
TiMBL� Tilburg Memory Based Learner
version ���

Reference Guide

ILK Technical Report � ILK �����

Walter Daelemans� Jakub Zavrel� Ko van der Sloot
Antal van den Bosch

Induction of Linguistic Knowledge
Computational Linguistics

Tilburg University

��� CNTS � Language Technology Group
University of Antwerp

P�O� Box ����	
 NL����� LE
 Tilburg
 The Netherlands
URL� http���ilk�kub�nl�

March
 ����

�This document is available from http���ilk�kub�nl��ilk�papers�ilk�����ps�gz� All
rights reserved Induction of Linguistic Knowledge� Tilburg University�

Contents

� License terms �

� Installation �

� Changes �

��� From version ��� to ��� �
��� From version ��� to ��� �

� Learning algorithms �

��� Memory Based Learning �
����� Overlap metric �
����� Information Gain feature weighting � � � � � � � � � � � � � �
����� Chi	squared feature weighting � � � � � � � � � � � � � � � � ��
����� Modi
ed Value Di�erence metric � � � � � � � � � � � � � � ��

��� Tree	based memory ��
��� Inverse index ��
��� IGTree ��
��� The TRIBL hybrid �
��� NLP applications of TiMBL �

� File formats ��

��� Data format ��
����� Column format ��
����� C��� format ��
����� ARFF format ��
����� Compact format ��
����� Sparse Binary format ��

��� Weight
les ��
��� Value di�erence
les ��
��� Tree
les ��

� Server interface ��

i

� Command line options ��

��� Algorithm and Metric selection ��
��� Input options ��
��� Output options ��
��� Internal representation options ��

	 Programmer
s reference to the TiMBL API ��

�� Class hierarchy ��
�� Public member functions ��

���� The constructors ��
���� The destructors ��
���� Member functions ��
���� Setting parameters and options � � � � � � � � � � � � � � � ��

A Tutorial� a case study ��

A�� Data ��
A�� Using TiMBL ��
A�� Algorithms and Metrics ��
A�� More Options ��

ii

Preface

Memory	Based Learning �mbl� has proven to be successful in a large number
of tasks in Natural Language Processing �NLP�� In our group at Tilburg Uni	
versity we have been working since the end of the ����s on the development of
Memory	Based Learning techniques and algorithms�� With the establishment
of the ILK �Induction of Linguistic Knowledge� research group in ����� the need
for a well	coded and uniform tool for our main algorithms became more urgent�
TiMBL is the result of combining ideas from a number of di�erent mbl imple	
mentations� cleaning up the interface� and using a whole bag of tricks to make
it more e�cient� We think it can make a useful tool for NLP research� and� for
that matter� for many other domains where classi
cation tasks are learned from
examples�

Memory	Based Learning is a direct descendant of the classical k	Nearest
Neighbor �k	NN� approach to classi
cation� In typical NLP learning tasks� how	
ever� the focus is on discrete data� very large numbers of examples� and many
attributes of di�ering relevance� Moreover� classi
cation speed is a critical is	
sue in any realistic application of Memory	Based Learning� These constraints�
which are di�erent from those of traditional pattern recognition applications
with their numerical features� often lead to di�erent data	structures and dif	
ferent speedup optimizations for the algorithms� Our approach has resulted in
an architecture which makes extensive use of indexes into the instance memory�
rather than the typical �at
le organization found in straightforward k	NN im	
plementations� In some cases the internal organization of the memory results in
algorithms which are quite di�erent from k	NN� as is the case with igtree� We
believe that our optimizations make TiMBL one of the fastest discrete k	NN
implementations around�

The main e�ort in the development of this software was done by Ko van der
Sloot� The code started as a rewrite of nibl� a piece of software developed by
Peter Berck from a Common Lisp implementation by Walter Daelemans� Some
of the index	optimizations are due to Jakub Zavrel� The code has bene
ted
substantially from trial� error and scrutiny by the other members of the ILK
group �Sabine Buchholz� Jorn Veenstra and Bertjan Busser� and cnts group at

�Section ��� provides a historical overview of our work on the application of mbl in nlp�

iii

the University of Antwerp �in particular Gert Durieux�� We would like to thank
Ton Weijters of Eindhoven Technical University and the other members of the
cnts group for their contributions� This software was written in the context
of the �Induction of Linguistic Knowledge� research programme� partially sup	
ported by the Foundation for Language Speech and Logic �TSL�� funded by the
Netherlands Organization for Scienti
c Research �NWO�� Last but not least�
our thanks go to those users of TiMBL who have contributed to it immensely
by giving us feedback and reporting bugs�

The current release �version ���� adds a whole number of new features to
those available in the previous version ����� The most notable changes are�

� Server functionality� Instead of processing test items from a
le� TiMBL
can now also open a socket and process test items presented through it�
This allows one to save the time needed for the initialization phase when
small amounts of test material are repeatedly presented� It also opens the
possibility of having large numbers of �classi
cation agents� cooperate in
real time�

� Leave	one	out testing� To get an estimate of the classi
cation error� one
can now test by �leave	one	out�� in e�ect testing on every case once� while
training on the rest of the cases� without completely re	initializing the
classi
er for every test case�

� Support for sparse binary features� For tasks with large numbers of sparse
binary features� TiMBL now allows for an input format which lists only the
�active� features� avoiding the listing of the many �zero	valued� features
for each case�

� Additional feature weighting metrics� We have added chi	squared and
shared variance measures as weighting schemes�

� The command line interface has slightly been cleaned up� and re	organized�

A more elaborate description of the changes from version ��� up to ��� can
be found in Chapter �� Although these new features have been tested for some
time in our research group� the software may still contain bugs and inconsisten	
cies in some places� We would appreciate it if you would send bug reports� ideas
about enhancements of the software and the manual� and any other comments
you might have� to Timbl�kub�nl�

This reference guide is structured as follows� In Chapter � you can
nd the
terms of the license according to which you are allowed to use TiMBL� The
subsequent chapter gives some instructions on how to install the TiMBL pack	
age on your computer� Chapter � lists the changes that have taken place up to
the current version� Readers who are interested in the theoretical and techni	
cal details of Memory	Based Learning and of this implementation can proceed
to Chapter �� Those who just want to get started using TiMBL can skip this

iv

chapter� and directly proceed either to Chapters � and �� which respectively
provide a reference to the
le formats and command line options of TiMBL� or
to Appendix A� where a short hands	on tutorial is provided on the basis of a
case study with a data set from a linguistic domain �prediction of Dutch diminu	
tive su�xes�� Chapter gives a speci
cation of the application programmer�s
interface �API� to the TiMBL library�

v

Chapter �

License terms

Downloading and using the TiMBL software implies that you accept the follow	
ing license terms�

Tilburg University and University of Antwerp �henceforth �Licensers�� grant
you� the registered user �henceforth �User�� the non	exclusive license to down	
load a single copy of the TiMBL program code and related documentation
�henceforth jointly referred to as �Software�� and to use the copy of the code and
documentation solely in accordance with the following terms and conditions�

� The license is only valid when you register as a user� If you have obtained
a copy without registration� you must immediately register by sending an
e	mail to Timbl�kub�nl�

� User may only use the Software for educational or non	commercial research
purposes�

� Users may make and use copies of the Software internally for their own
use�

� Without executing an applicable commercial license with Licensers� no
part of the code may be sold� o�ered for sale� or made accessible on a
computer network external to your own or your organization�s in any
format� nor may commercial services utilizing the code be sold or o�ered
for sale� No other licenses are granted or implied�

� Licensers have no obligation to support the Software it is providing under
this license� To the extent permitted under the applicable law� Licensers
are licensing the Software �AS IS�� with no express or implied warranties
of any kind� including� but not limited to� any implied warranties of mer	
chantability or
tness for any particular purpose or warranties against
infringement of any proprietary rights of a third party and will not be
liable to you for any consequential� incidental� or special damages or for
any claim by any third party�

�

�

� Under this license� the copyright for the Software remains the joint prop	
erty of the ILK Research Group at Tilburg University� and the CNTS
Research Group at the University of Antwerp� Except as speci
cally au	
thorized by the above licensing agreement� User may not use� copy or
transfer this code� in any form� in whole or in part�

� Licensers may at any time assign or transfer all or part of their interests
in any rights to the Software� and to this license� to an a�liated or UN	
a�liated company or person�

� Licensers shall have the right to terminate this license at any time by writ	
ten notice� User shall be liable for any infringement or damages resulting
from User�s failure to abide by the terms of this License�

� In publication of research that makes use of the Software� a citation should
be given of� �Walter Daelemans� Jakub Zavrel� Ko van der Sloot� and
Antal van den Bosch ������� TiMBL� Tilburg Memory Based Learner�
version ���� Reference Guide� ILK Technical Report ��	�
� Available from
http���ilk�kub�nl��ilk�papers�ilk�����ps�gz

� For information about commercial licenses for the Software�
contact Timbl�kub�nl� or send your request in writing to�

Prof�dr� Walter Daelemans
CNTS 	 Language Technology Group
GER � University of Antwerp
Universiteitsplein �
B	���� Wilrijk �Antwerp�
Belgium

Chapter �

Installation
You can get the TiMBL package as a gzipped tar archive from�

http���ilk�kub�nl�software�html

Following the links from that page� you will be required to
ll in registration
information and to accept the license agreement� You can proceed to download
the
le Timbl�����tar�gz This
le contains the complete source code �C���
for the TiMBL program� a few sample data sets� the license and the documen	
tation� The installation should be relatively straightforward on most UNIX
systems�

To install the package on your computer� unzip the downloaded
le�

� gunzip Timbl�����tar�gz

and unpack the tar archive�

� tar 	xvf Timbl�����tar

This will make a directory Timbl���� under your current directory� Change
directory to this�

� cd Timbl����

and compile the executable by typing make�� If the process was completed suc	
cessfully� you should now have executable
les named Timbl
 Client
 tse

classify� and a static library libTimbl�a�

The e	mail address for problems with the installation� bug reports� comments
and questions is Timbl�kub�nl�

�We have tested this with gcc version ������ and �������

�

Chapter �

Changes

This chapter gives a brief overview of the changes from version ��� to ���� and
from version ��� to ��� for users already familiar with the program�

��� From version ��� to ���

� Server functionality� Instead of processing test items from a
le� you can
now specify a portnumber with 	S portnumber to open a socket and send
commands for classi
cation of test patterns or change of parameters to
it� A sample client program is included in the distribution� This allows
fast response times when small amounts of test material are presented at
various intervals� It also opens the possibility of having large numbers of
�classi
cation agents� cooperate in real time� or of classication of the same
data with di�erent parameters� The syntax of our simple Client�Server
protocol is described in Chapter ��

� Leave	one	out testing� To get an estimate of the classi
cation error� with	
out setting aside part of one�s data as a test set� one can now test by
�leave	one	out� �	t leave one out�� in e�ect testing on every case once�
while training on the rest of the cases� without completely re	initializing
the classi
er for every test case�

� Support for sparse binary features� For tasks with large numbers of sparse
binary features� TiMBL now allows for an input format which lists only the
�active� features� avoiding the listing of the many �zero	valued� features
for each case� This format is described in section ������

� Additional feature weighting metrics� We have added chi	squared and
shared variance measures as weighting schemes� These weighting metrics
are sometimes more robust to large numbers of feature values and other
forms of data sparseness�

�

CHAPTER �� CHANGES �

� Di�erent metrics �Overlap� mvdm or Numeric� can be applied to di�erent
features�

� The command line interface has slightly been cleaned up� and re	organized�

� The 	m metricnumber switch to choose metrics has been replaced by
the use of a speci
cation string following 	m� E�g� you can specify to
use mvdm as the default metric� but use Overlap on features �	����
Numeric on feature �� and ignore feature �� �	m M�O�	�
�N��I����

� All of the output needed for analysing the matching of nearest neigh	
bors has been moved to the verbosity setting�

� Verbosity levels and some other options can be switched on �v and
o� 	v� even between di�erent classi
cation actions�

� Because of the large amount of verbosity levels� the �v option takes
mnemonic abbreviations as arguments instead of numeric verbosity
levels� Although the old �numeric� format is still supported� it�s use
is not encouraged as it will disappear in future versions�

� Because of signi
cant optimizations in the nearest neighbor search� the
default is no longer to use inverted indexes� These can however still be
turned on by using the �	 switch on the command line�

� You can now choose the output
lename or have it generated by TiMBL
on the basis of the test
lename and the parameters�

� You can use TiMBL in a pipeline of commands by specifying �	� as either
input� output or both�

� Several problems with the display of nearest neighbors in the output have
been
xed�

� The API has been adapted a bit to allow more practical use of it�

��� From version ��� to ���

� We have added a new algorithm� tribl� a hybrid between the fast igtree
algorithm and real nearest neighbor search �for more details� see ����
or ������ This algorithm is invoked with the 	a � switch and requires the
speci
cation of a so	called tribl	o�set� the feature where igtree stops
and case bases are stored under the leaves of the constructed tree�

� Support for numeric features� Although the package has retained its focus
on discrete features� it can now also process numeric features� scale them�
and compute feature weights on them� You specify which features are
numeric with the 	N option on the command line�

� The organization of the code is much more object	oriented than in version
���� The main bene
t of this is that�

CHAPTER �� CHANGES �

� AMemory	Based Learning API is made available� You can de
ne Memory	
Based classi
cation objects in your own C�� programs and access all of
the functionality of TiMBL by linking to the TiMBL library�

� It has become easier to examine the way decisions are made from nearest
neighbors� because several verbosity	levels allow you to dump similarity
values �	D�� distributions �	v ���� and nearest neighbor sets �	v ��� to
the output
le� The 	d option for writing the distributions no longer
exists�

� Better support for the manipulation of mvdm matrices� Using the 	U

and 	u options it is now possible to respectively save and read back value
di�erence matrices �see Section �����

� Both �pre	stored� and �regular� mvdm experiments now generate
le	
names with �mvd� in the su�x� This used to be �pvd� and �mvd� respec	
tively�

� a number of minor bugs have been
xed�

Chapter �

Learning algorithms

TiMBL is a program implementing several Memory	Based Learning techniques�
All the algorithms have in common that they store some representation of the
training set explicitly in memory� During testing� new cases are classi
ed by
extrapolation from the most similar stored cases� The main di�erences between
the algorithms incorporated in TiMBL lie in�

� The de
nition of similarity�

� The way the instances are stored in memory� and

� The way the search through memory is conducted�

In this chapter� various choices for these issues are described� We start in
section ��� with a formal description of the basic Memory	Based Learning al	
gorithm� i�e� a nearest neighbor search� We then introduce di�erent similarity
metrics� such as Information Gain weighting� which allows us to deal with fea	
tures of di�ering importance� and the Modi
ed Value Di�erence metric� which
allows us to make a graded guess of the match between two di�erent symbolic
values� In section ��� and ���� we give a description of various optimizations
for nearest neighbor search� In section ���� we describe the fastest optimiza	
tion� igtree� which replaces the exact nearest neighbor search with a very fast
heuristic that exploits the di�erence in importance between features� Finally� in
section ���� we describe the tribl algorithm� which is a hybrid between igtree
and nearest neighbor search�

��� Memory Based Learning

Memory	based learning is founded on the hypothesis that performance in cog	
nitive tasks is based on reasoning on the basis of similarity of new situations
to stored representations of earlier experiences� rather than on the application
of mental rules abstracted from earlier experiences �as in rule induction and
rule	based processing�� The approach has surfaced in di�erent contexts using a

�

CHAPTER �� LEARNING ALGORITHMS

variety of alternative names such as similarity	based� example	based� exemplar	
based� analogical� case	based� instance	based� and lazy learning ���� �� ��� �� ���
Historically� memory	based learning algorithms are descendants of the k	nearest
neighbor �henceforth k	nn� algorithm �� ��� ���
An mbl system� visualized schematically in Figure ���� contains two compo	

nents� a learning component which is memory	based �from which mbl borrows
its name�� and a performance component which is similarity	based�
The learning component of mbl is memory	based as it involves adding train	

ing instances to memory �the instance base or case base�� it is sometimes referred
to as �lazy� as memory storage is done without abstraction or restructuring� An
instance consists of a
xed	length vector of n feature	value pairs� and an infor	
mation
eld containing the classi
cation of that particular feature	value vector�
In the performance component of an mbl system� the product of the learning

component is used as a basis for mapping input to output� this usually takes the
form of performing classi
cation� During classi
cation� a previously unseen test
example is presented to the system� The similarity between the new instance X
and all examples Y in memory is computed using a distance metric ��X�Y ��
The extrapolation is done by assigning the most frequent category within the k
most similar example�s� as the category of the new test example�

EXAMPLES

CASESINPUT OUTPUT

Similarity−Based Reasoning

Storage
Computation of Metrics

Memory−Based
Learning
Architecture

Learning

Performance

Figure ���� General architecture of an mbl system�

CHAPTER �� LEARNING ALGORITHMS �

����� Overlap metric

The most basic metric that works for patterns with symbolic features is the
Overlap metric� given in equations ��� and ���� where ��X�Y � is the distance
between patterns X and Y � represented by n features� and � is the distance per
feature� The distance between two patterns is simply the sum of the di�erences
between the features� The k	nn algorithm with this metric is called ib� ����
Usually k is set to ��

��X�Y � �
nX
i��

��xi� yi� �����

where�

��xi� yi� �

��
�

xi�yi
maxi�mini

if numeric� else

� if xi � yi
� if xi �� yi

�����

We have made three additions to the original algorithm ��� in our version of
ib�� First� in the case of nearest neighbor sets larger than one instance �k � � or
ties�� our version of ib� selects the classi
cation that has the highest frequency
in the class distribution of the nearest neighbor set� Second� if a tie cannot
be resolved in this way because of equal frequency of classes among the nearest
neighbors� the classi
cation is selected with the highest overall occurrence in the
training set� Third� in our implementation� the value of k refers to k	nearest
distances rather than k	nearest cases�

����� Information Gain feature weighting

The distance metric in equation ��� simply counts the number of �mis�matching
feature	values in both patterns� In the absence of information about feature
relevance� this is a reasonable choice� Otherwise� we can add domain knowledge
bias to weight or select di�erent features �see e�g� ��� for an application of lin	
guistic bias in a language processing task�� or look at the behavior of features
in the set of examples used for training� We can compute statistics about the
relevance of features by looking at which features are good predictors of the
class labels� Information Theory gives us a useful tool for measuring feature
relevance in this way ���� ����

Information Gain �IG� weighting looks at each feature in isolation� and
measures how much information it contributes to our knowledge of the correct
class label� The Information Gain of feature i is measured by computing the
di�erence in uncertainty �i�e� entropy� between the situations without and with
knowledge of the value of that feature �equation �����

wi � H�C��
X
v�Vi

P �v��H�Cjv� �����

�This metric is also referred to as Hamming distance� Manhattan metric� city	block dis	
tance� or L� metric�

CHAPTER �� LEARNING ALGORITHMS ��

Where C is the set of class labels� Vi is the set of values for feature i�
and H�C� � �

P
c�C P �c� log� P �c� is the entropy of the class labels� The

probabilities are estimated from relative frequencies in the training set� For
numeric features� values are
rst discretized into a number �the default is ���
of equally spaced intervals between the minimum and maximum values of the
feature� These groups are then used in the IG computation as if they were
discrete values �note that this discretization is not used in the computation of
the distance metric��
It is important to realize that the IG weight is really a probability weighted

average of the informativity of the di�erent values of the feature� On the one
hand� this pre	empts the consideration of values with low frequency but high
informativity� Such values �disappear� in the average� On the other hand� this
also makes the IG weight very robust to estimation problems� Each parameter
��weight� is estimated on the whole data set�
Information Gain� however� tends to overestimate the relevance of features

with large numbers of values� Imagine a data set of hospital patients� where
one of the available features is a unique �patient ID number�� This feature will
have very high Information Gain� but it does not give any generalization to new
instances� To normalize Information Gain for features with di�erent numbers of
values� Quinlan ���� has introduced a normalized version� called Gain Ratio�
which is Information Gain divided by si�i� �split info�� the entropy of the feature	
values �equation �����

wi �
H�C��

P
v�Vi

P �v��H�Cjv�

si�i�
�����

si�i� � �
X
v�Vi

P �v� log� P �v� �����

The resulting Gain Ratio values can then be used as weights wf in the
weighted distance metric �equation ������ The k	nn algorithm with this metric
is called ib��ig �����

��X�Y � �

nX
i��

wi ��xi� yi� �����

The possibility of automatically determining the relevance of features im	
plies that many di�erent and possibly irrelevant features can be added to the
feature set� This is a very convenient methodology if domain knowledge does
not constrain the choice enough beforehand� or if we wish to measure the im	
portance of various information sources experimentally� However� because IG
values are computed for each feature independently� this is not necessarily the
best strategy� Sometimes better results can be obtained by leaving features out
than by letting them in with a low weight� Very redundant features can also be

�In a generic use IG refers both to Information Gain and to Gain Ratio throughout this
manual� In specifying parameters for the software� the distinction between both needs to be
made� because they often result in di
erent behavior�

CHAPTER �� LEARNING ALGORITHMS ��

challenging for ib��ig� because IG will overestimate their joint relevance� Imag	
ine an informative feature which is duplicated� This results in an overestimation
of IG weight by a factor two� and can lead to accuracy loss� because the doubled
feature will dominate the similarity metric�

����� Chi�squared feature weighting

Unfortunately� as ���� have shown� the Gain Ratio measure� just as all informa	
tion based measures� does also have a bias towards features with more values�
The reason for this is that the Gain Ratio statistic is not corrected for the num	
ber of degrees of freedom of the contingency table of classes and values� ����
proposed a feature selection measure based on the chi	squared statistic� as val	
ues of this statistic can be compared across conditions with di�erent numbers
of degrees of freedom�
The ��statistic is computed from the same contingency table as the Infor	

mation Gain measure by the following formula �Equation �����

�� �
X
i

X
j

�Eij �Oij�
�

Eij

�����

where Oij is the observed number of cases with value vi in class cj � i�e� Oij �
nij � and Eij is the expected number of cases which should be in cell �vi� cj�
in the contingency table� if the null hypothesis �of no predictive association
between feature and class� is true �Equation ���� Let n�j denote the marginal
for class j �i�e� the sum over column j of the table�� ni� the marginal for value i�
and n�� the total number of cases �i�e� the sum of all the cells of the contingency
table��

Eij �
n�jni�

n��
����

The ��statistic is well approximated by the chi	square distribution with
� � �m� ���n� �� degrees of freedom� where m is the number of values and n
is the number of classes� We can then either use the ��values as feature weights
in Equation ���� or we can explicitly correct for the of degrees of freedom by
using the Shared Variance measure �Equation �����

SVi �
��i

N �min�jCj� jV j�� �
�����

Where jCj and jV j are the number of classes and the number of values
respectively� We will refer to these variations of mbl as ib���� and ib��sv�
One should keep in mind� that the correspondence to the chi	square distri	

bution generally becomes poor if the expected frequencies in the contingency
table cells become small� A common recommendation is that the ��test cannot
be trusted when more than ��� of the expected frequencies are less than �� or
any are less than ��

CHAPTER �� LEARNING ALGORITHMS ��

����� Modi�ed Value Di�erence metric

It should be stressed that the choice of representation for instances in mbl
remains the key factor determining the strength of the approach� The features
and categories in NLP tasks are usually represented by symbolic labels� The
metrics that have been described so far� i�e� Overlap and IG Overlap� are limited
to exact match between feature	values� This means that all values of a feature
are seen as equally dissimilar� However� if we think of an imaginary task in
e�g� the phonetic domain� we might want to use the information that �b� and
�p� are more similar than �b� and �a�� For this purpose a metric was de
ned by
Stan
ll Waltz ���� and further re
ned by Cost Salzberg ���� It is called the
�Modi
ed� Value Di�erence Metric �mvdm� equation ������ and it is a method
to determine the similarity of the values of a feature by looking at co	occurrence
of values with target classes� For the distance between two values V�� V� of a
feature� we compute the di�erence of the conditional distribution of the classes
Ci for these values�

��V�� V�� �
nX
i��

jP �CijV��� P �CijV��j ������

For computational e�ciency� all pairwise ��V�� V�� values can be pre	comput	
ed before the actual nearest neighbor search starts� Note that for numeric
features� no mvdm is computed in TiMBL� but a scaled di�erence �see Equa	
tion ���� of the actual numeric feature values�
Although the mvdm metric does not explicitly compute feature relevance�

an implicit feature weighting e�ect is present� If features are very informative�
their conditional class probabilities will on average be very skewed towards a
particular class� This implies that on average the ��V�� V�� will be large� For
uninformative features� on the other hand� the conditional class probabilities
will be pretty uniform� so that on average the ��V�� V�� will be very small�

mvdm di�ers considerably from Overlap based metrics in its composition
of the nearest neighbor sets� Overlap causes an abundance of ties in nearest
neighbor position� For example� if the nearest neighbor is at a distance of one
mismatch from the test instance� then the nearest neighbor set will contain
the entire partition of the training set that matches all the other features but
contains any value for the mismatching feature �see ���� for a more detailed
discussion�� With the mvdm metric� however� the nearest neighbor set will
either contain patterns which have the value with the lowest ��V�� V�� in the
mismatching position� or mvdm will select a totally di�erent nearest neighbor
which has less exactly matching features� but a smaller distance in the mis	
matching features� In sum� this means that the nearest neighbor set is usually
much smaller for mvdm at the same value of k� In NLP tasks we have found it
very useful to experiment with values of k larger than one for mvdm� because
this re	introduces some of the bene
cial smoothing e�ects associated with large
nearest neighbor sets�
One cautionary note about this metric is connected to data sparsity� In many

CHAPTER �� LEARNING ALGORITHMS ��

practical applications� we are confronted with a very limited set of examples�
This poses a serious problem for the mvdm metric� Many values occur only
once in the whole data set� This means that if two such values occur with the
same class the mvdm will regard them as identical� and if they occur with two
di�erent classes their distance will be maximal� The latter condition reduces
the mvdm to the Overlap metric for many cases� with the addition that some
cases will be counted as an exact match or mismatch on the basis of very shaky
evidence�

��� Tree�based memory

The discussion of the algorithm and the metrics in the section above is based
on a naive implementation of nearest neighbor search� a �at array of instances
which is searched from beginning to end while computing the similarity of the
test instance with each training instance �see the left part of Figure ����� Such
an implementation� unfortunately� reveals the �ip side of the lazy learning coin�
Although learning is very cheap� just storing the instances in memory� the
computational price of classi
cation can become very high for large data sets�
The computational cost is proportional to N � the number of instances in the
training set�
In our implementation of ib� we use a more e�cient approach� The
rst

part of this approach is to replace the �at array by a tree	based data structure�
Instances are stored in the tree as paths from a root node to a leaf� the arcs
of the path are the consecutive feature	values� and the leaf node contains a
distribution of classes� i�e� a count of how many times which class occurs with
this pattern of feature	values �see Figure �����
Due to this storage structure� instances with identical feature	values are

collapsed into one path� and only their separate class information needs to be
stored in the distribution at the leaf node� Many di�erent tokens of a particular
instance type share one path from the root to a leaf node� Moreover� instances
which share a pre
x of feature	values� also share a partial path� This reduces
storage space �although at the cost of some book	keeping overhead� and has two
implications for nearest neighbor search e�ciency�
In the
rst place� the tree can be searched top	down very quickly for exact

matches� Since an exact match ���X�Y � � �� can never be beaten� we choose to
omit any further distance computations when one is found with this shortcut��
Second� the distance computation for the nearest neighbor search can re	use

partial results for paths which share pre
xes� This re	use of partial results is in
the direction from the root to the leaves of the tree� When we have proceeded to
a certain level of the tree� we know how much similarity �equation ���� can still
contribute to the overall distance �equation ����� and discard whole branches of
the tree which will never be able to rise above the partial similarity of the current

�There is a command line switch ��x� which turns the shortcut o
 in order to get real
k	NN results when k � � �i�e� get neighbors at further distances��

CHAPTER �� LEARNING ALGORITHMS ��

size shape # holesID
features

class

2

3

5

6

small

small

large

small

long

long

long

compact

none

1

1

none

none

2

1

2

screw

key

key

screw

pen

scissors

pen

scissors

pen

size shape # holesID
features

class

1

2

3

4

5

6

7

8

9

10

11

12

small

small

small

small

large

small

small

large

large

large

large

small

compact

long

long

compact

long

compact

compact

long

long

long

other

other

1

none

1

1

1

none

1

none

2

1

2

2

nut

screw

key

nut

key

screw

nut

pen

scissors

pen

scissors

key

large long none pen

8

9

10

11

large

large

large

large

long

long

long

other

long nonelarge

1

4

7

12

Figure ���� The instance base for a small object classi
cation toy problem�
The left
gure shows a �at array of instances through which sequential nearest
neighbor search is performed to
nd the best match for a test instance �shown
below the instance base�� In the right part� an inverted index �see text� is used
to restrict the search to those instances which share at least one feature value
with the test instance�

least similar best neighbor� By doing the search depth
rst�� the similarity
threshold quickly gets initialized to a good value� so that large parts of the
search space can be pruned�
Disregarding this last constraint on search� the number of feature	value com	

parisons is equal to the number of arcs in the tree� Thus if we can
nd an
ordering of the features which produces more overlap between partial paths�
and hence a smaller tree� we can gain both space and time improvements� An
ordering which was found to produce small trees for many of our NLP data
sets is Gain Ratio divided by the number of feature	values �this is the default
setting�� Through the 	T command line switch� however� the user is allowed to
experiment with di�erent orderings�

�Suggested by Gert Durieux�

CHAPTER �� LEARNING ALGORITHMS ��

small large

1 none 2 1 none 2

long long other long long long other

nut
screw
key
pen
scissors

nut
screw
key
pen
scissors

nut
screw
key
pen
scissors

nut
screw
key
pen
scissors

nut
screw
key
pen
scissors

nut
screw
key
pen
scissors

nut
screw
key
pen
scissors

nut
screw
key
pen
scissors

nut
screw
key
pen
scissors

size

holes

shape

3
0
0
0
0

0
0
1
0
0

nut key screw screw key key pen

compactcompact

0
1
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
1
1
0

0
0
0
1
0

0
0
0
0
1

0
0
0
0
1

scissors scissors

Figure ���� A tree	structured storage of the instance base from
gure ���� An
exact match for the test is in this case directly found by a top down traversal
of the tree �grey path�� If there is no exact match� all paths are interpreted as
instances and the distances are computed� The order of the features in this tree
is based on Gain Ratio�

��� Inverse index

The second part of our approach to e�ciency is a speedup optimization based
on the following fact� Even in the tree	based structure� the distance is com	
puted between the test instance and all instance types� This means that even
instance types which do not share a single feature	value with the test instance
are considered� although they will surely yield a zero similarity� The use of an
inverted index excludes these zero similarity patterns� The construction of
the inverted index records for all values of each feature a list of instance types
�i�e� leaf nodes in the tree described in the previous section� in which they oc	
cur� Thus it is an inverse of the instance	base� which records for each instance
type which feature	values occur in it��
When a test instance is to be classi
ed� we select the lists of instance types

for the feature	values that it contains �illustrated in the rightmost part of Fig	
ure ����� We can now
nd the nearest neighbor in these lists in a time that is
proportional to the number of occurrences of the most frequent feature	value of
the test pattern� instead of proportional to the number of instance types�
Although worst case complexity is still proportional to N � the size of the

training set� and practical mileage may vary widely depending on the peculiar	
ities of your data� the combination of exact match shortcut� tree	based path
re	use� and inverted index has proven in practice �for our NLP datasets� to

�Unfortunately this also implies that the storage of both an instance	base and an inverted
index takes about twice the amount of memory� Therefore we have chosen to turn it o
 by
default� However� especially for data with very large numbers of low frequent values it can be
substantially faster to turn it on�

CHAPTER �� LEARNING ALGORITHMS ��

make the di�erence between hours and seconds of computation��

��� IGTree

Using Information Gain rather than unweighted Overlap distance to de
ne sim	
ilarity in ib� improves its performance on several nlp tasks ���� ��� ���� The
positive e�ect of Information Gain on performance prompted us to develop an
alternative approach in which the instance memory is restructured in such a
way that it contains the same information as before� but in a compressed de	
cision tree structure� We call this algorithm igtree ���� �see Figure ��� for
an illustration�� In this structure� similar to the tree	structured instance base
described above� instances are stored as paths of connected nodes which contain
classi
cation information� Nodes are connected via arcs denoting feature values�
Information Gain is used to determine the order in which instance feature	values
are added as arcs to the tree� The reasoning behind this compression is that
when the computation of information gain points to one feature clearly being
the most important in classi
cation� search can be restricted to matching a test
instance to those memory instances that have the same feature	value as the test
instance at that feature� Instead of indexing all memory instances only once
on this feature� the instance memory can then be optimized further by exam	
ining the second most important feature� followed by the third most important
feature� etc� Again� considerable compression is obtained as similar instances
share partial paths�
Because igtree makes a heuristic approximation of nearest neighbor search

by a top down traversal of the tree in the order of feature relevance� we no
longer need to store all the paths� The idea is that it is not necessary to fully
store those feature	values of the instance that have lower Information Gain than
those features which already fully disambiguate the instance classi
cation�
Apart from compressing all training instances in the tree structure� the

igtree algorithm also stores with each non	terminal node information concern	
ing the most probable or default classi
cation given the path thus far� according
to the bookkeeping information maintained by the tree construction algorithm�
This extra information is essential when processing unknown test instances�
Processing an unknown input involves traversing the tree �i�e�� matching all
feature	values of the test instance with arcs in the order of the overall feature
Information Gain�� and either retrieving a classi
cation when a leaf is reached
�i�e�� an exact match was found�� or using the default classi
cation on the last
matching non	terminal node if an exact match fails�
In sum� it can be said that in the trade	o� between computation during

learning and computation during classi
cation� the igtree approach chooses
to invest more time in organizing the instance base using Information Gain
and compression� to obtain considerably simpli
ed and faster processing during
classi
cation� as compared to ib� and ib��ig�

�
mvdm and numeric features cannot make use of the inverted index optimization� because

it can happen that two cases with not one value in common are still nearest neighbors�

CHAPTER �� LEARNING ALGORITHMS ��

nut

nut pen

nut screw key key

key

small large

1 none 2 1 2

long shape

size

holes

scissors

Figure ���� A pruned igtree for the instance base of Figure ���� The classi
ca	
tion for the test instance is found by top down search of the tree� and returning
the class label �default� of the node after the last matching feature	value �arc��
Note that this tree is essentially a compressed version of the tree in Figure ����

The generalization accuracy of igtree is usually comparable to that of ib��
ig� most of the time not signi
cantly di�ering� and occasionally slightly �but
statistically signi
cantly� worse� or even better� The two reasons for this sur	
prisingly good accuracy are that �i� most �unseen� instances contain consider	
ably large parts that fully match stored parts of training instances� and �ii� the
probabilistic information stored at non	terminal nodes �i�e�� the default classi
	
cations� still produces strong �best guesses� when exact matching fails� The dif	
ference between the top	down traversal of the tree and precise nearest neighbor
search becomes more pronounced when the di�erences in informativity between
features are small� In such a case a slightly di�erent weighting would have pro	
duced a switch in the ordering and a completely di�erent tree� The result can
be a considerable change in classi
cation outcomes� and hence also in accuracy�
However� we have found in our work on NLP datasets that when the goal is
to obtain a very fast classi
er for processing large amounts of text� the slight
tradeo� between accuracy and speed can be very attractive� Note� also� that
by design� igtree is not suited for numeric features� as long as it does not use
some type of discretization� In TiMBL numbers will simply be treated as literal
strings in this case� Moreover� one should realize that the success of igtree is
determined by a good judgement of feature relevance ordering� Hence igtree
is not to be used with e�g� �no weights� �	w ��� Also� setting the 	k parameter
has no e�ect on igtree performance�

CHAPTER �� LEARNING ALGORITHMS �

��� The TRIBL hybrid

The application of igtree on a number of common machine	learning datasets
suggested that it is not applicable to problems where the relevance of the predic	
tive features cannot be ordered in a straightforward way� e�g� if the di�erences
in Information Gain are only very small� In those cases� ib��ig or even ib� tend
to perform signi
cantly better than igtree�
For this reason we have designed tribl� a hybrid generalization of igtree

and ib�� tribl allows you to exploit the trade	o� between �i� optimization
of search speed �as in igtree�� and �ii� maximal generalization accuracy� To
achieve this� a parameter is set determining the switch from igtree to ib��
A heuristic that we have used with some success is based on average feature
information gain� when the Information Gain of a feature exceeds the sum of
the average Information Gain of all features � one standard deviation of the
average� then the feature is used for constructing an igtree� including the
computation of defaults on nodes� When the Information Gain of a feature is
below this threshold� and the node is still ambiguous� tree construction halts
and the leaf nodes at that point represent case bases containing subsets of the
original training set� During search� the normal igtree search algorithm is
used� until the case	base nodes are reached� in which case regular ib� nearest
neighbor search is used on this sub	case	base� In TiMBL� however� you must
specify the switch point from igtree to ib�� also referred to as �tribl o�set��
manually�

��� NLP applications of TiMBL

This section provides a historical overview of our own work with the application
of mbl type algorithms to NLP tasks�
The ib��ig algorithm was
rst introduced in ���� in the context of a com	

parison of memory	based approaches with backprop learning for a hyphenation
task� Predecessor versions of igtree can be found in ���� ��� where they are
applied to grapheme	to	phoneme conversion� See ���� for a detailed description
and review of the algorithms� A recent development� now implemented in the
TiMBL package is tribl �����
The memory	based algorithms implemented in the TiMBL package have

been successfully applied to a large range of Natural Language Processing tasks
in our group� hyphenation and syllabi
cation ������� assignment of word stress
������� grapheme	to	phoneme conversion ������� diminutive formation ������� mor	
phological analysis ����� ���� part of speech tagging ���� ����� PP	attachment
������� word sense disambiguation������� subcategorization ������ chunking �par	
tial parsing� ������� and shallow parsing ����� ����
Relations to statistical language processing are discussed in ����� A partial

overview paper is ���� The
rst dissertation	length study devoted to the ap	
proach is ����� in which the approach is compared to alternative learning meth	
ods for NLP tasks related to English word pronunciation �stress assignment�

CHAPTER �� LEARNING ALGORITHMS ��

syllabi
cation� morphological analysis� alignment� grapheme	to	phoneme con	
version�� Recently a special issue of the Journal for Experimental and Theoret	
ical Arti�cial Intelligence �Vol� ������ was devoted to Memory	Based Language
Processing�
All papers referred to in this section and more recent material are available in

electronic form from the ILK homepage� http���ilk�kub�nl� We are grateful
for any feedback on the algorithms and the way we applied them�
Whereas the work in Tilburg has been oriented primarily towards language

engineering applications� the cnts research group of Antwerp University has
studied the linguistic and psycholinguistic relevance of memory	based learn	
ing for stress assignment in Dutch ����� ����� and as a model for phonological
bootstrapping� A recently started project has as its aim to test predictions
from memory	based models for language processing with psycholinguistic ex	
periments�

Chapter �

File formats

This chapter describes the format of the input and output
les used by TiMBL�
Where possible� the format is illustrated using the same small toy data set that
is shown in Figure ���� It consists of �� instances of � di�erent everyday objects
�nut� screw� key� pen� scissors�� described by � discrete features �size� shape�
and number of holes��

��� Data format

The training and test sets for the learner consist of descriptions of instances
in terms of a
xed number of feature	values� TiMBL supports a number of
di�erent formats for the instances� but they all have in common that the
les
should contain one instance per line� The number of instances is determined
automatically� and the format of each instance is inferred from the format of
the
rst line in the training set� The last feature of the instance is assumed to
be the target category� Should the guess of the format by TiMBL turn out to
be wrong� you can force it to interpret the data as a particular format by using
the 	F option� Note that TiMBL� by default� will interpret features as having
symbolic� discrete values� Unless you specify explicitly that certain features are
numeric� using the 	M option� TiMBL will interpret numbers as just another
string of characters� If a feature is numeric� its values will be scaled to the
interval ����� for purposes of distance computation �see Equation ����� The
computation of feature weights will be based on a discretization of the feature�
Once TiMBL has determined the input format� it will skip and complain

about all lines in the input which do not respect this format �e�g� have a di�erent
number of feature	values with respect to that format��
During testing� TiMBL writes the classi
cations of the test set to an output

le� The format of this output
le is by default the same as the input format�
with the addition of the predicted category being appended after the correct
category� If we turn on higher levels of verbosity� the output
les will also
contain distributions� distances and nearest neighbor sets�

��

CHAPTER �� FILE FORMATS ��

����� Column format

The column format uses white space as the separator between features� White
space is de
ned as a sequence of one or more spaces or tab characters� Every
instance of white space is interpreted as a feature separator� so it is not possible
to have feature	values containing white space� The column format is auto	
detected when an instance of white space is detected on the
rst line before a
comma has been encountered� The example data set looks like this in the column
format�

small compact � nut

small long none screw

small long � key

small compact � nut

large long � key

small compact none screw

small compact � nut

large long none pen

large long � scissors

large long � pen

large other � scissors

small other � key

����� C��� format

This format is a derivative of the format that is used by the well	known C���
decision tree learning program ����� The separator between the features is a
comma� and the category �viz� the last feature on the line� is followed by a
period �although this is not mandatory� TiMBL is robust to missing periods���
White space within the line is taken literally� so the pattern a
 b c
d will
be interpreted as �a�
� b c�
�d�� When using this format� especially with
linguistic data sets or with data sets containing �oating point numbers� one
should take special care that commas do not occur in the feature	values and
that periods do not occur within the category� Note that TiMBL�s C��� format
does not require a so called names�le� However� TiMBL can produce such a
le
for C��� with the 	n option� The C��� format is auto	detected when a comma
is detected on the
rst line before any white space has been encountered� The
example data set looks like this in the C��� format�

small
compact
�
nut�

small
long
none
screw�

small
long
�
key�

small
compact
�
nut�

large
long
�
key�

small
compact
none
screw�

�The periods after the category are not reproduced in the output

CHAPTER �� FILE FORMATS ��

small
compact
�
nut�

large
long
none
pen�

large
long
�
scissors�

large
long
�
pen�

large
other
�
scissors�

small
other
�
key�

����� ARFF format

ARFF is a format that is used by the WEKA machine learning workbench ������
Although TiMBL at present does not entirely follow the ARFF speci
cation� it
still tries to do as well as it can in reading this format� In ARFF the actual data
are preceded by a header with various types of information and interspersed with
lines of comments �starting with ��� The ARFF format is auto	detected when
the
rst line starts with � or !� TiMBL ignores lines with ARFF comments and
instructions� and starts reading data from after the �data statement until the
end of the
le� The feature	values are separated by commas� and white space is
deleted entirely� so the pattern a
 b c
d will be interpreted as �a�
�bc�
�d��
We hope include better support for the ARFF format in future releases�

� There are � attributes�

� There are �� instances�

� Attribute information� Ints Reals Enum Miss

� �size� � � �� �

� �shape� � � �� �

� �n�holes� � � �

� �class�� � � �� �

�relation �example�data�

�attribute �size� � small
 large�

�attribute �shape� � compact
 long
 other�

�attribute �n�holes� � �
 none
 ��

�attribute �class�� � nut�
 screw�
 key�
 pen�
 scissors��

�data

small
compact
�
nut�

small
long
none
screw�

small
long
�
key�

small
compact
�
nut�

large
long
�
key�

small
compact
none
screw�

small
compact
�
nut�

large
long
none
pen�

large
long
�
scissors�

large
long
�
pen�

large
other
�
scissors�

�WEKA is available from the Waikato University Department of Computer Science�
http���www�cs�waikato�ac�nz��ml��

CHAPTER �� FILE FORMATS ��

small
other
�
key�

����� Compact format

The compact format is especially useful when dealing with very large data
les�
Because this format does not use any feature separators�
le	size is reduced
considerably in some cases� The price of this is that all features and class labels
must be of equal length �in characters� and TiMBL needs to know beforehand
what this length is� You must tell TiMBL by using the 	l option� The compact
format is auto	detected when neither of the other formats applies� The same
example data set might look like this in the column format �with two characters
per feature��

smco��nu

smlonosc

smlo��ke

smco��nu

lalo��ke

smconosc

smco��nu

lalonope

lalo��sc

lalo��pe

laot��sc

smot��ke

����� Sparse Binary format

The sparse binary format is especially useful when dealing with large numbers
of two	valued �binary� features� of which each case only has a very few active
ones� such as e�g� in text categorization� Thus instead of representing a case as�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
small�

We can represent it as�

�
�
��
��
��
small�

This format allows one to specify only the index numbers of the active fea	
tures �indexes start at one�� while implicitly assuming that the value for all the
remaining features is zero� Because each case has a di�erent number of active
features� we must specify in some other way what the actual number of features
is� This must be done using the 	N option� As the format is very similar to
numerical features� there is no auto	detection for it� It must always be �forced��
using 	F Binary� The last feature of a line is always interpreted as being the
category string� A case with only zeroes can be represented as either ���class��
or ��
class���

CHAPTER �� FILE FORMATS ��

��� Weight 	les

The feature weights that are used for computing similarities and for the internal
organization of the memory	base can be saved to a
le� A
le with weights can
be constructed or altered manually and then read back into TiMBL� The format
for the weights
le is as follows� The weights
le may contain comments on lines
that start with a " character� The other lines contain the number of the feature
followed by its numeric weight� An example of such a
le is provided below�
The numbering of the weights starts with � and follows the same order as in the
data
le� If features are to be ignored it is advisable not to set them to zero�
but give them the value �Ignored� or to use the 	s option�

� DB Entropy� ������

� Classes� �

� Lines of data� ��

� Fea� Weight

� �������

� ��������

� �������

��� Value di
erence 	les

Using the mvdm metric� it can sometimes be interesting to inspect the matrix
of conditional class probabilities from Equation ����� By using the 	U option�
we can write the computed matrix to a
le� This way we can see which values
are considered to be similar by the metric� For each feature a row vector is
given for each value� of the conditional probabilities of all the classes �columns�
given that value�

targets A
 B
 C
 D
 E�

feature � � Matrix�

small ���� ����� ����� ����� �����

large ����� ����� ����� ����� �����

feature � � Matrix�

compact ����� ����� ����� ����� �����

long ����� ����� ����� ����� �����

other ����� ����� ����� ����� �����

feature � � Matrix�

� ����� ����� ����� ����� �����

none ����� ����� ����� ����� �����

� ����� ����� ����� ����� �����

CHAPTER �� FILE FORMATS ��

As long as this format is observed� the
le can be modi
ed �manually or by
substituting some other vector	based representations for the values�� and the
new matrix can be read in and used with the mvdm metric�

��� Tree 	les

Although the learning phase in TiMBL is relatively fast� it can sometimes be
useful to store the internal representation of the data set for even faster subse	
quent retrieval� In TiMBL� the data set is stored internally in a tree structure
�see Section ����� When using ib�� this tree representation contains all the train	
ing cases as full paths in the tree� When using igtree� unambiguous paths in
the tree are pruned before it is used for classi
cation or written to
le� In ei	
ther tree� the arcs represent feature	values and nodes contain class �frequency
distribution� information� The features are in the same order throughout the
tree� This order is either determined by memory	size considerations in ib�� or
by feature relevance in igtree� It can explicitly be manipulated using the 	T
option�
We strongly advise to refrain from manually editing the tree
le� However�

the syntax of the tree
le is as follows� After a header consisting of information
about the status of the tree� the feature	ordering �the permutation from the
order in the data
le to the order in the tree�� and the presence of numeric
features� the tree�s nodes and arcs are given in non	indented bracket notation�
Starting from the root node� each node is denoted by an opening parenthesis

