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Abstract

We investigate the problem of compler answers in question answering. Complex answers
consist of several simple answers. We describe the online question answering system SHA-
PAQA, and using data from this system we show that the problem of complex answers is
quite common. We define nine types of complex questions, and suggest two approaches,
based on answer frequencies, that allow question answering systems to tackle the problem.

1 Introduction

The underlying assumption in much research on question answering (QA) is that in
most cases there is one (correct) answer to a question, and that this answer has to
be found. We think that whether or not a question has exactly one answer depends
on how one defines an answer. In our view, many answers are complexr answers,
which contain two or more simple answers. An example is the question “Who was
President of Costa Rica in 19947”.! The most complete answer would be something
like: “Calderén was president until 8th May, after that Figueres became president.”
which consists of two parts. The problem of complex answers is relevant when
building QA systems, but also when evaluating them. We will treat two aspects:

e What types of complex answers are there and how frequent are they?
e How could systems deal with the problem?

! Taken from the TREC-8 test question set, cf. Section 2.3 and 3.2
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In order to get real data on this topic, we used a system for QA on the World Wide
Web (WWW). As the WWW contains documents from many different times, writ-
ten in different countries, from different points of view, with different background
knowledge assumed etc. it is particularly suited for finding complex answers. The
QA system, SHAPAQA, is introduced in the first half of this article (Section 2). We
first sketch its overall architecture and design principles. The core of the system, the
Natural Language Processing (NLP) modules, are all based on the same machine
learning algorithm, memory-based learning (MBL), so this algorithm is explained
next (Section 2.1). Then the NLP modules themselves are described in Section 2.2
and finally the performance of SHAPAQA on a set of test questions is evaluated in
Section 2.3. The second half of this article (Section 3) is dedicated to the analysis
of SHAPAQA’s results from the perspective of the problem of complex answers. We
first present a typology of complex answers in Section 3.1. In Section 3.2 we give an
overview of how complex answers are handled in the QA track of the Text REtrieval
Conferences (TREC), for which much work on QA systems and evaluation has been
done. Next we suggest two ways to approach complex answers (Section 3.3) and
finally discuss remaining challenges in Section 4.

2 SHAPAQA

SHAPAQA (SHAllow PArsing for QA) is an online QA system for the WWW.2 Let,
us first illustrate its functionality through an example. Suppose we want to know
when the telephone was invented. At the moment, the question cannot be entered
as a full natural language sentence but has to be split up into what we will call
phrases. Each phrase is entered into its own HTML form text box. The top left
part of Figure 1 shows the question in its formatted form. The parts we know (the
given phrases; in this case “invented” and “the telephone”) are entered into the
appropriate boxes. The parts we are looking for (in this case “when”) are indicated
through question marks. All the other boxes are left empty. The information entered
in the HTML form could maybe best be paraphrased as “Somebody (I don’t care
who) invented the telephone somewhere (I don’t care where) when?”.

SHAPAQA’s results are shown in the top right part of Figure 1. Results consist
of keyword answers (all capital letters; always one word e.g. “1876”), the number
of supporting evidence found (e.g. 25) and the list of this evidence. The evidence
list consists of pairs of a URL and a supporting sentence found at that URL. In
the supporting sentence, the given phrases and the answer (the key chunk) are
highlighted by respectively italics and bold font.?> Keyword answers are sorted by
descending frequency. The lower the frequency, the higher the chance that the
answer is due to a parser error or to wrong information in the documents. There is
no sorting among supporting sentences; but cf. Section 3.3.2.

The remainder of Figure 1 shows SHAPAQA’s overall architecture. After the user

% http://ilk.kub.nl/shapaqa/
% In the actual WWW implementation, highlighting is done by colors.



Complex Answers: A Case Study 3
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Fig. 1. SHAPAQA’s overall architecture with example input and (partial) output

has entered the question into the HTML form and pressed the submit button, SHA-
PAQA transforms the question phrases into the search engine query. The query is
submitted to a search engine* in “url-encoded” form and the search results are
retrieved by SHAPAQA. If the search engine does not return any URL for the query,
SHAPAQA terminates with an appropriate message. If some URLs are indeed re-
turned, these are processed one at a time by the NLP modules described in Sec-
tion 2.2. If the NLP modules find a supporting sentence in the URL’s content, the
sentence and the URL are added to the evidence list of the appropriate keyword.
The rest of the document is skipped for efficiency reasons, as it is unlikely that it
contains another different answer. Then the next URL is processed. After all URLs
have been processed, SHAPAQA checks whether at least some keyword answers (with
an associated list of supporting evidence) were found. If so, the answers are sorted
by (evidence) frequency and presented to the user. If not, SHAPAQA terminates with
an appropriate message.

Nearly all of SHAPAQA’s NLP modules use a machine learning (ML) algorithm
known as Memory-Based Learning as the underlying technology. We will therefore
first introduce this algorithm together with general concepts of ML in Section 2.1
before describing the actual NLP modules in Section 2.2.

* currently Google (http://www.google.com/)
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Fig. 2. sHAPAQA’s NLP modules

2.1 Memory-Based Learning

Memory-Based Learning (MBL) belongs to the group of supervised ML algorithms.
Supervised algorithms learn from an annotated training set how to process an unan-
notated test set. For MBL to be applied to a learning problem, it has to be for-
mulated as a classification problem: the learner (classifier) has to assign exactly
one out of several classes to each input. Take the problem of part-of-speech (POS)
tagging as an example. The inputs correspond to the words and their contexts, and
the classes to the proper POS of the word in that context. MBL belongs to the
class of propositional learners, so the inputs (instances) have to be in a proposi-
tional feature-value format. A common method for converting a sequence such as
a sentence into feature-value vectors is called windowing. A fixed size window is
moved over the sequence, and (part of) the information that falls into the window
is taken as input feature values. Figure 3 shows a three word window that is moved
over the start of a sentence and Table 1 shows the corresponding instances.

The four features are the focus word (i.e. the word whose class the learner should
predict), the previous word (left context) and its POS, and the following word (right
context).5 As tagging proceeds from left to right, the POS of the right context is not

5 If no word preceeds, the dummy value “_” is used instead.
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| TheDT | telephoneNN| was'VBD |inventedVBN|  by/IN

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 3. A three word window moved over the first words of the sentence “The telephone
was invented by ...” in order to create instances.

Table 1. The instances for POS tagging for the first three words of the sentence
“The telephone was invented by ...”.

left context focus right context
word POS word word class
- - The telephone DT
The DT  telephone was NN
telephone NN was invented VBN

yet known and can therefore not be used as a feature. The class is the POS of the
focus word. The class is given for training instances and sought for test instances.

MBL works on the assumption that for language processing tasks, lazy learning
has an advantage compared to eager learning methods (Daelemans, Van den Bosch,
and Zavrel 1999) because of the complex interaction of regularities, subregularities
and exceptions in language processing tasks. Lazy learning methods, such as MBL,
simply store all training set instances. New inputs are classified by similarity-based
reasoning on the basis of these stored cases (including exceptions). The class of
a new input will be based on the class(es) of those instances in memory that are
most similar to it. In contrast, eager learning methods extract general rules or
other knowledge structures from the training instances, ignoring exceptional and
low-frequency instances in the process.

The similarity metric used in MBL is of the utmost importance. In our approach
to MBL, information theory is used to assign relevance to the different features
of an instance during similarity computation. In its most naive implementation,
MBL is an expensive algorithm (each new input instance to be classified has to
be compared to all stored instances). We developed an alternative approach which,
while adhering as much as possible to the philosophy of keeping all training data,
achieves higher efficiency by restructuring memory in such a way that it contains
the same information as before, but in a compressed decision tree structure (the
1GTree algorithm, see (Daelemans, Van den Bosch, and Weijters 1997) for details).®

2.2 NLP modules

As SHAPAQA is designed to work online, one of the main requirements is that it
be fast. The parts that were described in the beginning of this section (query con-
struction, search engine, answer sorting and display) do not need much time. The

6 The software package TiMBL (Daelemans et al. 2000) incorporating 1GTtree and other
MBL algorithms, is available from http://ilk.kub.nl
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bottleneck is the NLP modules, especially the higher-level ones like parsing. The
problem is enlarged by the fact that SHAPAQA’s answer sorting is based on frequen-
cies and that frequency counts are known to become unreliable when using too
small a sample. Therefore SHAPAQA uses the top 1000 URLS returned by the search
engine. It should be clear that we cannot fully parse 1000 documents online with
current, technology. Fortunately we need neither to parse complete documents nor
to have a full parse. Instead we shallow parse selected sentences. As even retrieving
1000 documents might take quite some time, we use the text snippets returned by
Google for a URL as a short-cut (although we would prefer to have a search engine
that returns whole sentences). As the text snippets have a fixed size and frequently
even contain pieces from several places in the document (separated by ellipsis dots),
the parser has to be able to cope with partial sentences. These considerations led
to the architecture of SHAPAQA’s NLP modules as shown in Figure 2. The boxes
are the modules. The italic questions in Figure 2 are tests on the data. Whenever
a test returns “no”, this part of the data is not processed any further. We call this
concept parsing on demand.

The first NLP module is a simple, rule-based tokenizer. In the spirit of parsing
on demand the tokenizer just processes a text snippet until it finds a sentence
boundary or ellipsis dots, then lets this (partial) sentence be processed by the later
tests and modules. Only if one of the tests fails does the tokenizer proceed to find
the next sentence. During tokenization, SHAPAQA already stores which words (if
any) are part of the given phrases. At the end of a sentence, the first test is whether
all given phrases were found. The sentences in (1) did not pass the first test for
our example question, although the text as a whole contains all given phrases. (2)
shows a sentence that fulfills the test.

(1) The importance of the telephone network as a critical factor in the success of
fax cannot be overstated. Alexander Bain invented the fax machine in ...

(2) The telephone was invented by Alexander Graham Bell in 1876.

If the test succeeds, a tagger (Daelemans et al. 1996) and a chunker (Buchholz,
Veenstra, and Daelemans 1999) using the MBL algorithm introduced in Section 2.1
are applied to the sentence. For (2), the output looks as shown in (3) with part-of-
speech tags following Penn Treebank conventions (Bies et al. 1995).

(3) [np The/DT telephone/NN | [yp was/VBD invented/ VBN | [p by/IN ]
[vp Alexander/NNP Graham/NNP Bell/NNP | [p in/IN | [yp 1876/CD ]

/.

After chunking, SHAPAQA tests whether the last word of each given phrase is also
the last word (i.e. head) of an appropriate chunk, e.g. a VP for the given verb. The
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sentence in (4) would not pass this test, as “telephone” is not the last word of the
NP chunk.

(4) [wp Touch-Map Systems | [y p invented | [np the telephone dealer locator ]
[p over | [vp seventeen years | [apvp ago | .

Our sentence in (3), however, passes this second test. Chunking serves to make
the sentence representation more compact by deleting all non-heads of chunks. Our
sentence would then look like (5) .

(5) [wp telephone/NN | [vp invented/VBN | [p by/IN | [np Bell/NNP | [p in/IN ]
[vp 1876/CD ] ./.

It is then processed by the PNP finder (Buchholz, Veenstra, and Daelemans 1999).
This module joins a preposition and one or more (coordinated) NPs into one PP.”
PNPs allow further compression of the sentence, as shown in (6) .

(6) [np telephone/NN | [yp invented/ VBN | [pyp by Bell/NNP | [pnp in
1876/CD ] ./.

2.2.1 Relation finder

We implemented two versions of SHAPAQA that differ only in the last NLP module.
These are called SHAPAQA GR (grammatical relations) and SHAPAQA CT (chunk
types) respectively. SHAPAQA CT will be described later. In sHAPAQA GR, the
last NLP module is the relation finder, which determines grammatical relations
between a verb and other chunks using MBL. Possible relations (classes) and their
correspondence to the HTML form boxes are shown in Table 2. Relation finding
is done on a parsing on demand basis: Each given phrase (entered by the user) is
tested to determine whether it has the relation to the verb indicated by the user.
As soon as a given phrase does not have the correct relation, SHAPAQA GR stops
processing the sentence. The sentence in (7) did not pass this (third) test, as the
telephone is not the subject of passive invented.

(7) Invented at almost the same time as the telephone to speed data analysis for
the 1880 U.S. Census, the tabulating machine was an electromechanical device
that ...

" Syntactic categories other than NPs (e.g. a VP as in “Thank you for coming.”) are not
joined at the moment, hence the name PNP finder instead of PP finder.
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Table 2. Correspondences between SHAPAQA’s input form, classes, and labels in
the Penn Treebank

HTML form SHAPAQA GR SHAPAQA CT
class  treebank class  treebank
Who/What SBJ -SBJ (subject) of active verb NP -SBJ, -LGS; NP
LGS -LGS (logical subject) of without -TMP/LOC
passive verb /PRP/MNR
whom /what OBJ NP (object), NP same as above

NP-PRD (predicative), NP-
CLR (closely related) of ac-

tive verb
SBJ -SBJ of passive verb

when TMP -TMP (temporal) of verb TMP -TMP
where LOC -LOC (locative) of verb LOC -LOC
why PRP -PRP (purpose and reason) PRP -PRP

of verb
how MNR -MNR (manner) of verb MNR -MNR
about/as/... OTH PP of verb, without -TMP OTH PP without -TMP
/with/without /LOC/PRP/MNR and with /LOC/PRP/MNR +
whom/what corresponding preposition corresp. preposition

For our example in (6), the system checks whether the telephone is a subject of the
passive verb invented, which indeed it is. Once all given phrases are found to have
the required relation, SHAPAQA GR starts looking for the answer by checking the
relations of the chunks surrounding the verb, first the nearest ones, then further
away, if necessary up to the first and the last chunk of the sentence. The sentence
in (8) did not pass this (fourth) test: no temporal relation to the verb could be
found.

(8) One year after the telephone was invented, its usage was taxed.

In (6), the PNP chunk “in 1876” has the right relation and so this chunk is marked
as a key chunk, and the sentence added as an evidence under the keyword “1876”
(which is the chunk’s head).

The instances for the relation finder are also obtained by windowing (cf. the
previous section), only now an instance does not correspond to one word but to
a pair (a verb and the head of another chunk) between which the grammatical
relation exists. Therefore we have two windows, one of size one moving over all the
VP chunks in the sentence and one of size three moving over all the other chunks.
This is depicted in Figure 4. The resulting instances are shown in Table 3.

The training material for the relation finder was derived from the Wall Street
Journal Corpus of the Penn Treebank II (Bies et al. 1995). To do this, we had
to define chunks on the basis of the annotated parse trees, define head words of
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_T™MP

T +2 Teeell

[ptelephone/NN !

Fig. 4. Two windows moved over the first chunks of the (compressed) sentence “The
telephone was invented by Alexander Graham Bell in 1876.” in order to create instances.
The numerical values on the arcs are the distance between the centers of the windows, the
labels are the grammatical relation.

Table 3. The three relation finder instances for the example sentence “The telephone
was invented by Alexander Graham Bell in 1876.” The features are the distance
between the VP chunk and the focus chunk, the verb itself, and the focus chunk with
its left and right context chunks (or punctuation tokens), each represented by four
features: the preposition (if any), the head word, the POS and the type of chunk (if

any).

dist. verb left context focus right context class
pr. word POS ch.| pr. word POS ch. | pr. word POS ch.

-1 inv.| - - - - - tel. NN NP| - inv. VBN VP | SBJ

1 inv.| - inv. VBN VP| by Bell NNP NP | in 1876 CD PNP| LGS

2 inv.| by Bell NNP NP| in 1876 CD PNP| - . . - TMP

syntactic constituents, and inherit the labels of a syntactic constituent to its head
chunk (i.e. the chunk containing the head word).®

Relation finding as we defined it relies only on local context. When trained on
(treebank) full sentences and then applied to partial sentences (from Google text
snippets) only the instances having the (false) sentence start/end in their defining
window might be classified differently whereas in a probabilistic full parser, the
probability of the whole parse might be affected. In addition, full parsers like Collins
(1997) do not provide us with the necessary information about for example different
kinds of adjuncts.

2.2.2 SHAPAQA Chunk Type

As can be seen in Table 2, the main difference between SHAPAQA GR and SHAPAQA
CT is that in the latter, no reference to the verb is made in the definition of the
classes (which correspond to the types of chunks that are recognized). One of the
consequences of this is that no distinction is made between subjects and objects.

® See http://ilk.kub.nl/ sabine/chunklink/ for the conversion program.
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Both have the class NP. More important however, the chunk need not be a syntactic
dependent of the verb: All NPs or temporal expressions in a sentence get the NP or
TMP class respectively . Therefore the same sentence can be evidence for several
keyword answers. As the definition of chunk types is simpler than that of relations,
the instances are simpler too. They just consist of the four features for the focus
chunk. The classes of the three simpler instances, for the example in (6), would be
NP, NP, and TMP.

2.3 Ewvaluation

Although we are mainly interested in complex answers in this article, we want to
give the reader an idea of the performance of SHAPAQA. To this end, we tested it
on the 200 fact-based, short-answer, natural language questions from the TREC-8
QA track (Voorhees and Tice 2000), see also Section 3.2.

2.83.1 From natural language to form-based questions

The first step of the evaluation was to convert the natural language questions into
SHAPAQA’s question format. While some questions have only one, very obvious
“format” (like our telephone example), others have several. Thus in these cases,
results may depend on the particular way of formatting the results. We tried to
choose a format that we thought would be used by the average user (given the
constraints of the HTML form). The following rules were used:

e Enter in active form, with the main verb as only verb.

e Skip redundant parts like “What is the population of Ulan Bator, capital of
Mongolia?”

e Skip verb particles like “up” in “Who came up with the name, El Nino?”

e Format questions with “What is the name of/Name the/How many/How
much/Which/What X” as if they were simple “who/what” questions (60
cases)?

e Questions with “How far/many times” etc. could not be formatted. Conse-
quently, SHAPAQA did not receive any points for them (12 cases).

2.3.2 Scoring and performance

We let SHAPAQA answer the formatted questions, and took the first evidence sen-
tence of each of its top five keyword answers for judging. From our telephone exam-
ple in Figure 1 we would then take the first of the 25 sentences under the keyword
“1876”, the first of the 4 sentences under “LATER”, the one sentence under “1886”
and so on (rest omitted in figure). The human assessors had to read the answers
from top to bottom until they found a correct answer to the original question, say
at rank . The score for this question is then 1/z points. The total score of a system

% respectively “when” and “where” for “in which year” etc. and “in what city”
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Table 4. SHAPAQA’s results over the 200 test questions, single and combined
system, and scoring only over answered questions (“precision”).

Shapaga GR Shapaga CT Combination

MRR -28 -34 -36
questions with answers 72 101
points 55-0 68-4
“precision” -76 -68

is the mean of all the individual scores. This mean reciprocal rank (MRR) metric
was also used in TREC (cf. Section 3.2).

Judging largely followed the TREC guidelines (Voorhees and Tice 2000), but we
used two extra evaluation rules. First, if several pieces of information that together
answer the question are spread over several answer ranks, the lowest rank counts.
The idea is that users have to read at least that many system answers to know the
complete answer. The rule was applied for the question “How many Grand Slam
titles did Bjorn Borg win?”, with the first answer stating that Borg won six French
Opens and the second that he won Wimbledon five times, which together allows us
to compute the correct answer (11), and therefore gained the system 1/2 point. In
principle, it could also be applied to questions that explicitly ask for two entities
(“What two researchers ...7”). However this was not necessary in our data as both
entities appeared in the same answer.

Our second special rule says that if only half of the answer (i.e. one of the entities)
is among the five system answers, the system receives half of the score for that rank
(e.g. 1/6 if half of the answer is on the third rank). The idea is that half the answer
is at least better than nothing and should be rewarded accordingly. However, using
both rules together yields counterintuitive results: if, for a question that asks for
two entities, only one is found, at e.g. the first rank, the system receives 1/2 point
(second rule). If it also found the other entity, at e.g. the fifth rank, it would only get
1/5 point (first rule) i.e. fewer for finding more!'® This problem in fact illustrates
the difficulties of evaluating complex answers. We do not think that it influenced
our evaluation as the two entities always occurred together.

The results are shown in the first row of Table 4. We see that sHAPAQA CT
performs better than GR. One might conclude that relation finding (or at least our
implementation) is not useful for QA. There is however another way to look at the
results. The tests imposed on sentences by SHAPAQA GR are very restrictive, which
means that not many answers are found, but those found are mostly correct. This
is similar to the precision/recall trade-off known for many problems. So although
SHAPAQA GR received fewer points, and answered less questions, its “precision”
(points per questions) is higher than that of SHAPAQA CT (see rest of Table 4). This
led us to the idea of a combined system: If SHAPAQA GR returned any answers, we
took these answers as those of the combined system. If not, and if SHAPAQA CT

10 Thanks to one of the reviewers for pointing this out.
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returned answers, we took those. The combined system was not implemented but
simulated from the individual system results. As can be seen from the third column
of Table 4, the combined system performs a little better than SHAPAQA CT itself.
We take this as an indication that grammatical relations in principle are useful for
QA. Among the questions for which SHAPAQA GR received more points than CT,
the most typical example is “Who killed Lee Harvey Oswald?”. In GR, the correct
answer (“Ruby”) easily came on top, while CT found “Kennedy” most frequently,
and “JFK” third, because it has no way to distinguish between a subject and an
object of the “killing”.

We are planning to replace the form based input by a true natural language
input facility in the future. We would then need a parser to determine phrases and
grammatical relations in the question. Unfortunately the Wall Street Journal on
which we trained our shallow parser described above does not contain many direct
questions, and therefore the parsers performance on questions is not good enough.
We plan to retrain the parser on the parsed Brown Corpus that is included in the
third release of the Penn Treebank (Marcus, Santorini, and Marcinkiewicz 1993).

3 Complex answers

In the introduction to this article, we cited the following question with a complex
answer: “Who was President of Costa Rica in 1994?” “Calderdén until 8th May, then
Figueres”. Complex answers pose a problem for QA systems because the answer
need not appear as a coherent string in one document, and for QA system evaluation
because it is unclear how to formalize the feeling that the complex answer is “better”
than its parts alone.

3.1 Kinds of complex answers

While developing and evaluating SHAPAQA, we noticed many complex answers. The
following list shows the various types we identified:

e Collective answer: “What two US biochemists won the Nobel Prize in medicine
in 19927”. “Edmund Fischer and Edwin Krebs won it together”. Note that a
more realistic question would be “Who won ...7” in which case we cannot know
in advance whether the answer is complex. The TREC-8 test set features one
other question of this type: “What two researchers discovered the double-helix
structure of DNA in 19537”

e Many answers: “Name a film that has won the Golden Bear in the Berlin Film
Festival?” In this formulation of the question, one film should be enough as
an answer. However, naming several films feels like a “better” answer. If the
question were “Which films won ...7” we do not know whether the person
asking expects to get all films or only some reasonable number of it. To make
things even more complicated, one of the many answers might be a collective
answer if the prize can be shared.

e Salience/importance: “What does the Peugeot company manufacture?” Peu-
geot is a big company and produces many things, therefore many answers
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are possible. However, “the pepper grinder which the company patented last
century”, although correct, seems to be a less satisfying answer than e.g.
“cars”.

Granularity: “Where did Dylan Thomas die?” “At St. Vincents Hospital/New
York/United States”. This problem appears not only with “where” questions
but also with “when” (“Tuesday, 19th June 1972 at 2 o’clock” or “in the sev-
enties”), “how many”, “how long” etc. It is also important for the “Peugeot”
question: Is “cars” a better answer than “the Peugeot 405, the Peugeot 309,
etc.”?

Different measures: “What was the monetary value of the Nobel Peace Prize
in 1989?” “7.6 million Swedish crowns, at that time $960,000” This problem
is similar to the previous in that we do not know what granularity /measure
the person asking wants.

Different designations: “What is the brightest star visible from Earth?” “Sir-
ius (A), also known as the Dogstar/Dog Star”. We can get “spurious” different
designations from different transliterations of foreign names. Another exam-
ple is the Costa Rican president “Figueres” who in some text was found as
“Figueres Olsen”.

Ambiguity in the question: “What is the capital of Congo?”. “Brazzaville
is the capital of the Republic of the Congo, and Kinshasa the one of the
Democratic Republic of the Congo, the former Zaire”. This is the opposite
phenomenon of different designations: one name designates different entitites.
It is likely to occur with city names (“Where is Brunswick?”) or last names of
famous people (“Who killed Kennedy?”). In the question “What is the largest
city in Germany?”, the term “the largest” is ambiguous as the following two
answers show: “With an estimated 3.5 million inhabitants, Berlin is the largest
city in Germany.” “Measuring approximately 23 miles from north to south
and 28 miles from east to west, Berlin is by far the largest city in Germany.”

Time dependency: “Who was President of Costa Rica in 19947” “Calder6n
until 8th May, then Figueres”. A slightly different problem occurs with ques-
tions in the present tense like “Who is the prime minister of Japan?” Clearly,
this means “Who is prime minister now?”, but suppose the prime minister
changed e.g. two days ago. In that case the most informative answer probably
still comprises two entities.

Different beliefs: “Who killed Kennedy?” “Officially the killer was Lee Harvey
Oswald, but alternative theories abound, e.g. ...” Different beliefs can be found
in great abundance on the internet. It is not easy to draw a line between a
different belief and wrong information. The “1886” answer from our telephone
example may be classified as wrong, but some of the other dates found pertain
to different beliefs about who “really” invented the telephone (Bell, Reis,
Gray?) or when one can speak of the event of invention (when having the
idea, the working prototype, the patent?). In any case we cannot expect a
QA system to make this difference.
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3.2 Complex answers in TREC

Much literature on QA can be found in the TREC-8 proceedings (Voorhees and
Harman 2000).! The TREC-8 QA track (Voorhees 2000) consisted of automatically
answering 200 fact-based, short-answer, natural language questions on the basis of
a given document collection of mainly US newspaper articles (1904 MB, 528,155
documents). The collection was guaranteed to contain at least one answer for each
question (This condition will be dropped in the upcoming TREC-10 QA track).
TREC systems had to return up to five ranked strings of maximally 50 (or 250)
bytes each per question. Twenty organizations took part in the QA track. MRR
scores (cf. Section 2.3.2) varied from 0.66 to 0.017 with an average of 0.25.12

3.2.1 Complex answers in data collection

The data collection used for the TREC-8 QA tracks contains about 500,000 docu-
ments. Although this is huge, it is still some orders of magnitude smaller than the
WWW. Most of the TREC documents are newspaper articles, many from the US.
Consequently the TREC data is also more homogeneous than the WWW. In addi-
tion, it only contains documents from 1989 to 1995 whereas the WWW probably
features text from about any time (older ones scanned or re-typed). These aspects
of the TREC data probably influence the presence of (parts of) complex answers.
Fewer documents decrease the probability of finding variations of granularity, many
answers for the “many answer” questions or different answers for ambiguous ques-
tions. Homogeneity lessens the use of different measures or of differently spelled
designations and the chance for finding different beliefs. Finally, a short time span
restricts answers to time dependent questions. We cannot quantitatively compare
the presence/absence of (parts of) complex answers on the WWW and the TREC
collection, but we will show some questions for which SHAPAQA found more parts
(on the WWW) than the TREC-8 systems (in the TREC data).'® This does not
necessarily mean that the parts are not in the TREC data, but may be an indication
of it, as about 20 systems did not find them.

e When did the Jurassic Period end? (different beliefs)
TREC: 130 million years ago vs. WWW: 136/144 /approximately 141 million
years ago

e Where was Ulysses S. Grant born? (granularity)
TREC: Point Pleasant, Ohio vs. WWW: Point Pleasant, Clermont County,

11 The last TREC conference (TREC-9) also featured a QA track, but the complete pro-
ceedings were not available at the time of writing. A larger document collection was
used, there were more questions and the questions were less artificial. In addition, some
questions were variants of others.

12 Note that the TREC task is harder than SHAPAQA’S as SHAPAQA assumes the questions
to be already formatted. Whether finding answers in a fixed document collection is more
or less difficult than finding them on the WWW is an open question.

13 TREC-8 system results are taken from the judgement file qrels.trec8.qa on
http://trec.nist.gov/data/qrels_eng/index.html.
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Ohio/on Earth/in a white Allegheny pine house on the banks of the Ohio
River twenty-five miles southeast of Cincinnati

e Who is the president of Stanford University? (time dependency)
TREC: Donald Kennedy vs. WWW: John Hennessy, Gerhard Casper (Kenne-
dy is found only as “former president”)

e Who played the part of the Godfather in the movie, ” The Godfather”? (am-
biguity)
TREC: - vs. WWW: Marlon Brando, Robert DeNiro (in Part II)

e What is the brightest star visible from Earth? (different designations)
TREC: Sirius vs. WWW: Sirius, Sirius A, the Dog Star, the Dogstar (plus
two documents mentioning that actually the sun is the brightest star)

Despite these examples, complex answers can be found in the TREC data collection.
This can be seen in the file containing regular expressions for automatic scoring.
The file was created as a service to the community during manual judgement, of the
track submissions. It can be used together with a scoring program to (roughly) score
the output of a system. If a regular expression for a question (number) matches the
output for that question, that output is scored correct. The file contains multiple
regular expressions for 69 of the 200 TREC-8 test questions, which means that the
assessors found several alternative correct answers.

3.2.2 Scoring of complex answers

TREC QA systems have to return up to five ranked strings per question, with each
string paired to a document ID. For the evaluation, human assessors judge each 50-
byte or 250-byte string that a system returned and decide whether or not it contains
an answer to the question in the context of the document. If an incorrect answer is
successfully extracted from a document that asserts this incorrect information, it
is counted as correct.'* A system’s score for a question is the reciprocal of the rank
at which the first correct answer is found (or zero if no correct answer is found).
This means that “systems are given no credit for retrieving multiple (different)
correct answers” (Voorhees 2000). For our first example question about the Costa
Rican president, “Calderon” as well as “Figueres” alone have been accepted as
correct answers. Conversely, systems are not punished for extracting essentially the
same answer several times (from different contexts). In fact, one complex answer
extracted from different documents is even forbidden, as each answer has to be
accompanied by exactly one document ID.

In our terminology, all separate parts of the following types of complex answers
were accepted by TREC assessors: many answers, salience/importance, different
measures (pounds or dollars for Concorde fare), different designations (Taiwanese
president Li or Lee, Multiple Sclerosis or MS), time dependency, and different beliefs
(“Trial by Jury” or “Thespis” as the first Gilbert and Sullivan opera). In the case

14 In TREC-8, a correct answer was counted correct even if the document did not support
it. From TREC-9 onwards, these cases are judged “unsupported”.
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of granularity, it was left to the assessors to decide whether the “partial answer”
was acceptable. Voorhees and Tice (2000) report that this was a major cause of
differences among assessors. Collective answers form a special case. Those with three
or more items in the answer were excluded when making the test set. The others
were reformulated, e.g. from “Who” to “What two US biochemists” (Voorhees and
Tice 2000). In this wording, partial answers are not acceptable anymore. Ambiguous
questions were also excluded from the test set (the ambiguity between the Congos is
newer than the TREC document collection). Thus the problem of complex answer
evaluation (are some answers “better” than others?) was left outside the scope of
the past TREC QA tracks.

In the TREC-10 QA track, there will be a separate “list task” which will feature
questions like “Name z countries that import Cuban sugar”. The answer should
be an unranked list of maximally x answer string/document ID pairs. The new QA
track guidelines state that “list questions will be scored using instance precision (the
fraction of retrieved instances that are correct) and instance recall (the fraction of
the target number of instances that are retrieved)”. List questions correspond to
our “many answers”’ type, with the important difference that the required number
of items is specified in the list question and systems thus “know” that a complex
answer is required. The number specification is necessary for the recall computation
in TREC, as they would otherwise have to know the “true” number of instances.

3.2.3 Systems

In the previous section we showed that the recognition of complex answers is not
rewarded by the TREC scoring rules (with the exception of explicitly asked for
collective answers). Therefore participating groups probably did not make an effort
to handle these cases. As an example of how an other system produced its answers,
we will now briefly describe Textract/QA (Srihari and Li 2000) which was the best
performing system at TREC-8 with an MRR of 0.66 for the 50-byte QA task.

The system consists of two components: One for processing the question, and
another for processing the documents. A matcher module links the two. The ques-
tion processor determines the asking point, i.e. the kind of “thing” that is asked for.
In many cases, the asking point is a Named FEntity. For example, “who”-questions
ask for a person, “which city”-questions obviously for a city, “what”-questions for
an unspecified Named Entity. “Why”-questions do not ask for an entity but for
a “reason”. The question processor also extracts all keywords from the question
and expands them with synonyms and morphological variants from a lexicon, e.g.
“get/got” are added as synonyms of “win (a prize)”. The text processor sends the
question to a search engine and tags the top 200 retrieved documents for Named
Entities. The matcher module then ranks all sentences that contain a Named Entity
matching the question’s asking point. Ranking is based on the number of unique
keywords in the sentence, their order compared to the order in the question and
on whether the verb is identical or a synonym of the question verb. The top five
ranked sentences are then trimmed to 50 bytes and returned as results.

In the present context the most important difference between Shapaqa and Tex-
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tract/QA is that the former ranks (keyword) answers whereas the latter ranks
strings that (are supposed to) contain answers. Therefore Textract/QA might rank
two strings for example first and second that in fact contain the same answer, in
different contexts. In principle, Textract/QA and many other TREC systems using
similar approaches could also return frequency ordered (keyword) answers. However
this would mean performing some normalization of answers/Named Entities (like
mapping to heads) and abandoning the current ranking algorithm. As the ranking
algorithm is an important part of most systems, this would in fact alter their na-
ture. We think that frequencies are better suited to be presented to users since they
are easily understandable whereas scores like 284.40 (Moldovan et al. 2000) used
for ranking are totally opaque to users.

No reference to complex answers is made in the description of Textract/QA.
In the other TREC-8 systems (which mostly use a similar approach) we find some
details that are useful for certain types of complex answer problems. Abney, Collins,
and Singhal (2000) mention a rule that full dates are preferred if the query contains
the words “day” or “month”, and years-only dates if the query contains “year”.
Thus this rule chooses the appropriate granularity only if it is specifically asked
for. Breck et al. (2000) use coreference to find out which phrases in one document
actually refer to the same (real world) entity. The entities are then ranked. For
answer construction, the longest realization of the highest ranked entity is used.
This strategy would thus prefer complex answers over simple ones for the granularity
type. The modules using entity frequency in Radev, Prager, and Samn (2000) and
Abney, Collins, and Singhal (2000) will be discussed in the next section.

3.3 First solutions

Some of the complex answer types seem to need much pragmatic and world knowl-
egde to be handled properly, e.g. for automatically resolving ambiguity or finding
out which measure or granularity a user would prefer. This is beyond the scope
of current systems and even those of the near future. However in this section we
advocate the use of answer frequencies as a first step towards tackling the problem.

3.3.1 Frequencies and context

SHAPAQA’s answer sorting based on frequencies, which we implemented to demote
parser errors and wrong information to the bottom of the list, proved also useful
for complex answer questions. Here are some examples of answers with frequencies
that sHAPAQA GR or CT found. Only the top of the list and the first evidence
sentence for each keyword answer is shown. We argue that this output format helps
users to recognize that a complex answer exists.

e Ambiguity: “What is the capital of Congo?” (CT)

— 3 x KINSHASA: Kinshasa is distinctive not only as the capital of Congo
but ...
— 3 x BRAZZAVILLE: ... Brazzaville is the capital of Congo .
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The frequencies and the context given allow users to verify that the two
different answers are not due to an error of the QA system. They are thus
alerted and can follow the given links to find out more. Note that a system
ranking strings that (are supposed to) contain answers would present the user
with six strings here, sorted in some way, leaving it to the user to find out
that three of them contain “Kinshasa” and three “Brazzaville”.

Time dependency: “Who was Secretary of State during the Nixon adminis-
tration?” (CT)

— 7 x KISSINGER: 11 ) Henry Kissinger was National Security Adviser
and Secretary of State during the Nizon administration.

— 4 x ROGERS: By some measures , she wields less influence than any sec-
retary of state since the Nizon administration , when William P. Rogers
was ...

The above information should be enough to convince users that there were
two secretaries.

Different beliefs: “Who killed Kennedy?” (GR)

— 9 x AN: ... John Fitzgerald Kennedy was killed by an assassin’s bullets as
his motorcade wound through Dallas, Texas.

— 6 x CONSPIRACY: Instead, they believe that a conspiracy killed Kennedy.

— 5x OSWALD: If Oswald had not killed Kennedy, then someone else would
have.

— 2 x CIA: And explains that the CIA killed Kennedy because he wanted to
tell the American people about the aliens (see: The UFO/JFK Connection

— 1 x COMPLEX: such as Mrs. Ventura, he later explained), and that the
military-industrial complex killed Kennedy because he supposedly had
decided to withdraw from Vietnam .

— 1 x SYNDICATE: held to the flat earth view or to Historian X’s thesis
that Kennedy was killed by a crime syndicate

— 1 x MAFTA: that was accumulated, and how the evidence usually allows
ruling out theories that Kennedy was killed by the Mafia, or by the CIA,
or by the KGB.

— 1 x LONE: ”and thus” proves the 1964 Warren Commission conclusion
that Kennedy was killed by a lone assassin, Lee Harvey Oswald.

— 1 x CESAR: Cesar killed Robert Kennedy from behind while ...

— 1 x SPEAR: QIld. Explorer Edmund Kennedy was killed by spear.

The first and the eighth answer are due to a tagger error on the unknown word
“assassin” (tagged as an adverb). The second to seventh answer however illus-
trate nicely the different beliefs about Kennedy’s death. The context (“they
believe”, “thesis”, “theory that”) allows users to identify most answers as be-
liefs, not facts. The last two answers are due to the ambiguity of “Kennedy”.
In contrast to our Congo example however there is a preferred interpretation
of “Kennedy” as “John F. Kennedy” and this is clearly reflected by the low
answer frequencies belonging to the “Robert” and “Edmund” interpretations.
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e Salience/importance of answers: “What does the Peugeot company manufac-

ture?” (GR)

— 2 x VEHICLES: A subsidiary of French auto giant PSA Peugeot Citroén,
PCA manufactures and imports Peugeot and Citroén vehicles, ...

— 2 x CARS: Sevel Argentina SA Sevel Argentina imports and manufactures
Peugeot and Citroén cars.

— 1 x ABSORBERS: (Peugeot is the only car company that manufactures
its own shock absorbers so it can get the rates just right.

— 1 x TOOLS: Well-known as a maker of bicycles and motor scooters, Peu-
geot also manufactures power tools and the pepper grinder which the
company patented last century.

Although the frequency differences are tiny, they help to promote the most
salient answers (vehicles, cars) to the top of the list. A much larger difference
can be seen in the following example: “When did Nixon visit China?” (GR)
— 37 x 1972: 7 Nizon visited China in February 1972 , and signed the
Shanghai Communiqué declaring historic US-China rapprochement .

— 3 x FEBRUARY: President Nizon visited China in February of 1972 ,
marking the end of the stalemate in bilateral ties .

— 1 x 1970: To chose a political event from recent history ( Nizon visited
China in February 1970 ) as the subject was a daring and dangerous
act .

— 1 x 1989: When Richard Nizon visited China in November 1989 , Deng
Xiaoping told him ” we can never forget .

The 1972 visit is historically much more important than the one in 1989. This
is clearly reflected by the frequencies. (The 1970 answer is wrong information.)

The MURAX system (Kupiec 1993) answers questions on the basis of an ency-
clopedia. It performs normalization for potential answers referring to persons by
using the title of the article. For instance, in the article “John F. Kennedy” the
last name “Kennedy” is taken to refer to John F. Kennedy. Frequency is taken into
account for answer extraction: “Other things being equal, an answer hypothesis
having more instances of the match is preferred.”

Radev, Prager, and Samn (2000) describe a QA system that implements two
different algorithms for answer ranking. The algorithm called “Werlect” uses the
frequency of a potential answer Named Entity as one of five features which de-
termine its rank. Frequencies are only counted in the 10 highest ranked passages
returned by the passage retrieval component of the system. Answer entities are
not normalized to any canonical form (like the head in SHAPAQA) so for example a
full name and a last name would be counted as two different entities. In summary,
although frequencies are used, their status in the system is less influential than in
SHAPAQA.

In the system described by Abney, Collins, and Singhal (2000) some normal-
ization of potential answer Named Entities is performed. Dates are mapped to a
year-month-day format and person names to their last word (their head in our ter-
minology, frequently the last name). Frequencies are then counted in the 50 highest
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ranked passages from the passage retrieval component of the system and are used
for ranking all entities which match the entity type that is asked for in the ques-
tion. As a special rule, occurrence in the passage(s) “that received the maximal
score from the passage retrieval component” counts ten times as much as occur-
rence in any lower ranked passage. As complex answers were no issue in the past
TREC QA evaluations, Abney, Collins, and Singhal do not discuss the impact of
their frequency approach on them.

3.3.2 Complex answers in one sentence

The previous section showed how answer frequency and context can help users to
reconstruct a complex answer. However we can actually do better than this for
some cases of complex answers.

e Collective answer: “What two researchers discovered the double-helix struc-
ture of DNA in 1953?” (CT)

— 8 x WATSON: In 1953 , James Watson and Francis Crick discovered the
double-heliz structure of DNA .

— 4 x CRICK: In 1953 , James Watson and Francis Crick discovered the
double-heliz structure of DNA .

— 2 x PRESIDENT: among others , for its Watson School of Bio-logical
Sciences whose current president , James D Watson , discovered the
double-heliz structure of DNA in 1953 .

At the moment, the answers “Watson” and “Crick” are treated separately.
However, the QA system could easily check that the first evidence sentence
for “Watson” also contains “Crick” (in fact it is identical to the first sentence
for “Crick”). It could then output a combined answer like “8 x WATSON,
4 x CRICK: In 1958 , James Watson and Francis Crick discovered the
double-helix structure of DNA .” This is an especially efficient strategy if for
some reason (e.g. participation in TREC) the system has a limited space for
answers.
e Granularity: “Where was Lincoln assassinated?” (CT)

— 77 x FORD: On April 14 , 1865 , as he sat in Ford ’s Theater watching
a comedy , President Lincoln was assassinated .

— 45 x WASHINGTON: Died : On Good Friday , April 14 , 1865 , Lin-
coln was assassinated at Ford ’s Theatre in Washington by John Wilkes
Booth , an actor , who .

— 11 x OFFICE: Civil War , and later became the Secretary of War un-
der President James Garfield ( who strangely enough was assassinated in
office just like Abraham Lincoln ) .

— 10 x THEATER: After Lincoln was assassinated in this very theater ,
he was carried across the street .

— 6 x THEATRE: Abraham Lincoln was assassinated on April 14 | 1865 by
John Wilkes Booth at Fords Theatre and died the next day .

The answer “Ford” (from not treating “Ford’s Theater” as one chunk) was
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found in 77 evidence sentences. As mentioned in Section 2, the evidence sen-
tences under the same keyword are not sorted at the moment. The problem
of complex answers however suggests a simple new strategy: Prefer the sen-
tence that contains the most other answers. In case of a tie prefer the higher
frequency ones. In the present example, the first evidence sentence for “Wash-
ington”, which is also among the 77 sentences for “Ford” contains the three
answers “Ford”, “Washington” and “Theatre”. There is even another sen-
tence containing the slightly more frequent variant “Theater”: “.
14 | 1865 — one year after the Civil War had ended — Lincoln was assassinated
at Ford ’s Theater in Washington .” If this sentence is chosen as first evidence
sentence, and all three answers are marked (in bold), the system can in fact
prefer a complex answer over a simple one without having to know anything

.. on April

about the underlying semantic reasons for the complexity.
e Different designations: “What is the brightest star visible from Earth?” (CT)

— 8 x SIRIUS: Sirius is the brightest star visible from Earth.
— 3 x STAR: Sirius , the Dog Star , is the brightest star visible from Earth
, exclusive of our Sun , of course .

The same argument as above holds in this case. Of the eight sentences for
“Sirius”, the system would prefer the one containing also “(Dog) Star”, and
is thus able to prefer a complex answer.

Unfortunately, SHAPAQA did not find any answers of the “different measures” or
“many answers” types, so we cannot give any examples here. Still, we can assume
that the most common measure (in English texts on the internet) for the quantity
at hand will be promoted to the top of the list through frequency sorting. There
also is a chance of finding several (probably two) measures in one sentence, which
can then be preferred. The same holds for the many answers.

The “Werlect” algorithm (Radev, Prager, and Samn 2000), mentioned in the last
section, implements a similar heuristic to the one just proposed. After all poten-
tial answer Named Entities are ranked, all 50 (or 250) byte text segments of the
passages from the passage retrieval component are ranked using as features the
original passage rank, the number of matching words from the query and the rank
of all entities contained in the segment. All other things being equal, a segment that
contains more higher ranked entities would thus be preferred. Radev, Prager, and
Samn note that in TREC-8, the “Werlect” algorithm performed slightly worse than
the alternative “Ansel” algorithm that does not take entity frequencies or multiple
entities in one segment into account. We think that there are three possible reasons.
First, frequency counts need some normalization of entities. Second, preferring seg-
ments which contain as many entities as possible while being restricted to a fixed
byte length might cause answer strings to contain several potential answers without
indicating which one is “meant”. According to the TREC QA evaluation rules, this
answer string has to be judged incorrect. In a realistic QA system, answers strings
would probably not have to be truncated. Third, as TREC systems receive no credit
for retrieving complex answers, this advantage of the “Werlect” approach is not re-
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warded. An example of a TREC-9 system that also counts answer frequencies and
the number of potential answers in a segment is Clarke et al. (2001).

4 Possible improvements and conclusion

The success of the approaches to complex answer handling that were proposed in the
previous section hinges upon the reliability of the frequency counts. Good frequency
counts need a method for deciding whether two answers found in two documents
refer to the same entity. At the moment this is done by mapping the answers to their
heads. It is clear however that this heuristic can be improved upon. It does not work
for cardinality questions, as e.g. “16 moons” and “4 moons” would both be mapped
to MOONS. In one other case it incorrectly merged two answers (“Mississippi River”
and “Missouri River”) into one (RIVER). In general two phrases having the same
head need not refer to the same entity. In a QA context however it is unlikely that
e.g. two different persons with the same last name are found as answers. In the case
of two different dates in the same year it is reasonable to count both as evidence for
the year answer. A bigger problem with the head mapping heuristic is that some
answers referring to the same entity are not merged. One such example is the Costa
Rican president “José Maria Figueres Olsen” who was also found as “Jose Maria
Figueras”. Another is the “cars” and “vehicles” answers for the Peugeot question
which would need ontological knowledge to be merged. This is a topic for future
research.

In this article we introduced the concept of complex answers. With complex an-
swers, evaluation is no longer a decision about “correct” versus “incorrect”, as a
simple answer may be correct but a complex one “better”. We identified nine dif-
ferent types of complex answers and proposed two approaches based on answer
frequencies that enable QA systems to handle these types without having to under-
stand the semantic reasons for the complexity. As it is not clear at the moment how
to evaluate with complex answers, we could only demonstrate the advantages of the
approaches using illustrative examples gathered by a WWW QA system. We also
described this system which uses shallow parsing modules, especially a grammatical
relation finder, based on Memory-Based Learning.
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