches which use very large numbers of parameters. The down
side of this robustness is that the feature-weighting capabilitities are quite rough: i) each
feature is weighted in isolation, so that no specific weights are assigned to interesting
feature interactions, and the weight estimate of conjunctions of redundant features tends
to be too large, and ii) there is no separate weight for specific values of a feature.

A second advantage of MBL, when compared to both probabilistic and other ’eager’
machine learning approaches, is that in MBL all information is stored in memory, and
even low-frequent or exceptional events are available, and useful for accurate generaliza-
tion (Daelemans, Van den Bosch, and Zavrel, 1999 to appear). At present this is not
entirely made use of in the tagger, because we use the IGTREE approximation of MBL
nearest neighbor search. In the TiMBL package, however, we have implemented several
optimizations of MBL search, and we hope to that these will turn out to be fast enough
to enable us to use ibl-ig in future work, without a too large loss of speed.

Finding a good balance in the accuracy-speed trade-off is an important issue for MBT,
as at present this clearly is an important practical advantage of our system: both devel-
opment time and processing speed are very fast (in the order of hours and thousands of
words/sec, respectively).

6 Conclusion

We have presented additional evidence that the Memory-Based approach to Part-of-
Speech tagging quickly yields very fast and highly accurate taggers for a variety of lan-
guages and corpora.
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