���� followed by a default class� After this� there is the class distribution list�
within curly braces �f g�� containing a non	empty list of categories followed
by integer counts� After this comes an optional list of children� within �� ��
brackets� containing a non	empty list of nodes� separated by comma�s�� The
choice whether distributions are present is maintained throughout the whole
tree� Whether children are present is really dependent on whether children are
present�
The ib� tree that was constructed from our example data set looks as follows�

� Status� complete

� Permutation� � �
 �
 � �

� Numeric� �

� Version �

�

� nut � nut � screw � key � pen � scissors � � � small � nut

� nut � screw � key � � � � � nut � nut � key � �

� compact � nut � nut � � �

 long � key � key � � �

�

�Although in this header each line starts with �� these lines cannot be seen as comment
lines�

�This is a minor departure from the format of version ����

CHAPTER �� FILE FORMATS ��

�

 none � screw � screw � � � compact � screw � screw � � �

 long � screw � screw � � �

�

�

 � � key � key � � � other � key � key � � �

�

�

�

�

 large � pen � key � pen � scissors � � � � � key � key � pen � �

� long � key � key � pen � � �

�

�

 none � pen � pen � � � long � pen � pen � � �

�

�

 � � scissors � scissors � � � long � scissors � scissors � � �

 other � scissors � scissors � � �

�

�

�

�

�

�

The corresponding compressed igtree version is much smaller�

� Status� pruned

� Permutation� � �
 �
 � �

� Numeric� �

� Version �

�

� nut � nut � screw � key � pen � scissors � �

� small � nut � nut � screw � key � � � � � nut � nut � key � �

� long � key � key � � �

�

�

 none � screw � screw � � �

 � � key � key � � �

�

�

 large � pen � key � pen � scissors � � � � � key � key � pen � � �

 � � scissors � scissors � � �

� � � �

Chapter �

Server interface

Sometimes it is not practical to put all the test items into one test
le� Examples
of this include�

� The output of one classi
cation is being reused as a feature of some other
classi
er�

� The test items come in at arbitrary time intervals�

In such cases it is more practical to load the training patterns once and have
TiMBL stand by as a server waiting for new test items to be processed� This can
be achieved by starting TiMBL with the 	S portnumber option� TiMBL will
load the training set and do the necessary preparation of statistics and metrics�
and then enter an in
nite loop� waiting for input on the speci
ed portnumber�
When a client connects on this portnumber� the server starts a separate thread
for it to process �classi
cation� commands� A sample client program is included
in the distribution� The client must communicate with the server using the
protocol described below� After accepting the connection� the server
rst sends
a welcome message to the client�
Welcome to the Timbl server�

After this� the server waits for client	side requests� The client can now issue
four types of commands� classify� set �options�� query �status�� and exit� The
type of command is speci
ed by the the
rst string of the request line� which
can be abbreviated to any pre
x of the command� up to one letter �i�e� c�s�q�e��
The command is followed by whitespace and the remainder of the command as
described below�

classify testcase

testcase is a pattern of features �must have the same number of features as
the training set� followed by a category string� E�g�� small
long
�
���
Depending on the current settings of the server� it will either return the
answer

��

CHAPTER �� SERVER INTERFACE �

ERROR � explanation �

if something�s gone wrong� or the answer

CATEGORY �category� DISTRIBUTION � category � � DISTANCE � ��������� NEIGHBORS

ENDNEIGHBORS

where the presence of the DISTRIBUTION� DISTANCE and NEIGHBORS parts
depends upon the current verbosity setting� Note that if the last string
on the answer line is NEIGHBORS� the server will proceed to return lines of
nearest neighbor information until the keyword ENDNEIGHBORS�

set option

where option is speci
ed as a string of commandline options �described in
detail in Section � below�� Only the following commandline options are
valid in this context� k
 m
 q
 Q
 R
 w
 v
 x
 	� The setting of an
option in this client does not a�ect the behavior of the server towards other
clients� The server replies either with OK or with ERROR fexplanationg�

query

queries the server for a list of current settings� Returns a number of lines
with status information� starting with a line that says STATUS� and ending
with a line that says ENDSTATUS� For example�

STATUS

FLENGTH � �

MAXBESTS � ���

TREE�ORDER � GRO

INPUTFORMAT � C��

SEED � 	�

PROBALISTIC � 	

VERBOSITY � F

EXACT�MATCH � �

USE�INVERTED � 	

GLOBAL�METRIC � Overlap

METRICS �

NEIGHBORS � �

PROGRESS � ������

TRIBL�OFFSET � �

WEIGHTING � GRW

ENDSTATUS

exit

closes the connection between this client and the server�

Chapter �

Command line options

The user interacts with TiMBL through the use of command line arguments�
When you have installed TiMBL successfully� and you type Timbl at the com	
mand line without any further arguments� it will print an overview of the most
basic command line options�

TiMBL ��� �c� ILK ��
 �
 �����

Tilburg Memory Based Learner

Induction of Linguistic Knowledge Research Group

Tilburg University � University of Antwerp

Mon Feb �� �������� ����

usage� Timbl 	f data	file �	t test	file�

or see� Timbl 	h

for all possible options

If you are satis
ed with all of the default settings� you can proceed with just
these basics�

	f �datafile� � supplies the name of the
le with the training items�

	t �testfile� � supplies the name of the
le with the test items�

	h � prints a glossary of all available command line options�

The presence of a training
le will make TiMBL pass through the
rst two
phases of its cycle� In the
rst phase it examines the contents of the training

le� and computes a number of statistics on it �feature weights etc��� In the
second phase the instances from the training
le are stored in memory� If no
test
le is speci
ed� the program exits� possibly writing some of the results of
learning to
les �see below�� If there is a test
le� the selected classi
er� trained
on the present training data� is applied to it� and the results are written to
a
le of which name is a combination of the name of the test
le and a code
representing the chosen algorithm settings� TiMBL then reports the percentage

��

CHAPTER �� COMMAND LINE OPTIONS ��

of correctly classi
ed test items� The default settings for the classi
cation phase
are� a Memory	Based Learner� with Gain Ratio feature weighting� with k � ��
and with optimizations for speedy search� If you need to change the settings�
because you want to use a di�erent type of classi
er� or because you need to
make a trade	o� between speed and memory	use� then you can use the options
that are shown using 	h� The sections below provide a reference to the use of
these command line arguments� and they are roughly ordered by the type of
action that the option has e�ect on� Note that some options �listed with ���	��
can be turned on ��� or o� �	��

��� Algorithm and Metric selection

	a �n� � chooses between the standard ib� �nearest neighbor search� algo	
rithm �n��� this is the default value�� the decision tree	based optimization
igtree �n���� and the hybrid of the two� tribl �n����

	m �string� � determines which similarity metrics are used for each feature�
The format of this string is as follows�
GlobalMetric�MetricRange�MetricRange

Where GlobalMetric is used for alle features except for the ones that are
assigned other metrics by following �MetricRange restrictions� Metric
can be one of� O�M�N�I� which stand for respectively Overlap �default��
Modi
ed value di�erence �mvdm�� Numeric� or Ignore �which cannot be
the global one�� A range can be written using comma�s for lists� and
hyphens for intervals�

	w �n� � chooses between feature	weighting possibilities� The weights are used
in the metric of ib� and in the ordering of the igtree� Possible values
are�

n�� # No weighting� i�e� all features have the same importance �weight
� ���

n�� # Gain Ratio weighting �default�� See section ������

n�� # Information Gain weighting� See section ������

n�� # Chi	squared ���� weighting� See section ������

n�� # Shared variance weighting� See section ������

n�
lename # Instead of a number we can supply a
lename to the 	w
option� This causes TiMBL to read this
le and use its contents as
weights� �See section ��� for a description of the weights
le�

	k �n� � Number of nearest neighbors used for extrapolation� Only applicable
in conjunction with ib� �	a �� and tribl �	a ��� The default is �� Espe	
cially with the mvdm metric it is often useful to determine a good value
larger than � for this parameter �usually an odd number� to avoid ties��
Note that due to ties �instances with exactly the same similarity to the

CHAPTER �� COMMAND LINE OPTIONS ��

test instance� the number of instances used to extrapolate might in fact
be much larger than this parameter�

	q �n� � n is the tribl o�set� the index number of the feature where tribl
should switch from igtree to ib�� Does not apply to the other two
algorithms�

	R �n� � Resolve ties in the classi
er randomly� using a random generator with
seed n� As a default this is OFF� and ties are resolved in favor of the cate	
gory which is more frequent in the training set as a whole$remaining ties
are resolved on a
rst come
rst served basis� For comparison purposes�
we have also included the option 	R P �n�� which causes the classi
cation
to be based on a random pick �with seed n� of a category according to the
probability distribution in the nearest neighbor set�

	t ��file� � If the
lename given after 	t starts with ���� TiMBL will read
commands for testing from file� This
le should contain one set of in	
structions per line� On each line new values can be set for the following
command line options� 	e 	F 	k 	m 	o 	p 	q 	Q 	R 	t 	u ��	v 	w

��	x ��	� ��		� It is compulsory that each line in file contains a 	t

�testfile� argument to specify the name of the test
le�

	t leave one out � No test
le is read� but testing is done on each pattern of
the training
le� by treating each pattern of the training
le in turn as a
test case �and the whole remainder of the
le as training cases��

��� Input options

	F �format� � Force TiMBL to interpret the training and test
le as a speci
c
data format� Possible values for this parameter are� Compact
 C���

ARFF
 Columns
 Binary �case	insensitive�� The default is that TiMBL
guesses the format from the contents of the
rst line of the data
le� See
section ��� for description of the data formats and the guessing rules� The
Compact format cannot be used with numeric features�

	l �n� � Feature length� Only applicable with the Compact data format�
�n� is the number of characters used for each feature	value and category
symbol�

	N �n� � �maximum� number of features� Obligatory for Binary format�

	i �treefile� � Skip the
rst two training phases� and instead of processing
a training
le� read a previously saved �see 	I option� instance	base or
igtree from the
le treefile� See section ��� for the format of this
le�

	u �mvdmmatrixfile� � Replace the computed mvdm matrix with the matri	
ces provided in this
le�

CHAPTER �� COMMAND LINE OPTIONS ��

	P �path� � Specify a path to read the data
les from� This path is ignored
if the name of the data
le already contains path information�

	S �portnumber� � Starts a TiMBL server listening on the speci
ed port num	
ber of the localhost� See Chapter � for a description of the communication
protocol�

��� Output options

	I �treefile� � After phase one and two of learning� save the resulting tree	
based representation of the instance	base or igtree in a
le� This
le can
later be read back in using the 	i option �see above�� See section ��� for
a description of the resulting
le�s format� This also automatically saves
the current weights into treefile�wgt unless this is overridden by W�

	W �file� � Save the currently used feature	weights in a
le�

	U �mvdmmatrixfile� � Write the computed mvdm matrix to this
le�

	n �file� � Save the feature	value and target category symbols in a C��� style
�names
le� with the name �file�� Take caution of the fact that TiMBL
does not mind creating a
le with ��� ��� �$� and ��� values in features�
C��� will choke on this�

	p �n� � Indicate progress during training and testing after every n processed
patterns� The default setting is ������

	e �n� � During testing� compute and print an estimate on how long it will
take to classify n test patterns� This is o� by default�

	V � Show the version number�

��	v �n� � Verbosity Level� determines how much information is written to
the output during a run� Unless indicated otherwise� this information is
written to standard error� The use of � turns a given verbosity level on�
whereas 	 turns it o �only useable in non	commandline contexts� such as
client�server communication or 	t �testcommandfile��� This parameter
can take on the following values�

s� work silently �turns o� all set verbosity levels��

o� show all options set�

f� show Calculated Feature Weights� �default�

p� show value class probabilities�

e� show exact matches�

di� add distance to output
le�

db� add distribution of best matched to output
le

CHAPTER �� COMMAND LINE OPTIONS ��

n� add nearest neigbors to output
le �sets 	x and 		�

You may combine levels using ��� e�g� �v p�db or 	v o�di�

��	 � � Write the percentage of correctly classi
ed test instances to a
le with
the same name as the output
le� but with the su�x �����

	o �filename� � Write the test output to
lename� Useful for di�erent runs
with the same settings on the same test
le�

	O �path� � Write all output to the path given here� The default is to write
all output to the directory where the test
le is located�

��� Internal representation options

��	 x � Turns on�o� the shortcut search for exact matches in ib�� The default
is for this to be ON �which is usually much faster�� but when k � ��
the shortcut produces di�erent results from a �real� k nearest neighbors
search�

��	 	 � Turn on�o� the use of inverted
les� Turning this on will sometimes
make testing �considerably� faster� but approximately doubles the memory
load� The default is o��

	B �n�� Set the maximum number of stored nearest neighbors�

Chapter �

Programmer�s reference to

the TiMBL API

The TiMBL software is written in C�� in a more or less object	oriented manner�
This makes it possible to o�er you a set of C�� classes and an Application
Programming Interface �API� to access TiMBL classi
ers directly from your
own programs� For example� if you are building a Part	of	Speech tagger� you
want to initialize several classi
ers once� and let them classify test items as they
come along� rather than in a batch� Or perhaps you want to use the output of
one classi
er as input to the next� or you want to customize the TiMBL interface
to your needs� This is all possible� All you have to do is to include the TiMBL
header
le in your program�

�include MBLClass�h

In this software distribution you can
nd two example programs �tse�cc and
classify�cc� that demonstrate the use of TiMBL classes in another C��
program� Have a look at these to get a feel for how this works� To compile
your own programs� or these examples� you need to link with the Timbllib�a
library�

g�� 	o yourprogram yourprogram�o Timbllib�a

Note� however� that the license does not permit you to redistribute modi
ed
versions of TiMBL or derivative works without prior permission� Also� note
that the API is still �work in progress� and we might make changes to it in
future releases�
This chapter gives an overview of the TiMBL classes needed to include

Memory	Based classi
ers in your own programs� and describes the interface
through which they can be accessed� We have not attempted to document any
of the internal structure of the TiMBL source code here�

��

CHAPTER �� PROGRAMMER�S REFERENCE TO THE TIMBL API ��

��� Class hierarchy

The main classes that make up TiMBL are shown in Figure ��� A separate
class is de
ned for each type of algorithm �	a ����� in terms of command line
options�� The actual classi
ers �IB�Class� IGTREEClass� and TRIBLClass� are
derived directly from the virtual base class MBLClass��

MBLClass

IB1Class IGTREEClass TRIBLClass

Figure ��� The main components of the TiMBL class hierarchy� The arrows
denote inheritance�

Since MBLClass is a virtual base class� and hence it does not have its own
constructor� you will typically want to declare an pointer to an object of this
class�

MBLClass ! TheClassifierPtr " NULL#

Such a pointer can then be instantiated to one of the existing classes� depending
on your needs�

switch�algorithm��

case MBL�

TheClassifierPtr " new IB�Class#

break#

case IGTREE�

TheClassifierPtr " new IGTREEClass#

break#

case TRIBL�

TheClassifierPtr " new TRIBLClass#

break#

�

�There is also a TimblExperiment� which puts the wrappers around MBLClass that make
up the TiMBL program� This class is not documented here as we do not consider it clean
enough to be accessible from the outside�

CHAPTER �� PROGRAMMER�S REFERENCE TO THE TIMBL API ��

Or you can directly make an object of the desired class� e�g��

IGTREEClass TheClassifier#

��� Public member functions

The constructors and destructors are speci
c for each of the derived classes�
The rest of the interface is the same for all classes and is de
ned at the level of
the MBLClass� The return type of most functions is bool� A return value of �
means that something went wrong� � is a successful return�

	���� The constructors

IB�Class��IB�Class�const int N " ����
 const char ! " NULL �#

IGTREEClass��IGTREEClass�const int N " ����
 const char ! " NULL �#

TRIBLClass��TRIBLClass�const int N " ����
 const char ! " NULL �#

These constructor functions take optional const int and const char !

arguments� The integer N speci
es the maximum amount of features for the
classi
er object �defaults to ������ By way of the string you can assign a
meaningful name to the created object� The function�

char ! MBLClass��ExpName��#

will return that name to you at a later point in time�

	���� The destructors

IB�Class���IB�Class��#

IGTREEClass���IGTREEClass��#

TRIBLClass���TRIBLClass��#

They clean up all the mess�

	���� Member functions

The
rst two functions below emulate the functionality of the
rst two phases
of TiMBL �Examining and Learning�� They will act with default values of all
parameters for the type of classi
er that they are invoked from� To use di�er	
ent parameter settings� use the SetOption�� function described below� After
invoking Learn�filename�� a classi
er is available for subsequent classi
cation
of test patterns� There are several classi
cation functions available and several
additional input�output possibilities� Note that all string argument interfaces
are available both using const char ! and the STL type const string $�

CHAPTER �� PROGRAMMER�S REFERENCE TO THE TIMBL API ��

bool MBLClass��PrepareExperiment� char ! f �#

Use the
le with name f to go through phase � of learning �
lls the
statistics tables for feature values� targets� weights etc�� If needed� this
function is automatically called by Learn�� �see below��

bool MBLClass��Learn�const char ! f " NULL �#

Build an instance	base from the
le f �phase � of learning�� and if needed�
call PrepareExperiment��
rst� If f "" NULL� or the argument is omitted�
then the same
le is used as was used by PrepareExperiment�� �if any��

bool ! MBLClass��Classify� const char ! Line
 char !$ Result
 char

!$ Distribution
 double $ Distance�#

The string Line is parsed into features according to the current input for	
mat and classi
ed by the present classi
er� If classi
cation fails the func	
tion returns false� otherwise true� If succesfull� the string Result holds
the value of the most likely category� and the string Distribution holds
the whole distribution of categories in the nearest neighbor set� e�g� �f A

�� B � C ��g�� You can parse this string and extract the category values
from it yourself� so that you can e�g� re	normalize them to form a �con	
ditional� probability distribution� The variable Distance will contain the
distance of the nearest neighbor used for classi
cation�

bool MBLClass��GetInstanceBase� const char ! f �#

Read an instance base from
le f �

bool MBLClass��WriteInstanceBase� const char ! f �#

Write an instance base to
le f �

bool MBLClass��GetWeights� const char ! f �#

Read the weights to be used from
le f �

bool MBLClass��SaveWeights� const char ! f �#

Write the currently used weights to
le f �

bool MBLClass��GetArrays� const char ! f �#

Read the mvdm matrices from
le f �

bool MBLClass��WriteArrays� const char ! f �#

Write the mvdm matrices to
le f �

bool MBLClass��WriteNamesFile� const char ! f �#

Create a C��� names
le f �

	���� Setting parameters and options

Virtually all of the parameters and options that can be speci
ed in TiMBL
using command line options� can also be controlled in the classes derived from
MBLClass� This is done with the SetOption�� function�

CHAPTER �� PROGRAMMER�S REFERENCE TO THE TIMBL API �

bool MBLClass��SetOption� const char ! s �#

The string that is given as an argument contains a option setting com	
mand of the form�
��option � value��

Case does not matter� so you can achieve the same result by calling
SetOption� NEIGHBORS� � �#

or
SetOption� neighBors� � �#

The possible option setting commands� together with their permitted val	
ues are given in the table below� Many combinations or sequences of
settings are not permissible� because they �don�t make sense�� The caller
of the function is responsible for ruling out impossible combinations� The
SetOption function will return � if an attempt is made to set a non	
existing option or to set an existing option to a non	existing value�

The following functions are used to display option information�

bool MBLCLass��ShowOptions��#

Shows all options with their current and possible values�

bool MBLCLass��ShowSettings��#

Shows only the current settings of all options�

An overview of the options and their values�

Option Values
GLOBALMETRIC Overlap

VD or Value Difference

Numeric

Select the global metric �only applies to ib� and tribl algorithms��
example� SetOption� Metric� VD �#

METRICS i � LocalMetric� where LocalMetric is one of�
Overlap

VD or Value Difference

Numeric

Ignore

Select the local metric for feature i �only applies to ib� and tribl algorithms��
example� SetOption� Metrics� �"Ignore �#

NEIGHBORS n �integer�
sets the number of neighbors to use �does not apply to igtree classi
ers��
example� SetOption� NEIGHBORS� � �#

WEIGHTING NOW or No Weighting

GRW or GainRatio
IGW or InfoGain
X�W or Chi	square
SVW or Shared Variance

selects the desired feature weighting scheme�
example� SetOption� Weighting� InfoGain �#

CHAPTER �� PROGRAMMER�S REFERENCE TO THE TIMBL API ��

Option Values
TRIBL OFFSET n �integer�

only applies to the tribl algorithm� Sets the feature at which a transition is
made from igtree to tribl�
example� SetOption� Tribl offset� � �#

TREE ORDER UDO or Data File Ordering

DO or Default Ordering

GRO or GainRatio
IGO or InformationGain
��V or Inverse Values

G�V or GainRatio�Values
I�V or InformationGain�Values
��S or Inverse SplitInfo

Changes the ordering of the features in the instance base tree�
example� SetOption� TREE ORDER� DO �#

INPUTFORMAT Compact

C�� or C ���

Columns

ARFF

Binary

Forces input to be interpreted in this format�
example� SetOption� InputFormat � ARFF �#

FLENGTH n �integer�
If INPUTFORMAT is Compact� you have to specify how wide the feature values
are �n number of characters��
example� SetOption� FLENGTH� � �#

SEED n �integer�
sets the seed n for the random generator�
example� SetOption� SEED� ��� �#

VERBOSITY s # output just the minimal amount of information�
o # give an overview of the settings�
f # show the computed feature weights �this is the default�
p # show value	class probabilities�
e # show each exact matches�
di # write the distance of the nearest neighbor to the output
le�
db # write the distribution that was used for extrapolation to the output
le�
n # write the nearest neighbors used for extrapolation to the output
le�
Setting combinations of levels may be achieved by using a plus sign as separator�
example� SetOption� VERBOSITY� di�db�n �#

CHAPTER �� PROGRAMMER�S REFERENCE TO THE TIMBL API ��

Option Values
EXACT MATCH true � prefer exact matches during testing�

false � return all neighbors regardless of exact matches�
example� SetOption� exact match� true �#

USE INVERTED true � use inverted
les when testing�
false � don�t�
example� SetOption� use inverted� � �#

PROGRESS n �integer�
indicates how often �number of lines� you want to see an update on the exper	
iment�s progress�
example� SetOption� Progress� ����� �#

Bibliography

��� D� W� Aha� Lazy learning� Special issue editorial� Arti�cial Intelligence
Review� ����#��� �����

��� D� W� Aha� D� Kibler� and M� Albert� Instance	based learning algorithms�
Machine Learning� ����#��� �����

��� R� H� Baayen� R� Piepenbrock� and H� van Rijn� The CELEX lexical data
base on CD	ROM� Linguistic Data Consortium� Philadelphia� PA� �����

��� Sabine Buchholz� Distinguishing complements from adjuncts using
memory	based learning� In Proceedings of the ESSLLI	� Workshop on
Automated Acquisition of Syntax and Parsing� ����

��� Sabine Buchholz� Jorn Veenstra� and Walter Daelemans� Cascaded gram	
matical relation assignment� In Proceedings of EMNLP�VLC	��� Univer	
sity of Maryland� USA� pages ���#���� �����

��� Claire Cardie� Automatic feature set selection for case	based learning of
linguistic knowledge� In Proc� of Conference on Empirical Methods in NLP�
University of Pennsylvania� �����

��� S� Cost and S� Salzberg� A weighted nearest neighbour algorithm for learn	
ing with symbolic features� Machine Learning� �����#�� �����

�� T� M� Cover and P� E� Hart� Nearest neighbor pattern classi
cation� Insti	
tute of Electrical and Electronics Engineers Transactions on Information
Theory� �����#��� �����

��� W� Daelemans� Memory	based lexical acquisition and processing� In P� Stef	
fens� editor� Machine Translation and the Lexicon� volume � of Lecture
Notes in Arti�cial Intelligence� pages �#�� Springer	Verlag� Berlin� �����

���� W� Daelemans� S� Buchholz� and J� Veenstra� Memory	based shallow pars	
ing� In M� Van Someren and G� Widmer� editors� Proceedings of CoNLL	���
Bergen� Norway� June
��
���� �����

���� W� Daelemans� S� Gillis� and G� Durieux� The acquisition of stress� a
data	oriented approach� Computational Linguistics� ���������#���� �����

��

BIBLIOGRAPHY ��

���� W� Daelemans and A� Van den Bosch� Tabtalk� reusability in data	oriented
grapheme	to	phoneme conversion� In Proceedings of Eurospeech ���� pages
����#����� Berlin� ����� T�U� Berlin�

���� W� Daelemans and A� Van den Bosch� Language	independent data	oriented
grapheme	to	phoneme conversion� In J� P� H� Van Santen� R� W� Sproat�
J� P� Olive� and J� Hirschberg� editors� Progress in Speech Processing� pages
��#�� Springer	Verlag� Berlin� �����

���� W� Daelemans� A� Van den Bosch� and A� Weijters� igtree� using trees
for compression and classi
cation in lazy learning algorithms� Arti�cial
Intelligence Review� ������#���� �����

���� W� Daelemans� A� Van den Bosch� and J� Zavrel� A feature	relevance heuris	
tic for indexing and compressing large case bases� In M� Van Someren and
G� Widmer� editors� Poster Papers of the Ninth European Conference on
Machine Learing� pages ��#�� Prague� Czech Republic� ����� University
of Economics�

���� Walter Daelemans� Peter Berck� and Steven Gillis� Data mining as a
method for linguistic analysis� Dutch diminutives� Folia Linguistica�
XXXI��	��� �����

���� Walter Daelemans and Antal van den Bosch� Generalisation performance
of backpropagation learning on a syllabi
cation task� In M� F� J� Drossaers
and A� Nijholt� editors� Proc� of TWLT�� Connectionism and Natural Lan	
guage Processing� pages ��#��� Enschede� ����� Twente University�

��� Walter Daelemans� Jakub Zavrel� Peter Berck� and Steven Gillis� MBT� A
memory	based part of speech tagger generator� In E� Ejerhed and I�Dagan�
editors� Proc� of Fourth Workshop on Very Large Corpora� pages ��#���
ACL SIGDAT� �����

���� P� �A� Devijver and J� Kittler� Pattern recognition� A statistical approach�
Prentice	Hall� London� UK� ����

���� S�R� Garner�WEKA� Thewaikato environment for knowledge analysis� In
Proc� of the New Zealand Computer Science Research Students Conference�
pages ��#��� �����

���� S� Gillis� G� Durieux� and W� Daelemans� A computational model of P P�
Dresher and kaye ������ revisited� In M� Verrips and F� Wijnen� editors�
Approaches to parameter setting� volume � of Amsterdam Studies in Child
Langage Development� pages ���#���� xxx� �����

���� J� Kolodner� Case	based reasoning� Morgan Kaufmann� San Mateo� CA�
�����

���� J�R� Quinlan� Induction of Decision Trees� Machine Learning� ���#����
����

BIBLIOGRAPHY ��

���� J�R� Quinlan� c���� Programs for Machine Learning� Morgan Kaufmann�
San Mateo� CA� �����

���� C� Stan
ll and D� Waltz� Toward memory	based reasoning� Communica	
tions of the acm� �����������#���� December ����

���� A� Van den Bosch� Learning to pronounce written words� A study in in	
ductive language learning� PhD thesis� Universiteit Maastricht� �����

���� A� Van den Bosch and W� Daelemans� Data	oriented methods for
grapheme	to	phoneme conversion� In Proceedings of the �th Conference
of the EACL� pages ��#��� �����

��� A� Van den Bosch and W� Daelemans� Memory	based morphological anal	
ysis� In Proceedings of the ��th Annual Meeting of the Association for
Computational Linguistics� University of Maryland� USA� pages ��#����
�����

���� A� Van den Bosch� W� Daelemans� and A� Weijters� Morphological anal	
ysis as classi
cation� an inductive	learning approach� In K� O�azer and
H� Somers� editors� Proceedings of the Second International Conference on
New Methods in Natural Language Processing� NeMLaP	�� Ankara� Turkey�
pages ��#�� �����

���� J� Veenstra� A� Van den Bosch� S� Buchholz� W� Daelemans� and J� Zavrel�
Memory	based word sense disambiguation� Computing and the Humanities�
����	��� Special issue on SENSEVAL� �����

���� J�B� Veenstra� Fast NP chunking using Memory	Based Learning techniques�
In Proceedings of Benelearn��� Wageningen� the Netherlands� available as
ILK technical report ILK	�	��� ����

���� S� Weiss and C� Kulikowski� Computer systems that learn� San Mateo� CA�
Morgan Kaufmann� �����

���� A�P� White and W�Z� Liu� Bias in information	based measures in decision
tree induction� Machine Learning� ���������#���� �����

���� J� Zavrel and W� Daelemans� Memory	based learning� Using similarity for
smoothing� In Proc� of ��th annual meeting of the ACL� Madrid� �����

���� J� Zavrel and W� Daelemans� Recent advances in memory	based part	of	
speech tagging� In VI Simposio Internacional de Comunicacion Social�
pages ���#���� Santiago de Cuba� �����

���� J� Zavrel� W� Daelemans� and J� Veenstra� Resolving PP attachment am	
biguities with memory	based learning� In Mark Ellison� editor� Proc� of
the Workshop on Computational Natural Language Learning �CoNLL�����
ACL� Madrid� �����

Appendix A

Tutorial� a case study

This tutorial is meant to get you started with TiMBL quickly� We discuss how
to format the data of a task to serve as training examples� which choices can
be made during the construction of the classi
er� how various choices can be
evaluated in terms of their generalization accuracy� and various other practical
issues� The reader who is interested in more background information on TiMBL
implementation issues and a formal description of Memory	Based Learning� is
advised to read Chapter ��
Memory	Based Learning �mbl� is based on the idea that intelligent behavior

can be obtained by analogical reasoning� rather than by the application of ab	
stract mental rules as in rule induction and rule	based processing� In particular�
mbl is founded in the hypothesis that the extrapolation of behavior from stored
representations of earlier experience to new situations� based on the similarity
of the old and the new situation� is of key importance�

mbl algorithms take a set of examples �
xed	length patterns of feature	
values and their associated class� as input� and produce a classi�er which can
classify new� previously unseen� input patterns� Although TiMBL was designed
with linguistic classi
cation tasks in mind� it can in principle be applied to any
kind of classi
cation task with symbolic or numeric features and discrete �non	
continuous� classes for which training data is available� As an example task
for this tutorial we go through the application of TiMBL to the prediction of
Dutch diminutive su�xes� The necessary data sets are included in the TiMBL
distribution� so you can replicate the examples given below on your own system�

A�� Data

The operation of TiMBL will be illustrated below by means of a real natural
language processing task� prediction of the diminutive su�x form in Dutch �����
In Dutch� a noun can receive a diminutive su�x to indicate small size literally
or metaphorically attributed to the referent of the noun� e�g� mannetje means
little man� Diminutives are formed by a productive morphological rule which

��

APPENDIX A� TUTORIAL� A CASE STUDY ��

attaches a form of the Germanic su�x 	tje to the singular base form of a noun�
The su�x shows variation in its form �Table A���� The task we consider here is
to predict which su�x form is chosen for previously unseen nouns on the basis
of their form�

Noun Form Su�x
huis �house� huisje 	je
man �man� mannetje 	etje
raam �window� raampje 	pje
woning �house� woninkje 	kje
baan �job� baantje 	tje

Table A��� Allomorphic variation in Dutch diminutives�

For these experiments� we collect a representation of nouns in terms of their
syllable structure as training material�� For each of the last three syllables of
the noun� four di�erent features are collected� whether the syllable is stressed
or not �values 	 or ��� the string of consonants before the vocalic part of the
syllable �i�e� its onset�� its vocalic part �nucleus�� and its post	vocalic part
�coda�� Whenever a feature value is not present �e�g� a syllable does not have
an onset� or the noun has less than three syllables�� the value ��� is used� The
class to be predicted is either E �	etje�� T �	tje�� J �	je�� K �	kje�� or P �	pje��
Some examples are given below �the word itself is only provided for conve	

nience and is not used�� The values of the syllabic content features are given in
phonetic notation�

	 b i � 	 z ! � � m A nt J biezenmand
� � � � � � � � � b I x E big
� � � � � b K � 	 b a n T bijbaan
� � � � � b K � 	 b ! l T bijbel

Our goal is to use TiMBL in order to train a classi
er that can predict
the class of new� previously unseen words as correctly as possible� given a set
of training examples that are described by the features given above� Because
the basis of classi
cation in TiMBL is the storage of all training examples in
memory� a test of the classi
er�s accuracy must be done on a separate test set�
We will call these datasets dimin�train and dimin�test� respectively� The
training set dimin�train contains ���� words and the test set contains ���
words� none of which are present in the training set� Although a single train�test
partition su�ces here for the purposes of explanation� it does not factor out the
bias of choosing this particular split� Unless the test set is su�ciently large� a
more reliable generalization accuracy measurement is used in real experiments�
e�g� ��	fold cross	validation ����� This means that �� separate experiments are
performed� and in each �fold� ��� of the data is used for training and ��� for

�These words were collected form the celex lexical database ���

APPENDIX A� TUTORIAL� A CASE STUDY ��

testing� in such a way that each instance is used as a test item exactly once�
Another reliable way of testing the real error of a classi
er is leave	one	out �����
In this approach� every data item in turn is selected once as a test item� and the
classi
er is trained on all remaining items� Accuracy of the classi
er is then the
number of data items correctly predicted� With the option 	t leave one out�
this testing methodology is used by TiMBL� We will use this option in the
tutorial on the
le dimin�data� the union of dimin�train and dimin�test�

A�� Using TiMBL

Di�erent formats are allowed for training and test data
les� TiMBL is able to
guess the type of format in most cases� We will use comma	separated values
here� with the class as the last value� This format is called C��� format in TiMBL
because it is the same as that used in Quinlan�s well	known C��� program for
induction of decision trees ����� See Section � for more information about this
and other
le formats�
An experiment is started by executing TiMBL with the two
les �dimin�train

and dimin�test� as arguments�

Timbl �f dimin�train �t dimin�test

Upon completion� a new
le has been created with name
dimin�test�mbl�O�gr�k��out� which is in essence identical to the input test

le� except that an extra comma	separated column is added with the class pre	
dicted by TiMBL� The name of the
le provides information about the mbl
algorithms and metrics used in the experiment �the default values in this case��
We will describe these shortly�
Apart from the result
le� information about the operation of the algorithm

is also sent to the standard output� It is therefore advisable to redirect the
output to a
le in order to make a log of the results�

Timbl �f dimin�train �t dimin�test � dimin�exp�

The defaults used in this case work reasonably well for most problems� We
will now provide a point by point explanation of what goes on in the output�

TiMBL ��� �c� ILK ���	
 ����
 �����

Tilburg Memory Based Learner

Induction of Linguistic Knowledge Research Group

Tilburg University � University of Antwerp

Tue Feb �� ������� ����

Examine datafile gave the following results�

Number of Features� ��

InputFormat � C��

APPENDIX A� TUTORIAL� A CASE STUDY ��

TiMBL has detected �� features and the C��� input format �comma	separated
features� class at the end��

Phase �� Reading Datafile� dimin�train

Start� � � Tue Feb �� ������� ����

Finished� ���� � Tue Feb �� ������� ����

Calculating Entropy Tue Feb �� ������� ����

Lines of data � ����

DB Entropy � �����	���

Number of Classes �

Feats Vals X�square Variance InfoGain GainRatio

� � ��	���	�	 ���������	� ����������� �����	����

� � �����	�� ���������� �����	����	 ���������

� �� ������	�� ����������� �������	� ����	����	�

� �� ����	�	�� ����������� ��������� ���������

 � �		�	���	 ����	������ ��������� �����������

� �� �������� �������	��� ���������� �����������

� �� ������� ��������	�	 ������	��	 ����������

	 �� ��������� �������	�� �������	��� ������	�	��

� � ��������� ��������� �������	� �����	����

�� �� ��������� ����������� �����		�� �����	��	�

�� �	 �	������	 �������	� ��������	 ���	����	

�� �� �������	� ����	���� ����	���� �������	�

Feature Permutation based on GainRatio�Values �

� �

 ��
 �
 ��
 �
 �
 �
 ��
 	
 �
 � �

Phase � is the training data analysis phase� Time stamps for start and end
of analysis are provided� Some preliminary analysis of the training data is done�
number of training items� number of classes� entropy of the training data� For
each feature� the number of values� and four variants of an information	theoretic
measure of feature relevance are given� These are used both for memory orga	
nization during training and for feature relevance weighting during testing �see
Chapter ��� Finally� an ordering �permutation� of the features is given� This
ordering is used for building the tree	index to the case	base�

APPENDIX A� TUTORIAL� A CASE STUDY �

Phase �� Learning from Datafile� dimin�train

Start� � � Tue Feb �� ������� ����

Finished� ���� � Tue Feb �� ������� ����

Size of InstanceBase � ����� Nodes
 ��	���� bytes�
 ����� � compression

Phase � is the learning phase� all training items are stored in an e�cient
way in memory for use during testing� Again timing information �real time� is
provided� as well as information about the size of the data structure representing
the stored examples and the amount of compression achieved�

Starting to test
 Testfile� dimin�test

Writing output in� dimin�test�mbl�O�gr�k��out

Algorithm � IB�

Global metric � Overlap �Using Instance Base
 prefering exact matches�

Deviant Feature Metrics�

Weighting � GainRatio

Tested� � � Tue Feb �� ������� ����

Tested� � � Tue Feb �� ������� ����

Tested� � � Tue Feb �� ������� ����

Tested� � � Tue Feb �� ������� ����

Tested� � Tue Feb �� ������� ����

Tested� � � Tue Feb �� ������� ����

Tested� � � Tue Feb �� ������� ����

Tested� 	 � Tue Feb �� ������� ����

Tested� � � Tue Feb �� ������� ����

Tested� �� � Tue Feb �� ������� ����

Tested� ��� � Tue Feb �� ������� ����

Ready� �� � Tue Feb �� ������� ����

Seconds taken� � ������ p�s�

��	��� ����������
 of which �� exact matches

There were ties of which � �������� were correctly resolved

In Phase �� the trained classi
er is applied to the test set� Because we have
not speci
ed which algorithm to use� the default settings are used �ib� with in	
formation theoretic feature weighting�� This algorithm computes the similarity
between a test item and each training item in terms of weighted overlap� the
total di�erence between two patterns is the sum of the relevance weights of those
features which are not equal� The class for the test item is decided on the basis
of the least distant item�s� in memory� To compute relevance� Gain Ratio is used

APPENDIX A� TUTORIAL� A CASE STUDY ��

�an information	theoretic measure� see Section ������� Time stamps indicate the
progress of the testing phase� Finally� accuracy on the test set is logged� and
the number of exact matches� and ties �two or more classes are equally frequent
in the nearest neighbor set�� In this experiment� the diminutive su�x form of
����� of the new words was correctly predicted� Train and test set overlap in
�� items� and the algorithm had to break � ties� of which � correctly�
The meaning of the output
le names can be explained now�

dimin�test�mbl�O�gr�k��out means output
le ��out� for dimin�test with
algorithm mbl ��ib��� similarity computed as weighted overlap ��O�� relevance
weights computed with gain ratio ��gr�� and number of most similar memory
patterns on which the output class was based equal to � ��k���

A�� Algorithms and Metrics

A precise discussion of the di�erent algorithms and metrics implemented in
TiMBL is given in Chapter �� We will discuss the e�ect of the most important
ones on our data set�
A
rst choice in algorithms is between using ib� and igtree� In the trade	o�

between generalization accuracy and e�ciency� ib� usually� but not always� leads
to more accuracy at the cost of more memory and slower computation� whereas
igtree is a fast heuristic approximation of ib�� but sometimes less accurate�
The igtree algorithm is used when 	a � is given on the command line� whereas
the ib� algorithm used above �the default� would have been speci
ed explicitly
by 	a ��

Timbl �a � �f dimin�train �t dimin�test

We see that igtree performs slightly worse than ib� for this task �it uses
less memory and is faster� however��
When using the ib� algorithm� there is a choice of metrics for in�uencing

the de
nition of similarity� With weighted overlap� each feature is assigned a
weight� determining its relevance in solving the task� With the modi�ed value
di�erence metric �mvdm�� each pair of values of a particular feature is assigned
a value di�erence� The intuition here is that in our diminutive problem� for
example� the codas n and m should be regarded as being more similar than n
and p� These pair	wise di�erences are computed for each pair of values in each
feature �see Section ������� Selection between weighted overlap and mvdm is
done by means of the 	mM parameter� The following selects mvdm� whereas 	mO
�weighted overlap� is the default�

Timbl �mM �f dimin�train �t dimin�test

Especially when using mvdm� but also in other cases� it may be useful to
extrapolate not just from the most similar example in memory� which is the

�An exact match in this experiment can occur when two di
erent nouns have the same
feature	value representation�

APPENDIX A� TUTORIAL� A CASE STUDY ��

gain ratio inform� gain overlap X�
ib�� �k� ���� ���� ��� ����
ib�� �k� ���
mvdm� �k� ���� ���� ����
mvdm� �k� ���� ���� ����

Table A��� Some results for diminutive prediction�

default� but from several� This can be achieved by using the �k parameter
followed by the wanted number of nearest neighbors� E�g�� the following applies
ib� with the mvdm metric� with extrapolation from the � nearest neighbors�

Timbl �mO �k �f dimin�train �t dimin�test

Within the ib� weighted overlap option� the default feature weighting method
is Gain Ratio� Other feature relevance weighting methods are available as well�
By setting the parameter 	w to �� an overlap de
nition of similarity is created
where each feature is considered equally relevant� Similarity reduces in that case
to the number of equal values in the same position in the two patterns being
compared� As an alternative weighting� users can provide their own weights by
using the 	w parameter with a
lename in which the feature weights are stored
�see Section ��� for a description of the format of the weights
le��
Table A�� shows the e�ect of algorithm� metric� and weighting method choice

on generalization accuracy using leave	one	out as experimental method�

Timbl �t leave�one�out �f dimin�data

When comparing mvdm and ib�� we see that the overall best results are
achieved with mvdm� but only with a higher value for k� the number of memory
items �actually distances� on which the extrapolation is based� Increasing the
value of k for �weighted� Overlap metrics decreased performance� Within the
feature weighting approaches� overlap �i�e� no weighting� performs markedly
worse than the default information gain or gain ratio weighting methods�

A�� More Options

Several input and output options exist to make life easier while experimenting�
See Chapter � for a detailed description of these options� One especially useful
option for testing linguistic hypotheses is the ignore option� which allows you
to skip certain features when computing similarity� E�g� if we want to test
the hypothesis that only the rime �nucleus and coda� and the stress of the last
syllable are actually relevant in determining the form of the diminutive su�x�
we can execute the following to disregard all but the fourth	last and the last
two features� As a result we get an accuracy of �������

�It should be kept in mind that the amount of overlap in training and test set has signi�	
cantly increased� so that generalization is based on retrieval more than on similarity compu	
tation�

APPENDIX A� TUTORIAL� A CASE STUDY ��

Timbl �mM�I��	
�� �f dimin�data �t leave�one�out �k �w�

The ���v �verbosity� option allows you to control the amount of informa	
tion that is generated in the output� ranging from nothing much ��v s� to
a lot ��v o�p�e�di�db�n�� Speci
c verbosity settings exist for dumping
option settings ��v o�� feature relevance weights �default�� value	class condi	
tional probabilities ��v p�� exact matches ��v e�� distributions ��v db�� and
the nearest neighbors on which decision are based ��v n� or the distances to
the nearest neighbor ��v di�� E�g� the following command results in an output

le with distributions�

Timbl �v db �f dimin�train �t dimin�test

The resulting output
le contains lines like the following�

�
�
�
�
�
�
K
�
�
s
A
k
J
J � J � �

�
r
i
�
�
j
o
�
�
d
�
�
T
T � T � E � J � �

�
vr
a
�
�
G
�
�
�
l
K
st
J
J � J � �

�
�
�
�
�
�
�
�
�
b
o
m
P
P � P � �

�
�
�
�
�
v
E
s
�
t
I
N
K
E � E � �

�
t
�
�
�
G
�
�
�
z
I
xt
J
J � J � �

�
�
�
�
�
�
�
�
�
b
E
l
E
E � E �� �

�
k
o
�
�
l
i
�
�
br
i
�
T
T � T � �

�
�
�
�
�
sx
I
�
�
m
�
l
T
T � T �� �

�
�
�
�
�
�
�
�
�
kl
M
n
T
T � T �� E �� �

This information can e�g� be used to assign a certainty to a decision of the
classi
er� or to make available a second	best back	o� option�

Timbl �v di �f dimin�train �t dimin�test

�
l
a
�
�
d
�
�
�
k
A
st
J
J ��������

�
s
i
�
�
f
E
r
�
st
O
k
J
J ��������

�
�
�
�
�
�
�
�
�
sp
a
n
T
T �����	�

�
�
�
�
�
�
�
�
�
st
o
t
J
J �����	�

�
�
�
�
�
sp
a
r
�
b
u
k
J
J ��������

�
h
I
N
�
k
�
l
�
bl
O
k
J
J ������	�

�
m
e
�
�
d
A
l
�
j
O
n
E
E ���	����

�
sn
u
�
�
p
�
�
�
r
K
�
T
T ��������

�
�
�
�
�
�
�
�
�
sp
A
N
E
E �����	�

�
k
a
�
�
k
�
�
�
n
E
st
J
J ������	

This can be used to study how speci
c instances �low distance� and more
general patterns �higher distance� are used in the process of generalization�

The listing of nearest neighbors is useful for the analysis of the behavior of
a classi
er�

Timbl �v n �f dimin�train �t dimin�test

APPENDIX A� TUTORIAL� A CASE STUDY ��

�
t
�
�
�
l
�
�
�
G
�
n
T
T

� k��
 � Neighbor�s� at distance� ���������

� �
x
�
�
�
h
�
�
�
G
�
n
 ���

�
�
I
n
�
str
y
�
�
m
E
nt
J
J

� k��
 � Neighbor�s� at distance� ��������

� �
m
o
�
�
n
y
�
�
m
E
nt
 ���

�
�
�
�
�
�
�
�
�
br
L
t
J
J

� k��
 � Neighbor�s� at distance� �����	���

� �
�
�
�
�
�
�
�
�
r
L
t
 ���

� �
�
�
�
�
�
�
�
�
kr
L
t
 ���

� �
�
�
�
�
�
�
�
�
sx
L
t
 ���

� �
�
�
�
�
�
�
�
�
fl
L
t
 ���

�
�
�
�
�
zw
A
�
�
m
�
r
T
T

� k��
 Neighbor�s� at distance� �������

� �
�
�
�
�
fl
e
�
�
m
�
r
 ���

� �
�
�
�
�
�
E
�
�
m
�
r
 ���

� �
�
�
�
�
l
E
�
�
m
�
r
 ���

� �
�
�
�
�
k
a
�
�
m
�
r
 ���

� �
�
�
�
�
h
O
�
�
m
�
r
 ���

We hope that this tutorial has made it clear that� once you have coded
your data in
xed	length feature	value patterns� it should be relatively straight	
forward to get the
rst results using TiMBL� You can then experiment with
di�erent metrics and algorithms to try and further improve your results�

