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Abstract

We investigate the effects of (i) feature subset selection, (ii) parameter optimization, and
(iii) simultaneous feature selection and parameter optimization in Memory-based Natural Lan-
guage Processing (MBLP). We use a simple genetic algorithm for this problem and compare
it to two iterative search methods on some typical tasks in natural language processing: part-
of-speech tagging of known and unknown words, and grapheme to phoneme conversion with
stress assignment. We find that (i) feature selection always outperforms the MBLP variant
without selection, (ii) optimization of parameters for each specific task is beneficial, and (iii)
the combination of parameter optimization and feature selection performed simultaneously
can lead to more accurate classification results. However, we have found no indications on
our data that GAs reach a significantly better accuracy than the iterative methods, and, in
general, the approach promises larger gains for more effective search methods.

1 Memory-Based Language Processing

Memory-Based Language Processing (Daelemans, van den Bosch, and Zavrel, 1999) is based
on the idea that language acquisition should be seen as the incremental storage of exemplars
of specific tasks, and language processing as analogical reasoning on the basis of these stored
exemplars. These exemplars take the form of a vector of, typically, nominal features, de-
scribing a linguistic problem and its context, and an associated class symbol representing the
solution to the problem.

Most Natural Language Processing (NLP) tasks are characterised by the interaction of few
regularities with many subregularities and “pockets of exceptions”, and by the interaction of
various sources of information (e.g. lexical and contextual). We briefly describe how MBLP
handles these problems.

1. Exceptions. A memory-based strategy, in which no rules are handcrafted or induced and
in which low-frequency events and exceptions are kept available for analogical reason-
ing, can empirically be shown to solve this problem better than eager learning systems
(Daelemans, van den Bosch, and Zavrel, 1999). Eager learning methods “forget” rele-
vant exceptional information, because of their pruning and frequency-based abstraction
methods. The basic algorithm we use is a variant of IB1 (Aha, Kibler, and Albert, 1991)
in which the distance between a test item and each memory item is defined as the num-
ber of features for which they have a different value (overlap metric). Classification of a
new test item is done by assigning the most frequent category among the k£ most similar
memory item(s).

2. Information source interaction. 1B1 does not solve the problem of modeling the interac-
tion between the various sources of information considered relevant in solving the task.
E.g., in assigning a syntactic class to an unknown word both aspects of the form (mor-
phology) of the word, and of the context in which the word occurs are relevant. In an
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MBLP approach, this interaction can be modeled by means of feature weighting, the
assignment of a relevance weight to the different features of the input vector reflecting
their importance in computing similarity between vectors. This feature relevance assign-
ment may be based on information-theoretic or statistical notions. Further refinement
of the distance measure can be achieved by calculating a separate distance for each pair
of values of the same feature.

Previous experiments with memory-based and other machine learning methods have shown
that finding suitable parameter settings for a system is an important factor in the success or
failure of a learning method. In memory-based learning, apart from finding a good value for
the number of k nearest neighbours, it is important to calculate reasonable estimates about
the relevance of the features. Memory-based Language Processing seems to benefit from the
use of feature weights in its similarity function and feature selection can also improve both
accuracy and efficiency by discarding some features altogether because of their irrelevance or
even counter-productivity in learning to solve the task. Moreover, parameter optimization
and feature selection or weighting are likely to interact. In this paper we apply an evolutionary
computing approach to these problems.

We believe the applicability of this approach goes well beyond MBLP. Other machine
learning algorithms are confronted with similar feature weighting, feature selection, and pa-
rameter optimization problems, and our results may be relevant for these other algorithms as
well.

The rest of this paper is structured as follows. In section 2, the search space for our
experiments is defined and we state our hypotheses. In Section 3 we present our use of
Genetic Algorithms, and more traditional search methods for searching the defined space.
Section 4 describes the data used, and presents our experimental results. Section 5 mentions
related approaches and draws conclusions.

2 Problems and Hypotheses

In a scenario where all information contributes in the same manner to the classification, the
non-weighted 1B1 metric will perform reasonably well on a given task. But on most of our
data, classification accuracy is higher when weight assignment methods are used to determine
to what degree features are good predictors of the class labels. As we cannot identify the
best weighting scheme beforehand, we have found it useful, for each new task, to exhaustively
search for the best setting. Implemented in our memory-based learner are five different op-
tions for relevance assignment: either no weighting is used which implies that all features are
treated as equally relevant, or information-theoretic measures (gain ratio, information gain)
are used or alternatively statistical methods (chi-square, shared variance) can be used. In
these experiments we will try to identify the optimal weight measure for each new dataset.
Feature weighting methods assign continuous weights to the features, but some features may
be completely irrelevant and disturb the classification. Better results can be obtained by
leaving these features out. Faced with insufficient domain knowledge to make restrictions be-
forehand, we do not know which features can safely be discarded from the feature set. Binary
feature selection (where a feature is either present or not present during classification) is not
a straightforward task: not all features are always equally informative, some features may
even be completely irrelevant, or a number of features may correlate in a specific way such
that their combined presence influences the accuracy of the classifier.

We have also found it useful on some tasks to use the information that two values of
a feature are similar, this technique is referred to as modified value difference metric. The
MVDM method determines the similarity of the values of a feature by looking at co-occurence
of values with target classes. Data sparsity can be a problem in practical applications, many
values occur only once in the whole data set. This means that if two such values occur with
the same class, MvDM will regard them as identical, and if they occur with two different classes
their distance will be maximal. Ideally, we would like to apply this metric only to certain
features for which sufficient examples are present in the data.

Parameter optimization for the number of k nearest neighbours and the different weight
assignment methods can be performed exhaustively. But combining the search for a good fea-
ture subset and for optimal parameter settings implies a large and complex space of possible



settings and relations between features and parameters. While examining different feature
settings, the criteria for parameter settings change as well. It is in optimization problems like
this that methods such as evolutionary algorithms promise to be of use. In particular, there
is a complex relationship between the type of feature settings, and the optimal setting of the
other parameters. For example, a correlation can often be observed between the use of MVvDM
and the benefit from using a larger number of nearest neighbours.

In the experiments we tested the following hypotheses:

1. Feature selection methods will filter out irrelevant features that could disturb the clas-
sification and the GA may catch correlations between features better than the more
classical methods.

2. Parameter optimization for each specific dataset will enhance the performance of the
classifier.

3. Applying feature subset selection and parameter optimization simultaneously with a ga
may have the advantage of finding the dependencies between a feature subset and the
different parameters, drawing profit from the algorithm’s inherent parallelism, whereas
iterative methods may fail to capture these relations.

3 Genetic Algorithms

Genetic algorithms are a domain-independent search technique and are well-suited for explo-
ration of large and complex search spaces. As they are blind towards the problem domain
(the only information they have is an evaluation function), they are an interesting algorithm
when little domain-knowledge can be supplied. Genetic algorithms start with a collection of
randomly initialized hypothesis solutions in the form of symbolic strings, called chromosomes
or individuals. The chromosome string has several genes, each of which represents a particular
feature with a certain value. This population of chromosomes is cyclically evolved through
a number of generations and at each run genetically inspired operators steer the hypothesis
space towards new and promising regions, evaluating, selecting, combining and mutating the
hypothesis strings until a stop criterium is reached.

In the experiments, we linked our memory-based learner TIMBL! to PGAPAck?. During
the feature subset selection experiments the string is composed of binary values, indicating
presence or absence of a feature. During the simultaneous optimization experiments, the first
gene in the string encodes the values for k (only odd values are used, to avoid ties), the second
gene indicates which weight settings are used and the remaining genes are reserved for the
features. In these experiments we look at feature selection as an optimization process, where
each feature has three possible values: a feature can either be present, it can be absent or its
MVD can be calculated. Each feature-gene can take on any of these three values and subset
selection is then optimization of these values for the specific features. The fitness of the strings
is determined by running the memory-based learner with each string on a validation set, and
returning the resulting accuracy as a fitness value for that string. Hence, selection with the
GA is an instance of a wrapper approach as opposed to a filter approach such as information
gain (Kohavi and John, 1995).

For comparison with evolutionary feature selection, we include two popular classical wrap-
per methods: backward elimination (henceforth BA) and forward selection (henceforth Fo).
Both are greedy searchers. Forward selection starts from an empty set of features and back-
ward selection begins with a full set of features. At each further addition (or deletion, for
backward elimination) the feature with the highest accuracy increase (resp. lowest accuracy
decrease) is selected, until improvement stalls (resp. performance drops). The backward elim-
ination /forward selection principle is kept for comparison with simultaneous feature selection
and parameter optimization. Forward selection starts with every value set to zero and back-
ward elimination starts with every value set to one. Each value is flipped iteratively while the
other values remain unchanged, the value with the highest accuracy increase (resp. lowest
accuracy decrease) is selected, until improvement stalls (resp. performance drops). One would

ITIMBL is available from http://ilk.kub.nl/ and the algorithms are described in more detail in (Daelemans et
al., 1999).

2 A software environment for evolutionary computation developed by D. Levine, Argonne National Laboratory,
available from ftp://ftp.mcs.anl.gov/pub/pgapack/



expect these methods to perform worse than the GA, because their greedy search can have
difficulties with relationships accross several parameters and features.

4 Experiments

4.1 Data

We have tested our hypotheses on three natural language datasets involving two tasks: part-
of-speech tagging and grapheme to phoneme conversion with stress assignment.

The part-of-speech (POS) data set is based on the TOSCA tagged LOB corpus of English.
There are two versions of the data, one involved with predicting the part-of-speech for ” known”
words, and one for unknown words. The features represent information about the word to be
tagged (focus) and its context. For unknown words the focus provides no information about
the possible categories of the word and we have to rely on context and wordform only, this
data set contains 65275 instances. The features used are the coded poOs-tags of two words
before and two words after the focus word to be tagged, the last three letters of the focus
word, and information on hyphenation and capitalisation. The known words data set is larger
and contains 1045541 cases, each instance has two extra features: the focus word itself and
its ambiguity class. There are 111 possible classes (part of speech tags) to predict.

In the example, the word ’electing’, ending in —ing, preceded by a single left-quote (’)
and a verb (stop), and followed by a single noun (life) and a plural noun (peers), is classified
as a verb.

Features Class
>U_w5_>2_0m_w_:_m_o_o DZ

Table 1: Example of unknown words tagging task.

The grapheme-phoneme data is based on the CELEX dictionary for English. The mapping
to be learned is from a letter in context to a phonetic representation with stress markers. We
used three letters of left and right context, so that each instance has seven features. The
dataset consists of 77565 words, the total number of instances amounts to 675745.

In the example, the focus letter 's’, preceded by a three-letter left context and followed by
a three-letter right context, receives the pronunciation 'z’ and is marked as unstressed '0’.

Features Class
__-_c_m_m_:_m 0z

Table 2: Example of grapheme to phoneme conversion task.

4.2 Method

Because wrapper methods get their evaluation feedback directly from accuracy measurements
on a validation set, we have split our data into 80% training material and 10% validation
material. The settings obtained on the validation set are then evaluated on a final 10%
held-out test set. This method was used for all experiments.

Parameter settings for the genetic algorithm were kept constant: a population size of 20,
a two-point crossover probability of 0.85, a mutation rate of 0.006, an elitist replacement
strategy (where the best string of a previous generation is copied to the new population), and
tournament selection. The populations were evolved for a maximum of 100 generations or
stopped when no change had occurred for over 20 generations.

The default settings for the memory-based classifier are weighted overlap (IB1-IG), using
gain ratio as a relevance assignment measure, with the value for k (nearest neighbours) set to
one.



4.3 Results

4.3.1 Exhaustive search

As a baseline we have done an exhaustive search of three parameters: (k € {1,3,5,...,21},w €
{0,1,2,3,4}3, metric € {O(verlap), M(vdm)}). The difference with the other experiments
is that here, the feature set was not optimized. The other difference is that here the search
is guaranteed to find the optimum, whereas in the other experiments we can end up in local
maxima.

To gain understanding of the behavior of MBL on these datasets, we have plotted the
score on the validation set in Figure 1. The results of the best parameter combination for
each task on the test set are included in Tables 3, 4, and 5.

Figure 1: Score on POS unknown, POS known, and GS for exhaustive parameter optimization.
The line labels are of the form wXmY, where X is the value of the weight parameter, and Y is
either O(verlap) or M(vdm). The accuracy on the validation set (vertical axis) is plotted against
the value of the k parameter (horizontal axis)

What we see in these graphs is that there is a clear grouping into three types of behavior.
The first is the unweighted overlap metric, whose accuracy degrades very quickly with increas-
ing k. The second group is the weighted overlap metric, which also degrades with increasing
k, but much less quickly. A different behaviour can be observed for the third group, using the
MVDM metric. Here the performance actually improves with larger values of k, and remains
high throughout a large range of k. Finally, it seems that for these three tasks the setting of
the weight parameter is of little importance.

The reason for this lies in the fact TiMBL is actually a k nearest distances algorithm.
When no weighting is used, the first distance already contains many tied neighbours, and
the second or third or further distance will contain very large numbers of instances that are
one or two or more features dissimilar from the test instance than the most similar set. For
the weighted overlap metric many of these ties are broken, because the weights will prefer

3The meaning of these settings is listed in the Appendix.



mismatches on unimportant features, and hence rank more relevant instances at lower distance
“buckets”. The MVDM metric assigns a unique distance to each pair of feature values, so the
ranking of the nearest neighbours in the “distance buckets” is freed from all arbitrary ties,
and the behaviour is closer to a true k-nearest neighbours algorithm. Note that selecting k
nearest neighbours (instead of distances) with the Overlap metric would not likely improve
upon the behaviour of TIMBL with k = 1, because the arbitrary ties would remain a problem.

4.3.2 Simultaneous optimization

In the following three tables we show the accuracy measurements of our experiments on
the three datasets. The actual settings found by each method are presented in Tables 6, 7,
and 8 in the Appendix. We can see that a) exhaustive search for optimal parameter settings
improves the classification accuracy and that b) selection of a subset of features leads to
similar or better results with a reduction in the number of features used. For ¢) simultaneous
parameter optimization and feature selection, shows improvement for the POS known words
task (significant; McNemar’s chi-square; p<0.001), and the GS task (not significant; p=0.318).
The exhaustive search for optimal parameters is better than the simultaneously optimized case
for POS unknown (but not significantly; p=0.684).

Default Parameters | Optimized Parameters
All Features DE 82.63 EX 85.43
Optimized Features cA 84.39 GA 84.88
BA 84.39 BA 85.15
FO 84.54 FO 84.97

Table 3: POS unknown words tagging task.

Default Parameters | Optimized Parameters
All Features DE 97.51 EX 98.31
Optimized Features cA 98.30 aA 98.19
BA 98.30 BA 98.43
FO 98.28 FO 98.39

Table 4: POS known words tagging task.

Default Parameters | Optimized Parameters
All Features DE 81.62 EX 81.69
Optimized Features GA 81.56 GA 81.99
BA 81.56 BA 81.45
FO 81.62 FO 81.62

Table 5: Grapheme to phoneme conversion with stress (GS).

The results, however, suggest that the application of either evolutionary, backward or
forward selection does not lead to major differences in accuracy. Statistical tests (McNemar’s
chi-square) confirm that the differences in results cannot be interpreted as significantly better
for either evolutionary, backward or forward selection, except on the POS known words data
set, where both iterative methods perform significantly better (p<0.05) for simultaneous
parameter optimization and feature selection. An interesting point is that the search space of
the exhaustive search is in fact subsumed in the space of simultaneous optimization of features
and parameters. So, an ideal search algorithm would always be able to at least equal the score
of the exhaustive case. However, since this does not always happen in our experiments we can
conclude that the realization of the promise of the approach is still in need of better search
algorithms.



5 Conclusions and Related Research

The issue of feature-relevance assignment is well-documented in the machine learning litera-
ture. Excellent comparative surveys are (Wettschereck, Aha, and Mohri, 1997) and (Wettschereck
and Aha, 1995) or (Blum and Langley, 1997). Feature subset selection by means of evolu-
tionary algorithms was investigated by Skalak (1994), Vafaie and de Jong (1992), and Yang
and Honavar (1997). Other work deals with evolutionary approaches for continuous feature
weight assignment such as Wilson and Martinez (1996), or Punch and Goodman (1993).

The conclusions from these papers are in agreement with our findings on the natural
language data: feature selection generally improves accuracy with a reduction in the number
of features used. However, we have found no results (on these particular data) that indicate
an advantage of an evolutionary feature selection approach over the more classical iterative
methods. The optimization of small numbers of parameters is always to be recommended,
and can be done by an exhaustive search on the validation set. Finally, the simultaneous
application of feature selection and parameter optimization has shown some performance
gains, but further work on better search algorithms is needed to realize the full potential of
the approach.

6 References

Aha, D., D. Kibler, and M. Albert. 1991. Instance-based learning algorithms. In Machine
Learning Vol. 6, pp 37-66.

Blum, A. and P. Langley. 1997. Selection of relevant features and examples in machine
learning. In Machine Learning: Artificial Intelligence,97, pp 245-271.

Daelemans, W., A. van den Bosch, and J. Zavrel. 1999. Forgetting exceptions is harmful in
language learning. In Machine Learning, special issue on natural language learning, 34 ,
pp 11-43.

Daelemans, W., J. Zavrel, K. van der Sloot, and A. van den Bosch. 1999. Timbl: Tilburg
memory based learner, version 2.0, reference guide. Ilk technical report 99-01, ILK.

Kohavi, R. and G.H. John. 1995. Wrappers for feature subset selection. In Artificial Intelli-
gence Journal, Special Issue on Relevance Vol.97, pp 273-32).

Punch, W. F., E.D. Goodman, Lai Chia-Shun Min Pei, P. Hovland, and R. Enbody. 1993.
Further research on feature selection and classification using genetic algorithms. In Pro-
ceedings of the Fifth International Conference on Genetic Algorithms, pp 557.

Skalak, D. B. 1994. Prototype and feature selection by sampling and random mutation hill
climbing algorithms. In Proceedings of the eleventh International Conference on Machine
Learning, pp 293-301.

Vafaie, H. and K. de Jong. 1992. Genetic algorithms as a tool for feature selection in machine
learning. In Machine Learning, Proceeding of the 4th International Conference on Tools
with Artificial Intelligence, pp 200-204.

Wettschereck, D. and D. Aha. 1995. Weighting features. In Proceedings of the First Interna-
tional Conference on Case-Based Reasoning, ICCBR-95, pp 347-358.

Wettschereck, D., D. Aha, and T. Mohri. 1997. A review and empirical evaluation of feature
weighting methods for a class of lazy learning algorithms. In Artificial Intelligence Review
Vol.11, pp 273-314.

Wilson, D. and T. Martinez. 1996. Instance-based learning with genetically derived attribute
weights. In Proceedings of the International Conference on Artificial Intelligence, Ezpert
Systems, and Neural Networks, pp 11-14.

Yang, J. and V. Honavar. 1997. Feature subset selection using a genetic algorithm. In Genetic
Programming 1997: Proceedings of the Second Annual Conference, pp 380.



Appendix

The following tables show which feature subset and parameter values were found by each method.
The first column represents the technique used for the features, the second the technique applied to
set the parameters. In the third and fourth colums we respectively read the values for k£ and the
weight settings. The remaining columns show the different values for the features.

LEGEND:
f = 0: the feature is absent from classification; f = 1: the feature is present during classification; f =
2: the MVDM is calculated for that feature
k = n: k can take any odd value between 1 up to 21
w = 0: no weighting is used; w = 1: gain ratio weighting is used; w = 2: information gain weighting
is used; w = 3: chi-squared weighting is used; w = 4: shared variance weighting is used

NN DN DN DN = =
DO DD DN DN = =n

| Features | Parameters [k | w [ f |
Default Default 1)1
Default Exhaustive
Evolutionary | Default
Backward Default
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Backward Backward
Forward Forward
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Table 6: POS unknown words tagging task.

Parameters ||
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Table 7: POS known words tagging task.

Parameters ||

NN DN DN DN = =n

Features

Default Default
Default Exhaustive

k

1

5
Evolutionary | Default 1
Backward Default 1
1

3

1

1

Forward Default

Evolutionary | Evolutionary
Backward Backward
Forward Forward
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Table 8: Grapheme to phoneme conversion with stress (GS).



