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We examine how differences in language models, learned by different data driven systems per-
forming the same NLP task, can be exploited to yield a higher accuracy than the best individual
system. We do this by means of experiments involving the task of morpho-syntactic wordclass
tagging, on the basis of three different tagged corpora. Four well-known tagger generators (Hid-
den Markov Model, Memory-Based, Transformation Rules and Maximum Entropy) are trained
on the same corpus data. After comparison, their outputs are combined using several voting
strategies and second stage classifiers. All combination taggers outperform their best compo-
nent. The reduction in error rate varies with the material in question, but can be as high as
24.3% with the LOB corpus.

1. Introduction

In all Natural Language Processing (NLP) systems, we find one or more language mod-
els that are used to predict, classify and/or interpret language related observations.
Because most real-world NLP tasks require something that approaches full language
understanding in order to be perfect, but automatic systems only have access to limited
(and often superficial) information, as well as limited resources for reasoning with that
information, such language models tend to make errors when the system is tested on
new material. The engineering task in NLP is to design systems that make the amount
of errors as small as possible with as little effort as possible. Common ways to reduce
the error rate are devising better representations of the problem, spending more time
on encoding language knowledge (in the case of hand-crafted systems) or finding more
training data (in the case of data-driven systems). However, given limited resources,
these options are not always available.

Rather than devising a new representation for our task, in this paper, we combine
different systems employing known representations. The observation that suggests this
approach is that systems that are designed differently, either because they use a different
formalism or because they contain different knowledge, will typically produce different
errors. We hope to make use of this fact and reduce the number of errors with very little
additional effort by exploiting the disagreement between different language models. Al-
though the approach is applicable to any type of language model, we focus on the case
of statistical disambiguators that are trained on annotated corpora. The examples of the
task that are present in the corpus and its annotation are fed into a learning algorithm,
which induces a model of the desired input-output mapping in the form of a classifier.
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We use a number of different learning algorithms simultaneously on the same training
corpus. Each type of learning method brings its own ‘inductive bias’ to the task and will
produce a classifier with slightly different characteristics, so that different methods will
tend to produce different errors.

We investigate two ways of exploiting these differences. First, we make use of the
gang effect. By simply using more than one classifier, and voting between their outputs,
we expect to eliminate the quirks, and hence errors, that are due to the bias of one
particular learner. However, there is also a way to make better use of the differences:
we can create an arbiter effect. We can train a second level classifier to select its output
on the basis of the patterns of co-occurrence of the outputs of the various classifiers.
In this way, we not only counter the bias of each component, but actually exploit it
in the identification of the correct output. This method even admits the possibility of
correcting collective errors. The hypothesis is that both types of approaches can yield a
more accurate model from the same training data than the most accurate component of
the combination, and that given enough training data the arbiter type of method will be
able to outperform the gang type.�

In the machine learning literature there has been much interest recently in the the-
oretical aspects of classifier combination, both of the gang effect type and of the arbiter
type (see section 2). In general, it has been shown that, when the errors are uncorrelated
to a sufficient degree, the resulting combined classifier will often perform better than
any of the individual systems. In this paper we wish to take a more empirical approach
and examine whether these methods result in substantial accuracy improvements in a
situation typical for statistical NLP, viz. learning morpho-syntactic wordclass tagging (also
known as Part-of-Speech or POS tagging) from an annotated corpus of several hundred
thousand words.

Morpho-syntactic wordclass tagging entails the classification (tagging) of each token
of a natural language text in terms of an element of a finite palette (tagset) of wordclass
descriptors (tags). The reasons for this choice of task are several. First of all, tagging is a
widely researched and well-understood task (cf. (van Halteren (ed.), 1999)). Second, cur-
rent performance levels on this task still leave room for improvement: ‘state of the art’
performance for data driven automatic wordclass taggers on the usual type of material
(e.g. tagging English text with single tags from a low detail tagset) is at 96-97% correctly
tagged words, but accuracy levels for specific classes of ambiguous words are much
lower. Finally, a number of rather different methods that automatically generate a fully
functional tagging system from annotated text are available off-the-shelf. First experi-
ments (van Halteren, Zavrel, and Daelemans, 1998; Brill and Wu, 1998) demonstrated
the basic validity of the approach for tagging, with the error rate of the best combiner
being 19.1% lower than that of the best individual tagger (van Halteren, Zavrel, and
Daelemans, 1998). However, these experiments were restricted to a single language, a
single tagset and, more importantly, a limited amount of training data for the combin-
ers. This led us to perform further, more extensive, tagging experiments before moving
on to other tasks. Since then the method has also been applied to other NLP tasks with
good results (see section 6).

In the remaining sections, we first introduce classifier combination on the basis of
previous work in the machine learning literature and present the combination methods
we use in our experiments (Section 2). Then we explain our experimental setup (Sec-

1 In previous work (van Halteren, Zavrel, and Daelemans, 1998), we were unable to confirm the latter half
of the hypothesis unequivocally. As we judged this to be due to insufficient training data for proper
training of the second level classifiers, we greatly increase the amount of training data in the present work
through the use of cross-validation.
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tion 3), also describing the corpora (3.1) and tagger generators (3.2) used in the exper-
iments. In Section 4, we go on to report the overall results of the experiments, starting
with a comparison between the component taggers (and hence between the underlying
tagger generators) and continuing with a comparison of the combination methods. The
results are examined in more detail in Section 5, where we discuss such aspects as ac-
curacy on specific words or tags, the influence of inconsistent training data, training set
size, the contribution of individual component taggers and tagset granularity. In Sec-
tion 6, we discuss the results in the light of related work, after which we conclude with
a summary of the most important observations and interesting directions for future re-
search (Section 7).

2. Combination methods

In recent years there has been an explosion of research in Machine Learning on finding
ways to improve the accuracy of supervised classifier learning methods. An important
finding is that a set of classifiers whose individual decisions are combined in some way
(an ensemble) can be more accurate than any of its component classifiers if the errors
of the individual classifiers are sufficiently uncorrelated (see (Dietterich, 1997; Chan,
Stolfo, and Wolpert, 1999) for overviews). There are several ways in which an ensemble
can be created, both in the selection of the individual classifiers and in the way they are
combined.

One way to create multiple classifiers is to use subsamples of the training examples.
In bagging, the training set for each individual classifier is created by randomly draw-
ing training examples with replacement from the initial training set (Breiman, 1996a). In
boosting, the errors made by a classifier learned from a training set are used to construct
a new training set in which the misclassified examples get more weight. By sequentially
performing this operation, an ensemble is constructed (e.g. ADABOOST, (Freund and
Schapire, 1996)). This class of methods is also called arcing (for adaptive resampling and
combining). In general, boosting obtains better results than bagging, except when the
data is noisy (Dietterich, 1997). Another way is to train classifiers on different sources
of information about the task by giving them access to different subsets of the available
input features (Cherkauer, 1996). Still other ways are to represent the output classes as
bitstrings where each bit is predicted by a different component classifier (Error Cor-
recting Output Coding, (Dietterich and Bakiri, 1995)) or to develop learning-method
specific methods for ensuring (random) variation in the way the different classifiers of
an ensemble are constructed (Dietterich, 1997).

In this paper we take a multi-strategy approach, in which an ensemble is con-
structed by classifiers resulting from training different learning methods on the same
data (see also (Alpaydin, 1998)).

Methods to combine the outputs of component classifiers in an ensemble include
simple voting where each component classifier gets an equal vote, and weighted voting,
in which each component classifier’s vote is weighted by its accuracy (see e.g. (Gold-
ing and Roth, 1999)). More sophisticated weighting methods have been designed as
well. E.g. (Ali and Pazzani, 1996) apply the Naive Bayes algorithm to learn weights for
classifiers. Voting methods lead to the gang effect discussed earlier. The most interesting
approach to combination is stacking in which a classifier is trained to predict the correct
output class when given as input the outputs of the ensemble classifiers, and possibly
additional information (Wolpert, 1992; Breiman, 1996b; Ting and Witten, 1997a; Ting and
Witten, 1997b). Stacking can lead to an arbiter effect. In this paper we compare voting and
stacking approaches on the tagging problem.

In the remainder of this section, we describe the combination methods we use in
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Let Ti be the component taggers, Si�tok� the most probable tag for a token tok as suggested by Ti, and let the
quality of tagger Ti be measured by

� the precision of Ti for tag tag: Prec�Ti� tag�

� the recall of Ti for tag tag: Rec�Ti� tag�

� the overall precision of Ti: Prec�Ti�

Then the vote V �tag� tok� for tagging token tok with tag tag is given by:

� Majority:
X

i

IF Si�tok� � tag THEN � ELSE �

� TotPrecision:
X

i

IF Si�tok� � tag THEN Prec�Ti� ELSE �

� TagPrecision:
X

i

IF Si�tok� � tag THEN Prec�Ti� tag� ELSE �

� Precision-Recall:
X

i

IF Si�tok� � tag THEN Prec�Ti� tag� ELSE �� Rec�Ti� tag�

Figure 1
Simple algorithms for voting between component taggers.

our experiments. We start with variations based on weighted voting. Then we go on to
several types of stacked classifiers, which model the disagreement situations observed
in the training data in more detail. The input to the second stage classifier can be limited
to the first level outputs or can contain additional information from the original input
pattern. We will consider a number of different second level learners. Apart from us-
ing three well-known machine learning methods, Memory-Based Learning, Maximum
Entropy and Decision Trees, we also introduce a new method, based on grouped voting.

2.1 Simple voting
The most straightforward method to combine the results of multiple taggers is to do
an n-way vote. Each tagger is allowed to vote for the tag of its choice and the tag with
the highest number of votes is selected.� The question is how large a vote we allow
each tagger (cf. Figure 1). The most democratic option is to give each tagger one vote
(Majority). This does not require any tuning of the voting mechanism on training data.

However, the component taggers can be distinguished by several figures of merit,
and it appears more useful to give more weight to taggers which have proved their
quality. For this purpose we use precision and recall, two well-known measures, which
can be applied to the evaluation of tagger output as well. For any tag X, precision mea-
sures which percentage of the tokens tagged X by the tagger are also tagged X in the
benchmark. Recall measures which percentage of the tokens tagged X in the benchmark
are also tagged X by the tagger. When abstracting away from individual tags, precision
and recall are equal (at least if the tagger produces exactly one tag per token) and mea-

2 In all our experiments, any ties are resolved by a random selection from among the winning tags.
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sure how many tokens are tagged correctly; in this case we also use the more generic
term accuracy. We will call the voting method where each tagger is weighted by its gen-
eral quality TotPrecision, i.e. each tagger votes its overall precision. To allow for more
detailed interactions, each tagger is weighted by the quality in relation to the current
situation, i.e. each tagger votes its precision on the tag it suggests (TagPrecision). This
way, taggers that are accurate for a particular type of ambiguity can act as specialized
experts. The information about each tagger’s quality is derived from a cross-validation
of its results on the combiner training set. The precise setup for deriving the training
data is described in more detail below, in section 3.

We have access to even more information on how well the taggers perform. We not
only know whether we should believe what they propose (precision) but know as well
how often they fail to recognize the correct tag (� � recall). This information can be
used by forcing each tagger to add to the vote for tags suggested by the opposition too,
by an amount equal to 1 minus the recall on the opposing tag (Precision-Recall). As
an example, suppose that the MXPOST tagger suggests DT and the HMM tagger TnT
suggests CS (two possible tags in the LOB tagset for the token “that”). If MXPOST has
a precision on DT of 0.9658 and a recall on CS of 0.8927, and TnT has a precision on CS
of 0.9044 and a recall on DT of 0.9767, then DT receives a 0.9658 + 0.0233 = 0.9991 vote
and CS a 0.9044 + 0.1073 = 1.0117 vote.

Note that simple voting combiners can never return a tag that was not suggested
by a (weighted) majority of the component taggers. As a result, they are restricted to
the combination of taggers which all use the same tagset. This is not the case for all the
following (arbiter type) combination methods, a fact which we have recently exploited
in bootstrapping a wordclass tagger for a new corpus from existing taggers with com-
pletely different tagsets (Zavrel and Daelemans, 2000).

2.2 Stacked probabilistic voting
One of the best methods for tagger combination in (van Halteren, Zavrel, and Daele-
mans, 1998) is the TagPair method. It looks at all situations where one tagger suggests
tag� and the other tag� and estimates the probability that in this situation the tag should
actually be tagx. Although it is presented as a variant of voting in that paper, it is in fact
also a stacked classifier, because it does not necessarily select one of the tags suggested
by the component taggers. Taking the same example as in the voting section above, if
tagger MXPOST suggests DT and tagger TnT suggests CS, we find that the probabilities
for the appropriate tag are:

CS subordinating conjunction 0.4623
CS22 second half of a two-token sub-

ordinating conjunction, e.g. “so
that”

0.0171

DT determiner 0.4966
QL quantifier 0.0103
WPR wh-pronoun 0.0137

When combining the taggers, every tagger pair is taken in turn and allowed to vote
(with a weight equal to the probability P �tagxjtag�� tag�� as described above) for each
possible tag (cf. Figure 2). If a tag pair tag�-tag� has never been observed in the train-
ing data, we fall back on information on the individual taggers, i.e. P �tagxjtag�� and
P �tagxjtag��. Note that with this method (and all the following) a tag suggested by a
minority (or even none) of the taggers actually has a chance to win, although in practice
the chance to beat a majority is still very slight.
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Let Ti be the component taggers and Si�tok� the most probable tag for a token tok as suggested by Ti. Then
the vote V �tag� tok� for tagging token tok with tag tag is given by:

V �tag� tok� �
X

i�jji�j

Vi�j�tag� tok�

where Vi�j�tag� tok� is given by

IF frequency� Si�tokx� � Si�tok�� Sj�tokx� � Sj�tok� � � �

THEN Vi�j�tag� tok� � P �tag j Si�tokx� � Si�tok�� Sj�tokx� � Sj�tok� �

ELSE Vi�j�tag� tok� �
�

�
P �tag j Si�tokx� � Si�tok� � �

�

�
P �tag j Sj�tokx� � Sj�tok� �

Figure 2
The TagPair algorithm for voting between component taggers.

If the case to be classified corresponds to the feature-value pair set

Fcase � fff� � v�g� ����ffn � vngg

then estimate the probability of each class Cx for Fcase as a weighted sum over all possible subsets Fsub of
Fcase:

�P �Cx� �
X

Fsub�Fcase

WFsubP �Cx j Fsub�

with the weight WFsub for an Fsub containing n elements equal to n�
Wnorm

, where Wnorm is a normalizing

constant so that
P

Cx
�P �Cx� � �.

Figure 3
The Weighted Probability Distribution Voting (WPDV) classification algorithm, as used in the
combination experiments.

Seeing the success of TagPair in the earlier experiments, we decided to try and
generalize this stacked probabilistic voting approach to combinations larger than pairs.
Among other things, this would let us include word and context features here as well.
The method that was eventually developed we have called weighted probability distribu-
tion voting (henceforth WPDV).

A WPDV classification model is not limited to pairs of features (such as the pairs
of tagger outputs for TagPair), but can use the probability distributions for all feature
combinations observed in the training data (cf. Figure 3). During voting, we do not use
a fallback strategy, like TagPair, but use weights to prevent the lower order combina-
tions from excessively influencing the final results when a higher order combination, i.e.
more exact information, is present. The original system, as used for this paper, weights
a combination of order n with a factor n�, a number based on the observation that a
combination of order m contains m combinations of order �m � �� which have to be
competed with. Its only parameter is a threshold for the number of times a combina-
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� Tags suggested by the base taggers, used by all systems:

TagTBL � JJ TagMBT � V BN TagMXP � V BD TagHMM � JJ

� The focus token, used by stacked classifiers at level Tags+Word:

Word � restored

� Full form tags suggested by the base tagger for the previous and next token, used by stacked
classifiers at level Tags+Context, except for WPDV:

PrevTBL � JJ PrevMBT � NN PrevMXP � NN PrevHMM � JJ

NextTBL � NN NextMBT � NN NextMXP � NN NextHMM � NN

� Compressed form of the context tags, used by WPDV(Tags+Context), because the system was unable
to cope with the large number of features:

Prev � JJ �NN �NN � JJ Next � NN �NN �NN �NN

� Target feature, used by all systems:

Tag � V BD

Figure 4
Features used by the combination systems. Examples are taken from the LOB material.

tion must be observed in the training data in order to be used,� which helps prevent a
combinatorial explosion when there are too many atomic features.�

In contrast to voting, stacking classifiers allows the combination of the outputs of
component systems with additional information about the decision’s context. We inves-
tigated several versions of this approach. In the basic version (Tags), each training case
for the second level learner consists of the tags suggested by the component taggers
and the correct tag (cf. Figure 4). In the more advanced versions we add information
about the word in question (Tags+Word) and the tags suggested by all taggers for the
previous and the next position (Tags+Context). These types of extended second level
features can be exploited by WPDV, as well as by a wide selection of other machine
learning algorithms.

2.3 Memory-Based combination
Our first choice from these other algorithms is a Memory-Based second level learner,
implemented in TiMBL (Daelemans et al., 1999), a package developed at Tilburg Uni-
versity and Antwerp University.�

Memory-Based learning is a learning method that is based on storing all examples
of a task in memory and then classifying new examples by similarity-based reasoning
from this memory of examples. Each example is represented by a fixed length vector of
feature-values, called a case. If the case to be classified has been observed before, i.e. if it
is found among the stored cases (in the case base), the most frequent corresponding out-
put is used. If the case is not found in the case base, k nearest neighbours are determined
with some similarity metric and the output is based on the observed outputs for those
neighbours. Both the value of k and the similarity metric used can be selected by param-
eters of the system. For the Tags version, the similarity metric used is Overlap (a count of
the number of matching feature-values between a test and a training item) and k is kept

3 In our experiments, this parameter is always set to 5.
4 WPDV has since evolved, using more parameters and more involved weighting schemes, and also been

tested on other tasks than tagger combination (van Halteren, 2000a; van Halteren, 2000b).
5 TiMBL is available from http://ilk.kub.nl/.
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at 1. For the other two versions (Tags+Word and Tags+Context), a value of k � � is used,
and each overlapping feature is weighted by its Information Gain (Daelemans, Van den
Bosch, and Weijters, 1997). The Information Gain of a feature is defined as the difference
between the entropy of the a priori class distribution and the conditional entropy of the
classes given the value of the feature.�

2.4 Maximum Entropy combination
The second machine learning method, Maximum Entropy Modeling, implemented in the
MACCENT system (Dehaspe, 1997),� does the classification task by selecting the most
probable class given a Maximum Entropy Model. This type of model represents exam-
ples of the task (Cases) as sets of binary indicator features, for the task at hand conjunc-
tions of a particular tag and a particular set of feature values. The model has the form
of an exponential model:

p��tagjCase� �
�

Z��Case�
e
P

i
�ifi�Case�tag�

where i indexes all the binary features, fi is a binary indicator function for feature i, Z�

is a normalizing constant, and �i is a weight for feature i. The model is trained by itera-
tively adding binary features with the largest gain in the probability of the training data,
and estimating the weights using a numerical optimization method called Improved It-
erative Scaling. The model is constrained by the observed distribution of the features in
the training data and has the property of having the maximum entropy of all models
that fit the constraints, i.e. all distributions that are not directly constrained by the data
are left as uniform as possible.�

The maximum entropy combiner takes the same information as the memory-based
learner as input, but internally translates all multi-valued features to binary indicator
functions. The Improved Iterative Scaling algorithm is then applied, with a maximum
of one hundred iterations. This algorithm is the same as the one used in the MXPOST
tagger described in section 3.2, but without the beam search used in the tagging appli-
cation.

2.5 Decision Tree combination
The third machine learning method we used is C5.0 (Quinlan, 1993),	 an example of top-
down induction of decision trees. A decision tree is constructed by recursively partitioning
the training set, selecting, at each step, the feature which most reduces the uncertainty
about the class in each partition, and using it as a split. C5.0 uses Gain Ratio as an esti-
mate of the utility of splitting on a features. Gain Ratio corresponds to the Information
Gain measure of a feature, as described above, except that the measure is normalized for
the number of values of the feature, by dividing by the entropy of the feature’s values.
After the decision tree is constructed, it is pruned to avoid overfitting, using a method
which is described in detail in (Quinlan, 1993). A classification for a test case is made
by traversing the tree until either a leaf node is found or all further branches do not
match the test case, and returning the most frequent class at the last node. The case
representation uses exactly the same features as the memory-based learner.

6 This is also sometimes referred to as Mutual Information in the Computational Linguistics literature.
7 MACCENT is available from

http://www.cs.kuleuven.ac.be/˜ ldh.
8 For a more detailed discussion, see (Berger, Della Pietra, and Della Pietra, 1996; Ratnaparkhi, 1996).
9 C5.0 is commercialy available from http://www.rulequest.com/. Its predecessor C4.5 can be

downloaded from http://www.cse.unsw.edu.au/˜ quinlan/.
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3. Experimental setup

In order to test the potential of system combination, we obviously need systems to com-
bine, i.e. a number of different taggers. As we are primarily interested in the combi-
nation of classifiers trained on the same data sets, we are in fact looking for data sets
(in this case tagged corpora) and systems which can automatically generate a tagger on
the basis of those data sets. For the current experiments we have selected three tagged
corpora and four tagger generators. Before we go into a detailed description of each of
these, we first describe how the ingredients are used in the experiments.

Each corpus is used in the same way to test tagger and combiner performance. First
of all, it is split into a 90% training set and a 10% test set. We can evaluate the base
taggers by using the whole training set to train the tagger generators on and the test
set to test the resulting tagger on. For the combiners a more complex strategy must be
followed, since combiner training must be done on material unseen by the base taggers
involved. Rather than setting apart a fixed combiner training set,�
 we use a nine-fold
training strategy. The 90% training set is split into nine equal parts. Each part is tagged
with component taggers which have been trained on the other eight parts. All results are
then concatenated for use in combiner training, so that, in contrast to our earlier work,
all of the training set is effectively available for the training of the combiner. Finally,
the resulting combiners are tested on the test set. Since the test set is identical for all
methods, we can compute the statistical significance of the results using McNemar’s
chi-squared test (Dietterich, 1998).

As we will see, the increase in combiner training set size, viz. 90% of the corpus
vs. the fixed 10% tune set in the earlier experiments, indeed results in better perfor-
mance. On the other hand, the increased amount of data also increases time and space
requirements for some systems to such a degree that we had to exclude them from (some
parts of) the experiments.

The data in the training set is the only information used in tagger and combiner con-
struction: all components of all taggers and combiners (lexicon, context statistics, etc.)
are entirely data driven and no manual adjustments are made. If any tagger or combiner
construction method is parametrized, we use default settings where available. If there
is no default, we choose intuitively appropriate values without preliminary testing. In
these cases, we report such parameter settings in the introduction to the system.

3.1 Data
In the current experiments we make use of three corpora. The first is the LOB cor-
pus (Johansson, 1986), which we used in the earlier experiments as well (van Halteren,
Zavrel, and Daelemans, 1998) and which has proved to be a good testing ground. We
then switch to Wall Street Journal material (WSJ), tagged with the Penn Treebank II
tagset (Marcus, Santorini, and Marcinkiewicz, 1993). Like LOB, it consists of approxi-
mately 1M words, but of American English. Furthermore, it is of a different structure
(only newspaper text) and tagged with a rather different tagset. The experiments with
WSJ will also let us compare our results with those reported by (Brill and Wu, 1998),
which show a much less pronounced accuracy increase than ours with LOB. The fi-
nal corpus is the slightly smaller (750Kw) Eindhoven corpus (Uit den Boogaart, 1975)
tagged with the Wotan tagset (Berghmans, 1994). This will let us examine the tagging of

10 Cf. the “Tune” set in (van Halteren, Zavrel, and Daelemans, 1998). This consisted of 114K tokens, but,
because of a 92.5% agreement over all four taggers, it yielded less than 9K tokens of useful training
material to resolve disagreements. This was suspected to be the main reason for the relative lack of
performance by the more sophisticated combiners.
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a different language than English, viz. Dutch. Furthermore, the Wotan tagset is a very
detailed one, so that the error rate of the individual taggers tends to be higher. More-
over, we can more easily use projections of the tagset and thus study the effects of levels
of granularity.

LOB. The first data set we use for our experiments consists of the tagged Lancaster-
Oslo/Bergen corpus (LOB; (Johansson, 1986)). The corpus comprises about one million
words of British English text, divided over 500 samples of 2000 words from 15 text types.

The tagging of the LOB corpus, which was manually checked and corrected, is gen-
erally accepted to be quite accurate. Here we use a slight adaptation of the tagset. The
changes are mainly cosmetic, e.g. non-alphabetic characters such as “$” in tag names
have been replaced. However, there has also been some retokenization: genitive mark-
ers have been split off and the negative marker “n’t” has been reattached.

An example sentence tagged with the resulting tagset is:

The ATI singular or plural article
Lord NPT singular titular noun
Major NPT singular titular noun
extended VBD past tense of verb
an AT singular article
invitation NN singular common noun
to IN preposition
all ABN pre-quantifier
the ATI singular or plural article
parliamentary JJ adjective
candidates NNS plural common noun
. SPER period

The tagset consists of 170 different tags (including ditto tags��), and has an average
ambiguity of 2.82 tags per wordform over the corpus. An impression of the difficulty of
the tagging task can be gained from the two baseline measurements in Table 2 (in 4.1
below), representing a completely random choice from the potential tags for each token
(Random) and selection of the lexically most likely tag (LexProb).��

The training/test separation of the corpus is done at utterance boundaries (each 1st-
9th utterance is training and each 10th is test) and leads to a 1046K token training set
and a 115K token test set. Around 2.14% of the test set are tokens unseen in the training
set�� and a further 0.37% are known tokens but with unseen tags.

WSJ. The second data set consists of 1M words of Wall Street Journal material. It differs
from LOB in that it is American English and, more importantly, in that is completely
made up of newspaper text. The material is tagged with the Penn Treebank tagset (Mar-
cus, Santorini, and Marcinkiewicz, 1993), which is much smaller than the LOB one. It
consists of only 48 tags.�� There is no attempt to annotate compound words, so there are

11 Ditto tags are used for the components of multi-token units, e.g. if “as well as” is taken to be a
coordinating conjunction, it is tagged “as CC-1 well CC-2 as CC-3”, using three related but different ditto
tags.

12 These numbers are calculated on the basis of a lexicon derived from the whole corpus. An actual tagger
will have to deal with unknown words in the test set, which will tend to increase the ambiguity and
decrease Random and LexProb. Note that all actual taggers and combiners in this paper do have to cope
with unknown words as their lexicons are based purely on their training sets.

13 Because of the way in which the tagger generators treat their input, we do count tokens as different even
though they are the same underlying token, but differ in capitalization of one or more characters.

14 In the material we have available, quotes are represented slightly differently, so that there are only 45
different tags. In addition, the corpus contains a limited number of instances of 38 ‘indeterminate’ tags,
e.g. JJjVBD indicates a choice between adjective and past participle which cannot be decided or about
which the annotator was unsure.

10



Van Halteren, Zavrel & Daelemans Combination of machine learning systems

no ditto tags.
An example sentence is:

By IN preposition/subordinating conjunction
10 CD cardinal number
a.m. RB adverb
Tokyo NNP singular proper noun
time NN singular common noun
, , comma
the DT determiner
index NN singular common noun
was VBD past tense verb
up RB adverb
435.11 CD cardinal number
points NNS plural common noun
, , comma
to TO “to”
34903.80 CD cardinal number
as IN preposition/subordinating conjunction
investors NNS plural common noun
hailed VBD past tense verb
New NNP singular proper noun
York NNP singular proper noun
’s POS possessive ending
overnight JJ adjective
rally NN singular common noun
. . sentence-final punctuation

Mostly because of the less detailed tagset, the average ambiguity of the tags is lower
than LOB’s, at 2.34 tags per token in the corpus. This means that the tagging task should
be an easier one than that for LOB. This is supported by the values for Random and Lex-
Prob in Table 2. On the other hand, the less detailed tagset also means that the taggers
have less detailed information to base their decisions on. Another factor which is of in-
fluence on the quality of automatic tagging is the consistency of the tagging over the
corpus. The WSJ material has not been checked as extensively as the LOB corpus and
is expected to have a much lower consistency level (see section 5.3 below for a closer
examination).

The training/test separation of the corpus is again done at utterance boundaries
and leads to a 1160K token training set and a 129K token test set. Around 1.86% of the
test set are unseen tokens and a further 0.44% are known tokens with previously unseen
tags.

Eindhoven. The final two data sets are both based on the Eindhoven corpus (Uit den
Boogaart, 1975). This is slightly smaller than LOB and WSJ. The written part, which we
use in our experiments, consists of about 750K words, in samples ranging from 53 to
451 words. In variety, it lies between LOB and WSJ, containing 150Kw each of samples
from Dutch newspapers (subcorpus CDB), weeklies (OBL), magazines (GBL), popular
scientific writings (PWE) and novels (RNO).

The tagging of the corpus, as used here, was created in 1994 as part of a Master’s
thesis project (Berghmans, 1994). It employs the Wotan tagset for Dutch, newly designed
during the project. It is based on the classification used in the most popular descriptive
grammar of Dutch, the Algemene Nederlandse Spraakkunst (ANS; (Geerts et al., 1984)).
The actual distinctions encoded in the tagset were selected on the basis of their impor-
tance to the potential users, as estimated from a number of in-depth interviews with
interested parties in the Netherlands. The Wotan tagset is not only very large (233 base
tags, leading to 341 tags when counting each ditto tag separately), but furthermore con-
tains distinctions which are very difficult for automatic taggers, such as verb transitiv-
ity, syntactic use of adjectives and the recognition of multi-token units. It has an average
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ambiguity of 7.46 tags per token in the corpus. For our experiments, we also designed a
simplification of the tagset, dubbed WotanLite, which no longer contains the most prob-
lematic distinctions. WotanLite has 129 tags (with a complement of ditto tags leading to
a total of 173) and an average ambiguity of 3.46 tags per token.

An example of Wotan tagging is (only underlined parts remain in WotanLite):

Mr. (Master, title)�� N(eigen,ev,neut):1/2 first part of singular neutral case proper
noun

Rijpstra N(eigen,ev,neut):2/2 second part of singular neutral case
proper noun

heeft (has) V(hulp,ott,3,ev) 3rd person singular present tense auxil-
iary verb

de (the) Art(bep,zijd-of-mv,neut) neutral case non-neuter or plural definite
article

Commissarispost (post
of Commissioner)

N(soort,ev,neut) singular neutral case common noun

in (in) Prep(voor) adposition used as preposition
Friesland N(eigen,ev,neut) singular neutral case proper noun
geambieerd (aspired to) V(trans,verl-dw,onverv) base form of past participle of transitive

verb
en (and) Conj(neven) coordinating conjunction
hij (he) Pron(per,3,ev,nom) 3rd person singular nominative personal

pronoun
moet (should) V(hulp,ott,3,ev) 3rd person singular present tense auxil-

iary verb
dus (therefore) Adv(gew,aanw) demonstrative non-pronominal adverb
alle (all) Pron(onbep,neut,attr) attributively used neutral case indefinite

pronoun
kans (opportunity) N(soort,ev,neut) singular neutral case common noun
hebben (have) V(trans,inf) infinitive of transitive verb
er (there) Adv(pron,er) pronominal adverb “er”
het (the) Art(bep,onzijd,neut) neutral case neuter definite article
beste (best) Adj(zelfst,overtr,verv-neut) nominally used inflected superlative

form of adjective
van (of) Adv(deel-adv) particle adverb
te (to) Prep(voor-inf) infinitival “te”
maken (make) V(trans,inf) infinitive of transitive verb
. Punc(punt) period

The annotation of the corpus was realized by a semi-automatic upgrade of the tag-
ging inherited from an earlier project. The resulting consistency has never been exhaus-
tively measured for either the Wotan or the original tagging.

The training/test separation of the corpus is done at sample boundaries (each 1st-
9th sample is training and each 10th is test). This is a much stricter separation than
applied for LOB and WSJ, as for those two corpora our test utterances are related to
the training ones by being in the same samples. Partly as a result of this, but also very
much because of word compounding in Dutch, we see a much higher percentage of new
tokens, viz. 6.24% tokens unseen in the training set. A further 1.45% known tokens have
new tags for Wotan, and 0.45% for WotanLite. The training set consists of 640K tokens
and the test set of 72K tokens.

15 I.e. Master Rijpstra has aspired to the post of Commissioner in Friesland and he should therefore be given every
opportunity to make the most of it.
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Table 1
The features available to the four taggers in our study. Except for MXPOST, all systems use
different models (and hence features) for known (k) and unknown (u) words. However, Brill’s
Transformation Based Learning system (TBL) applies its two models in sequence when faced
with unknown words, thus giving the unknown word tagger access to the features used by the
known word model as well. The first five columns in the table show features of the focus word:
capitalization (C), hyphen (H) or digit (D) present, and number of suffix (S) or prefix (P) letters of
the word. Brill’s TBL system (for unknown words) also takes into account whether the addition
or deletion of a suffix results in a known lexicon entry (indicated by an L). The next three
columns represent access to the actual word (W) and any range of words to the left (Wleft)
and/or right (Wright). The last three columns show access to tag information for the word itself
(T) and any range of words left (Tleft) and/or right (Tright). Note that the expressive power of a
method is not purely determined by the features it has access to, but also by its algorithm, and
what combinations of the available features this allows it to consider.

System Features
C D N S P W Wleft Wright T Tleft Tright

TBL (k) x 1–2 1–2 x 1–3 1–3
TBL (u) x x x 4,L 4,L 1–2 1–2 1–3 1–3
MBT (k) x x 1–2 1–2
MBT (u) x x x 3 1 1
MXP (all) x x x 4 4 x 1–2 1–2 1–2
TNT (k) x x x 1–2
TNT (u) x 10 1–2

3.2 Tagger generators
The second ingredient for our experiments is a set of four tagger generator systems,
selected on the basis of variety�� and availability. Each of the systems represents a pop-
ular type of learning method, each uses slightly different features of the text (see Ta-
ble 1), and each has a completely different representation for its language model. All
publicly available systems are used with the default settings that are suggested in their
documentation.

Error-driven Transformation Based Learning is a learning method that finds a set
of rules that transforms the corpus from a baseline annotation so as to minimize the
number of errors (we will refer to the system with “TBL” below). A tagger generator
using this learning method is described in (Brill, 1992; Brill, 1994). The implementation
that we use is Eric Brill’s publicly available set of C programs and Perl scripts.��

When training, this system starts with a baseline corpus annotation A�. In A�, each
known word is tagged with its most likely tag in the training set, and each unknown
word is tagged as a noun (or proper noun if capitalized). The system then searches
through a space of transformation rules (defined by rule-templates) in order to reduce
the discrepancy between its current annotation and the provided correct one. There are
separate templates for known words (mainly based on local word and tag context), and
for unknown words (based on suffix, prefix, and other lexical information). The exact
features used by this tagger are shown in Table 1. The learner for the unknown words is
trained and applied first. Based on its output, the rules for context disambiguation are
learned. In each learning step, all instantiations of the rule-templates that are present
in the corpus are generated and receive a score. The rule that corrects the highest num-

16 The systems have to differ as much as possible in their learning strategies and biases, as otherwise there
will be insufficient differences of opinion for the combiners to make use of. This was shown clearly in
early experiments in 1992, where only n-gram taggers were used, and which produced only a very
limited accuracy improvement (cf. (van Halteren, 1996)).

17 Brill’s system can be downloaded from
ftp://ftp.cs.jhu.edu/pub/brill/Programs/RULE BASED TAGGER V.1.14.tar.Z
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ber of errors at step n is selected and applied to the corpus to yield an annotation An,
which is then used as the basis for step n� �. The process stops when no rule reaches a
score above a predefined threshold. In our experiments this has usually yielded several
hundreds of rules. Of the four systems, TBL has access to the most features: contextual
information (the words and tags in a window spanning three positions before and after
the focus word) as well as lexical information (the existence of words formed by suf-
fix/prefix addition/deletion). However, the conjunctions of these features are not all
available in order to keep the search space manageable. Even with this restriction, the
search is computationally very costly. The most important rule-templates are of the form

if context � x change tagi to tagj

where context is some condition on the tags of the neighbouring words. Hence learning
speed is roughly cubic in the tagset size.��

When tagging, the system again starts with a baseline annotation for the new text,
and then applies all rules that were derived during training, in the sequence in which
they were derived. This means that application of the rules is fully deterministic. Corpus
statistics have been at the basis of selecting the rule sequence, but the resulting tagger
does not explicitly use a probabilistic model.

Memory-Based Learning is another learning method that does not explicitly ma-
nipulate probabilities, but, rather than extracting a concise set of rules, it is based on
storing all examples of a task in memory in an efficient way (cf. Section 2.3). New exam-
ples are then classified by similarity-based reasoning from this memory of examples. A
tagger using this learning method, MBT, was proposed by (Daelemans et al., 1996).�	

During the training phase, the training corpus is transformed into two case bases,
one which is to be used for known words and one for unknown words. The cases are
stored in an IGTree (a heuristically indexed version of a case memory (Daelemans, Van
den Bosch, and Weijters, 1997)), and during tagging new cases are classified by matching
cases with those in memory going from the most important feature to the least impor-
tant. The order of feature relevance is determined by Information Gain.

For known words, the system used here has access to information about the focus
word and its potential tags, the disambiguated tags in the two preceding positions and
the undisambiguated tags in the two following positions. For unknown words, only one
preceding and following position, three suffix letters and information about capitaliza-
tion and presence of a hyphen or a digit are used as features. The case base for unknown
words is constructed from only those words in the training set which occur five times
or less.

Maximum Entropy Modeling (cf. Section 2.4) can also be used for tagging: a max-
imum entropy tagger, called MXPOST, was developed by (Ratnaparkhi, 1996) (we will
refer to this tagger as “MXP” below).�
 This system uses a number of word and context
features rather similar to system MBT, and trains a Maximum Entropy model using the
Improved Iterative Scaling algorithm for one hundred iterations. The final model has a
weighting parameter for each feature value that is relevant to the estimation of the prob-
ability P �tagjfeatures�, and combines the evidence from diverse features in an explicit
probability model. In contrast to the other taggers, both known and unknown words
are processed by the same model. A striking difference is also that this tagger does not

18 Because of the computational complexity, we have had to exclude the system from the experiments with
the very large Wotan tagset.

19 An online version of the tagger is available at http://ilk.kub.nl/.
20 Ratnaparkhi’s Java implementation of this system is freely available for non-commercial research

purposes at ftp://ftp.cis.upenn.edu/pub/adwait/jmx/.
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have a separate storage mechanism for lexical information about the focus word (i.e. the
possible tags). The word is merely another feature in the probability model. As a result,
no generalizations over groups of words with the same set of potential tags are possible.
In the tagging phase a beam search is used to find the highest probability tag sequence
for the whole sentence.

Hidden Markov Models view the tagging task as finding the maximum probability
sequence of states in a stochastic finite state machine. The transitions between states
emit the words of a sentence with a probability P �wjSt�, the states St themselves model
tags or sequences of tags. The transitions are controlled by Markovian state transition
probabilities P �Sti jSti���. Because a sentence could have been generated by a number of
different state sequences, the states are considered to be “Hidden”. Although methods
for unsupervised training of HMM’s do exist, training is usually done in a supervised
way by estimation of the above probabilities from relative frequencies in the training
data. The HMM approach to tagging is by far the most studied and applied (Church,
1988; DeRose, 1988; Charniak, 1993).

In (van Halteren, Zavrel, and Daelemans, 1998) we used a straightforward imple-
mentation of HMM’s, which turned out to have the worst accuracy of the four compet-
ing methods. In the present work, we have replaced this by the TnT system (we will
refer to this tagger as “HMM” below).�� TnT is a trigram tagger (Brants, 2000), which
means that it considers the previous two tags as features for deciding on the current
tag. Moreover, it considers the capitalization of the previous word as well in its state
representation. The lexical probabilities depend on the identity of the current word for
known words and on a suffix tree smoothed with Successive Abstraction (Samuelsson,
1996) for guessing the tags of unknown words. As we will see below, it shows a surpris-
ingly higher accuracy than our previous HMM implementation. When we compare it
with the other taggers used in this paper, we see that a trigram HMM tagger uses a very
limited set of features (Table 1). On the other hand, it is able to access some information
about the rest of the sentence indirectly, through its use of the Viterbi algorithm.

4. Overall results

The first set of results from our experiments is the measurement of overall accuracy
for the base taggers. In addition, we can observe the agreement between the systems,
from which we can estimate how much gain we can possibly expect from combination.
The application of the various combination systems, finally, shows us how much of the
projected gain is actually realized.

4.1 Base tagger quality
An additional benefit of training four popular tagging systems under controlled condi-
tions on several corpora is an experimental comparison of their accuracy. Table 2 lists
the accuracies as measured on the test set.�� We see that TBL achieves the lowest accu-
racy on all data sets. MBT is always better than TBL, but is outperformed by both MXP
and HMM. On two data sets (LOB and Wotan) the Hidden Markov Model system (TnT)
is better than the Maximum Entropy one (MXPOST). On the other two (WSJ and Wotan-
Lite) MXPOST is the better system. In all cases, except the difference between MXP and
HMM on LOB, the differences are statistically significant (p � ����, McNemar’s chi-

21 The TnT system can be obtained from its author through
http://www.coli.uni-sb.de/˜ thorsten/tnt/

22 In this and several following tables, the best performance is indicated with bold type.
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Table 2
Baseline and individual tagger test set accuracy for each of our four datasets. The bottom four
rows shows the accuracies of the four tagging systems on the various data sets. In addition, we
list two baselines, viz. the selection of a completely random tag from among the potential tags
for the token (Random) and the selection of the lexically most likely tag (LexProb).

LOB WSJ Wotan WotanLite
Baseline
Random 61.46 63.91 42.99 54.36
LexProb 93.22 94.57 89.48 93.40
Single tagger
TBL 96.37 96.28 –�� 94.63
MBT 97.06 96.41 89.78 94.92
MXP 97.52 96.88 91.72 95.56
HMM 97.55 96.63 92.06 95.26

Table 3
Pairwise agreement between the base taggers. For each base tagger pair and data set, we list the
percentage of tokens in the test set on which the two taggers select the same tag.

Dataset Tagger pair
MXP MXP MXP HMM HMM MBT

HMM MBT TBL MBT TBL TBL
LOB 97.56 96.70 96.27 97.27 96.96 96.78
WSJ 97.41 96.85 96.90 97.18 97.39 97.21
Wotan 93.02 90.81 – 92.06 – –
WotanLite 95.74 95.12 95.00 95.48 95.36 95.52

squared test).
We can also see from these results that WSJ, although it is about the same size as

LOB, and has a smaller tagset, has a higher difficulty level than LOB. We suspect that an
important reason for this is the inconcistency in the WSJ annotation (cf. (Ratnaparkhi,
1996)). We examine this effect in more detail below. The Eindhoven corpus, both with
Wotan and WotanLite tagset is yet more difficult, but here the difficulty lies mainly in
the complexity of the tagset and the large percentage of unknown words in the test sets.
We see that the reduction in the complexity of the tagset from Wotan to WotanLite leads
to an enormous improvement in accuracy. This granularity effect is also examined in
more detail below.

4.2 Base tagger agreement
On the basis of the output of the single taggers we can also examine the feasibility
of combination, as combination is dependent on different systems producing different
errors. As expected, a large part of the errors are indeed uncorrelated: the agreement
between the systems (Table 3) is at about the same level as their agreement with the
benchmark tagging. A more detailed view of inter-tagger agreement is shown in Table 4,
which lists the (groups of) patterns of (dis)agreement for the four data sets.

It is interesting to see that although the general accuracy for WSJ is lower than for
LOB, the inter-tagger agreement for WSJ is on average higher. It would seem that the
less consistent tagging for WSJ makes it easier for all systems to fall into the same traps.
This becomes even clearer if we examine the patterns of agreement and see, e.g., that
the number of tokens where all taggers agree on a wrong tag is practically doubled.

23 The training of TBL on the large Wotan tagset was aborted after several weeks of training failed to
produce any useful results.
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Table 4
The presence of various tagger (dis)agreeement patterns for the four data sets. In addition to the
percentage of the test sets for which the pattern is observed (%), we list the cumulative
percentage (%Cum).

LOB WSJ Wotan WotanLite
Pattern % %Cum % %Cum % %Cum % %Cum
All taggers 93.93 93.93 93.80 93.80 85.68 85.68 90.50 90.50
agree and
are correct.
A majority is
correct.

3.30 97.23 2.64 96.44 6.54 92.22 4.73 95.23

Correct tag is
present but is
tied.

1.08 98.31 1.07 97.51 0.82 93.04 1.59 96.82

A minority is
correct.

0.91 99.22 1.12 98.63 2.62 95.66 1.42 98.24

The taggers 0.21 99.43 0.26 98.89 1.53 97.19 0.46 98.70
vary, but
are all wrong.
All taggers 0.57 100.00 1.11 100.00 2.81 100.00 1.30 100.00
agree but
are wrong.

Table 5
Projected accuracies for increasingly successful levels of combination achievement. For each
level we list the accuracy (%) and the percentage of errors made by the best individual tagger
that can be corrected by combination (�Err).

LOB WSJ Wotan WotanLite
Pattern % �Err % �Err % �Err % �Err

Best single tagger HMM MXP HMM MXP
97.55 – 96.88 – 92.06 – 95.56 –

Ties randomly 97.77 9.0 96.97 2.8 92.49 5.5 96.01 10.1
correct
All ties correct 98.31 31.3 97.50 19.9 93.04 12.4 96.82 28.3
Minority vs 2 taggers
correct

98.48 48.5 97.67 25.4 95.66 45.3 97.09 34.3

Minority vs 3 taggers
correct

99.22 68.4 98.63 56.0 – – 98.24 60.3

The agreement pattern distribution enables us to determine levels of combination
quality. Table 5 lists both the accuracies of several ideal combiners (%) and the error
reduction in relation to the best base tagger for the data set in question (	Err).�� E.g. on
LOB, “All ties correct” produces 1941 errors (corresponding to an accuracy of 98.31%),
which is 31.3% less than HMM’s 2824 errors. A minimal level of combination achieve-
ment is that a majority or better will lead to the correct tag and that ties are handled
appropriately about 50% of the time for the (2-2) pattern and 25% for the (1-1-1-1) pat-
tern (or 33.3% for the (1-1-1) pattern for Wotan). In more optimistic scenarios, a combiner
is able to select the correct tag in all tied cases, or even in cases where a two- or three-
tagger majority must be overcome. Although the possibility of overcoming a majority is
present with the arbiter type combiners, the situation is rather improbable. As a result,

24 We express the error reduction in the form of a percentage, i.e. a relative measure, instead of by an
absolute value, because we feel this is the more informative of the two. After all, there is a vast difference
between an accuracy improvement of 0.5% from 50% to 50.5% (a �Err of 1%) and one of 0.5% from 99%
to 99.5% (a �Err of 50%).
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Table 6
Accuracies of the combination systems on all four corpora. For each system we list its accuracy
(%) and the percentage of errors made by the best individual tagger that is corrected by the
combination system (�Err).

LOB WSJ Wotan WotanLite
% �Err % �Err % �Err % �Err

Best single tagger HMM MXP HMM MXP
97.55 – 96.88 – 92.06 – 95.56 –

Voting
Majority 97.76 9.0 96.98 3.1 92.51 5.7 96.01 10.1
TotPrecision 97.95 16.2 97.07 6.1 92.58 6.5 96.14 12.9
TagPrecision 97.82 11.2 96.99 3.4 92.51 5.7 95.98 9.5
Precision-Recall 97.94 16.1 97.05 5.6 92.50 5.6 96.22 14.8
TagPair 97.98 17.8 97.11 7.2 92.72 8.4 96.28 16.2
Stacked Classifiers
WPDV(tags) 98.06 20.8 97.15 8.7 92.86 10.1 96.33 17.2
WPDV(tags+word) 98.07 21.4 97.17 9.3 92.85 10.0 96.34 17.5
WPDV(tags+context) 98.14 24.3 97.23 11.3 93.03 12.2 96.42 19.3
MBL(tags) 98.05 20.5 97.14 8.5 92.72 8.4 96.30 16.7
MBL(tags+word) 98.02 19.2 97.12 7.6 92.45 5.0 96.30 16.6
MBL(tags+context) 98.10 22.6 97.11 7.2 92.75 8.7 96.31 16.8
DecTrees(tags) 98.01 18.9 97.14 8.3 92.63 7.2 96.31 16.8
DecTrees(tags+word) –�� – – – – – – –
DecTrees(tags+context) 98.03 19.7 97.12 7.7 – – 96.26 15.7
Maccent(tags) 98.03 19.6 97.10 7.1 92.76 8.9 96.29 16.4
Maccent(tags+word) 98.02 19.3 97.09 6.6 92.63 7.2 96.27 16.0
Maccent(tags+context) 98.12 23.5 97.10 7.0 93.25 15.0 96.37 18.2

we ought to be more than satisfied if any combiners approach the level corresponding
to the projected combiner which resolves all ties correctly.��

4.3 Results of combination
In Table 6 the results of our experiments with the various combination methods are
shown. Again we list both the accuracies of the combiners (%) and the error reduction
in relation to the best base tagger (	Err). E.g. on LOB, “TagPair” produces 2321 errors
(corresponding to an accuracy of 97.98%), which is 17.8% less than H’s 2824 errors.

Although the combiners generally fall short of the “All ties correct” level (cf. Ta-
ble 5), even the most trivial voting system (Majority), significantly outperforms the best
individual tagger on all data sets. Within the simple voting systems, it appears that use
of more detailed voting weights does not necessarily lead to better results. TagPrecision
is clearly inferior to TotPrecision. On closer examination, this could have been expected.
Looking at the actual tag precision values (cf. Table 9 below), we see that the precision
is generally more dependent on the tag than on the tagger, so that TagPrecision always
tends to select the easier tag. In other words, it uses less specific rather than more spe-
cific information. Precision-Recall is meant to correct this behaviour by the involvement
of recall values. As intended, Precision-Recall generally has a higher accuracy than Tag-
Precision, but does not always improve on TotPrecision.

25 The bottom rows might be viewed in the light of potential future extremely intelligent combination
systems. For the moment, however, it is better to view them as containing recall values for n-best versions
of the combination taggers, e.g. an n-best combination tagger for LOB which simply provides all tags
suggested by its four components will have a recall score of 99.22%.

26 C5.0 was not able to cope with the large amount of data involved in all Tags+Word experiments and the
Tags+Context experiment with Wotan.
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Our previously unconfirmed hypothesis, that arbiter type combiners would be able
to outperform the gang type ones, is now confirmed. With the exception of several of
the Tags+Word versions and the Tags+Context version for WSJ, the more sophisticated
modelling systems have a significantly better accuracy than the simple voting systems
on all four data sets. TagPair, being somewhere between simple voting and stacking,
also falls in the middle where accuracy is concerned. In general, it can at most be said to
stay close to the real stacking systems, except for the cleanest data set, LOB, where it is
clearly being outperformed. This is a fundamental change from our earlier experiments,
where TagPair was significantly better than MBL and Decision Trees. Our explanation
at the time, that the stacked systems suffered from a lack of training data, appears to
be correct. A closer investigation below shows at which amount of training data the
cross-over point in quality occurs (for LOB).

Another unresolved issue from the earlier experiments is the effect of making word
or context information available to the stacked classifiers. With LOB and a single 114K
tune set (van Halteren, Zavrel, and Daelemans, 1998), both MBL and Decision Trees de-
graded significantly when adding context and MBL when adding the word.�� With the
increased amount of training material, addition of the context generally leads to better
results. For MBL, there is a degradation only for the WSJ data, and of a much less pro-
nounced nature. With the other data sets there is an improvement, significantly so for
LOB. For Decision Trees, there is also a limited degradation for WSJ and WotanLite, and
a slight improvement for LOB. The other two systems appear to be able to use the con-
text more effectively. WPDV shows a relatively constant significant improvement over
all data sets. Maccent shows more variation, with a comparable improvement on LOB
and WotanLite, a very slight degradation on WSJ, and a spectacular improvement on
Wotan, where it even yields an accuracy higher than the “All ties correct” level.�� Addi-
tion of the word is still generally counterproductive. Only WPDV sometimes manages
to translate the extra information into an accuracy improvement, and even then a very
small one. It would seem that vastly larger amounts of training data are necessary if the
word information is to become useful.

5. Combination in detail

The observations about the overall accuracies, although the most important, are not the
only interesting ones. We can also examine the results of the experiments above in more
detail, evaluating the results of combination for specific words and tags, and trying
to discover why such disappointing results are found for WSJ. Furthermore, we can
run additional experiments, to determine the effects of the size of the training set, the
number of base tagger components involved and the granularity of the tagset.

5.1 Specific words
The overall accuracy of the various tagging systems gives a good impression of relative
performance, but it is also useful to have a more detailed look at the tagging results.
Most importantly for this paper, the details give a better feel for the differences between
the base taggers and for how well a combiner can exploit these differences. More gener-
ally, users of taggers or tagged corpora are rarely interested in the whole corpus. They
rather focus on specific words or wordclasses, for which the accuracy of tagging may

27 Just as in the current experiments, the Decision Tree system could not cope with the amount of data when
the word was added.

28 We have no clear explanation for this exceptional behaviour, but conjecture that Maccent is able to make
optimal use of the tagging differences caused by the high error rate of all four taggers.
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Table 7
Error rates for the most confusing words. For each word, we list the total number of instances in
the test set (n), the number of tags associated with the word (tags), and then, for each base tagger
and WPDV(tags+context), the rank in the error list (rank), the absolute number of errors (err)
and the percentage of instances that is mistagged (%).

MXP HMM MBT TBL WPDV(t+c)
word n/tags rank�err % rank�err % rank�err % rank�err % rank�err %
as 719/17 ��102 14.19 ��130 18.08 ��120 16.69 ��167 23.23 ��82 11.40
that 1108/6 ��98 8.84 ��105 9.48 ��130 11.73 ��134 12.09 ��80 7.22
to 2645/9 ��81 2.76 ��59 2.23 ��122 4.61 ��131 4.27 ��40 1.51
more 224/4 ��52 23.21 ��42 18.75 ��46 20.54 ��53 23.76 ��30 13.39
so 247/10 ��32 12.96 ��40 16.19 ��40 16.19 ��63 25.51 ��31 12.55
in 2102/14 ���22 1.05 ��35 1.67 ��43 2.46 ��48 2.28 ��25 1.19
about 177/3 ��37 20.90 ��41 23.16 ��30 16.95 ���23 12.99 ��22 12.43
much 117/2 ��30 25.64 �
�27 23.08 ��27 23.08 	�35 29.91 	�20 17.09
her 373/3 ���13 3.49 ���10 2.68 ���18 4.83 ��39 10.46 ���7 1.88

differ greatly from the overall accuracy.
We start our detailed examination with the words that are most often mistagged.

We use the LOB corpus for this evaluation, as it is the cleanest data set and hence the
best example. For each base tagger, and for WPDV(tags+context), we list the top seven
mistagged words, in terms of absolute numbers of errors, in Table 7. Although the base
taggers have been shown (in 4.2) to produce different errors, we see that they do tend to
make errors on the same words, as the five top-sevens together contain only nine words.

A high number of errors for a word is due to a combination of tagging difficulty and
frequency. Examples of primarily difficult words are “much” and “more”. Even though
they have relatively low frequencies, they have high ranks on the error lists. These
words can be recognized by their high error percentage scores. Examples of merely
frequent words are “to” and “in”. The error percentages show that these two words
are actually tagged surprisingly well, as “to” is usually quoted as a tough case and for
“in” the taggers have to choose between 14 possible tags. The first place on the list is
taken by “as” with both a high frequency and a high difficulty level (it is also the most
ambiguous word with 17 possible tags in LOB).

Table 7 shows yet again that there are clear differences between the base taggers,
providing the opportunity for effective combination. For all but one word, “in”, the
combiner manages to improve on the best tagger for that specific word. If we compare
to the overall best tagger, HMM, the improvements are sometimes spectacular. This is
of course especially the case where HMM has particular difficulties with a word, e.g.
“about” with a 46.3% reduction in error rate, but in other cases as well, e.g. “to” with a
32.2% reduction, which is still well above the overall error rate reduction of 24.3%.

5.2 Specific tags
We can also abstract away from the words and simply look at common wordclass con-
fusions, e.g. a token which should be tagged VBD (past tense verb) is actually tagged
VBN (past participle verb). Table 8 shows the tag confusions which are present in the
top seven confusion list of at least one of the systems (again the four base taggers and
WPDV(tags+context) used on LOB). The number on the right in each system column
is the number of times the error was made and the number on the left is the position
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Table 8
Confusion rates for the most often confused tag pairs. For each pair (tagger, correct), we first take
the two possible confusion directions separately and list the corresponding error list ranks (rank)
and absolute number of errors (err) for the four base taggers and for WPDV(tags+context). Then
we list the same information for the pair as a whole, i.e. for the two directions together.

MXP HMM MBT TBL WPDV(t+c)
tagger correct rank err rank err rank err rank err rank err
VBN VBD � 92 � 154 � 205 � 236 � 102
VBD VBN � 118 � 117 � 152 � 149 � 100

pair 210 271 357 385 202
JJ NN � 132 � 150 � 168 � 205 � 109
NN JJ � 153 � 75 � 148 � 148 � 110

pair 285 225 316 353 219
IN CS � 105 � 93 � 122 � 97 � 79
CS IN �
 55 � 70 �
 64 � 122 � 48

pair 160 163 186 219 127
NN VB � 98 � 78 � 116 � 132 � 59
VB NN �� 28 �� 45 �� 60 � 100 �� 35

pair 126 123 176 232 94
IN RP � 59 �
 61 � 99 �� 83 � 50
RP IN �� 30 �� 38 �� 34 �� 42 �� 30

pair 89 99 133 125 80

Table 9
Precision and recall for tags involved in most often confused tag pairs. For each tag, we list the
percentage of tokens in the test set that are tagged with that tag (%test), followed by the
precision (Prec) and recall (Rec) values for each of the systems.

MXP HMM MBT TBL WPDV(t+c)
tag %test Prec/Rec Prec/Rec Prec/Rec Prec/Rec Prec/Rec
CS 1.48 92.69/90.69 90.14/91.10 89.46/89.05 84.85/91.51 93.11/93.38
IN 10.57 97.58/98.95 97.83/98.59 97.14/98.17 97.33/97.62 98.37/99.03
JJ 5.58 94.52/94.55 94.07/95.61 92.79/94.38 90.66/94.06 95.64/96.00
NN 13.11 96.68/97.85 97.91/97.24 96.59/97.22 96.00/96.31 97.66/98.25
RP 0.79 95.74/91.82 94.78/92.27 95.26/88.84 93.05/90.28 95.95/94.14
VB 2.77 98.04/95.55 97.95/95.99 96.79/94.55 95.09/93.36 98.13/97.06
VBD 2.17 94.20/95.22 94.23/93.06 92.48/90.29 91.74/87.40 95.26/95.14
VBN 2.30 94.07/93.29 90.93/93.37 89.59/90.54 87.09/90.99 94.25/94.50

in the confusion list. The rows marked with tag values show the individual errors.�	 In
addition, the ‘pair’ rows show the combined value of the two inverse errors preceding
it.�


As with the word errors above, we see substantial differences between the base
taggers. Unlike the situation with words, there are now a number of cases where base
taggers perform better than the combiner. Partly, this is because the base tagger is out-
voted to such a degree that its quality cannot be maintained, e.g. NN�JJ. Furthermore,
it is probably unfair to look at only one half of a pair. Any attempt to decrease the num-
ber of errors of type X�Y will tend to increase the number of errors of type Y�X. The
balance between the two is best shown in the ‘pair’ rows, and here the combiner is again
performing excellently, in all cases improving on the best base tagger for the pair.

For an additional point of view, we show the precision and recall values of the

29 The tags are: CS=subordinating conjunction, IN=preposition, JJ=adjective, NN=singular common noun,
RP=adverbial particle, VB=base form of verb, VBD=past tense of verb, VBN=past participle.

30 RP�IN is not actually in any top seven, but has been added to complete the last pair of inverse errors.
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Table 10
A comparison of benchmark consistency on a small sample of WSJ and LOB. We list the reasons
for differences between WPDV(tags+context) output and the benchmark tagging, both in terms
of absolute numbers and percentages of the whole test set.

WSJ LOB
tokens % tokens %

Tagger wrong, Benchmark right 250 1.97 200 1.75
Benchmark wrong, Tagger right 90 0.71 11 0.10
Both wrong 7 0.06 1 0.01
Benchmark left ambiguous, Tagger right 2 0.02 - -

systems on the same tags in Table 9, as well as the percentage of the test set which
should be tagged with each specific tag. The differences between the taggers are again
present, and in all but two cases the combiner produces the best score for both precision
and recall. Furthermore, as precision and recall form yet another balanced pair, i.e. as
improvements in recall tend to decrease precision and vice versa, the remaining two
cases (NN and VBD), can be considered to be handled quite adequately as well.

5.3 Effects of inconsistency
Seeing the rather bad overall performance of the combiners on WSJ, we feel the need
to identify a property of the WSJ material that can explain this relative lack of success.
A prime candidate for this property is the allegedly very low degree of consistency
of the WSJ material. We can investigate the effects of the low consistency by way of
comparison with the LOB data set, which is known to be very consistent.

We have taken one tenth of the test sets of both WSJ and LOB and manually ex-
amined each token where the WPDV(tags+context) tagging differs from the benchmark
tagging. The first indication that consistency is a major factor in performance is found
in the basic correctness information, given in Table 10. For WSJ, there is a much larger
percentage where the difference in tagging is due to an erroneous tag in the benchmark.
This does not mean, however, that the tagger should be given a higher accuracy score,
as it may well be that the part of the benchmark where tagger and benchmark do agree
contains a similar percentage of benchmark errors. It does imply, though, that the WSJ
tagging contains many more errors than the LOB tagging, which is likely to be detri-
mental to the derivation of automatic taggers.

The cases where the tagger is found to be wrong provide interesting information
as well. Our examination shows that 109 of the 250 erroneous tags occur in situations
which are handled rather inconsistently in the corpus.

In some of these situations we only have to look at the word itself. The most nu-
merous type of problematic word (21 errors) is the proper noun ending in ‘s’. It appears
to be unclear whether such a word should be tagged NNP or NNPS. When taking the
words leading to errors in our 1% test set and examining them in the training data, we
see a near-even split for practically every word. The most frequent ones are “Securi-
ties” (146 NNP vs 160 NNPS) and “Airlines” (72 NNP vs 83 NNPS). There are only two
very unbalanced cases, viz. “Times” (78 NNP vs 6 NNPS) and “Savings” (76 NNP vs
21 NNPS). A similar situation occurs, although less frequently, for common nouns, e.g.
“headquarters” gets 67 NN and 21 NNS tags.

In other cases, difficult words are handled inconsistently in specific contexts. Exam-
ples here are “about” in cases such as “‘about 20” (405 IN vs 385 RB) or “about $20”
(243 IN vs 227 RB), “ago” in cases such as “years ago” (152 IN vs 410 RB) and “more” in
“more than” (558 JJR vs 197 RBR).

Finally, there are more general wordclass confusions, such as adjective/particle or
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Figure 5
The accuracy of combiner methods on LOB as a function of the number of tokens of training
material.

noun/adjective in noun-premodifying positions. Here it is much harder to provide nu-
merical examples, as the problematic situation must first be recognized. We therefore
limit ourselves to a few sample phrases. The first is “stock-index” which leads to sev-
eral errors in combinations like “stock-index futures” or “stock-index arbitrage”. In the
training set, “stock-index” in premodifying position is tagged JJ 64 times and NN 69
times. The second phrase “chief executive officer” has three words so that we have four
choices of tagging: JJ-JJ-NN is chosen 90 times, JJ-NN-NN 63 times, NN-JJ-NN 33 times
and NN-NN-NN 30 times.

Admittedly, all of these are problematic cases and many other cases are handled
quite consistently. However, the inconsistently handled cases do account for 44% of
the errors found for our best tagging system. Under the circumstances, we feel quite
justified in assuming that inconsistency is the main cause of the low accuracy scores.��

5.4 Size of the training set
The most important result which has undergone a change between (van Halteren, Za-
vrel, and Daelemans, 1998) and our current experiments is the relative accuracy of Tag-
Pair and stacked systems such as MBL. Where TagPair used to be significantly better
than MBL, the roles are now well reversed. It appears that our hypothesis at the time,
that the stacked systems were plagued by a lack of training data, is correct, since they
can now hold their own. In order to see at which point TagPair is overtaken, we have

31 Another property that might contribute to the relatively low scores for the WSJ material is the use of a
very small tagset. This makes annotation easier for human annotators, but it provides much less
information to the automatic taggers and combiners. It may well be that the remaining information is
insufficient for the systems to discover useful disambiguation patterns in. Although we cannot measure
this effect for WSJ, because of the many differences with the LOB data set, we feel that it has much less
influence than the inconsistency of the WSJ material.
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Table 11
WPDV(tags+context) accuracy measurements for various component tagger combinations. For
each combination, we list the tagging accuracy (Test), the error reduction expressed as a
percentage of the error count for the best component base tagger (�Err�best�) and any
subsequent error reductions when adding further components (Gain).

Comb Test �Err�best� Gain Gain Gain Gain
+TBL +MBT +MXP +HMM

TBL 96.37 – – 29.1 40.2 38.9
MBT 97.06 – 12.5 – 28.4 26.0
MBT+TBL 97.43 12.5 (MBT) – – 20.6 17.2
MXP 97.52 – 12.3 15.0 – 16.2
HMM 97.55 – 9.5 11.3 15.3 –
HMM+TBL 97.78 9.5 (HMM) – 4.0 11.8 –
HMM+MBT 97.82 11.3 (HMM) 2.0 – 13.7 –
MXP+TBL 97.83 12.3 (MXP) – 6.0 – 9.9
HMM+MBT+TBL 97.87 13.1 (HMM) – – 12.9 –
MXP+MBT 97.89 15.0 (MXP) 3.0 – – 10.8
MXP+HMM 97.92 15.3 (HMM) 5.7 9.6 – –
MXP+MBT+TBL 97.96 17.6 (MXP) – – – 9.1
MXP+HMM+TBL 98.04 20.1 (HMM) – 5.2 – –
MXP+HMM+MBT 98.12 23.4 (HMM) 1.1 – – –
MXP+HMM+MBT+TBL 98.14 24.3 (HMM) – – – –

trained several systems on increasing amounts of training data from LOB.�� Each incre-
ment is one of the 10% training corpus parts described above. The results are shown in
Figure 5.

TagPair is only best when a single part is used (as in the earlier experiments). Af-
ter that it is overtaken and quickly left behind, as it is increasingly unable to use the
additional training data to its advantage.

The three systems using only base tagger outputs have comparable accuracy growth
curves, although the initial growth is much higher for WPDV. The curves for WPDV
and Maccent appear to be leveling out towards the right end of the graph. For MBL,
this is much less clear. However, it would seem that the accuracy level at 1Mw is a good
approximation of the eventual ceiling.

The advantage of the use of context information becomes clear at 500Kw. Here the
tags-only systems start to level out, but WPDV(tags+context) keeps showing a constant
growth. Even at 1Mw, there is no indication that the accuracy is approaching a ceiling.
The model seems to be getting increasingly accurate in correcting very specific contexts
of mistagging.

5.5 Interaction of Components
Another way in which the amount of input data can be varied is by taking subsets of the
set of component taggers. The relation between the accuracy of combinations for LOB
(using WPDV(tags+context)) and that of the individual taggers is shown in Table 11.
The first three columns show the combination, the accuracy and the improvement in
relation to the best component. The other four columns show the further improvement
gained when adding yet another component.

The most important observation is that every combination outperforms the combi-
nation of any strict subset of its components. The difference is always significant, except
in the cases MXP+HMM+MBT+TBL vs MXP+HMM+MBT and HMM+MBT+TBL vs

32 Only combination uses a variable number of parts. The base taggers are always trained on the full 90%.
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HMM+MBT.
We can also recognize the quality of the best component as a major factor in the

quality of the combination results. HMM and MXP always add more gain than MBT,
which always adds more gain than TBL. Another major factor is the difference in lan-
guage model. MXP, although having a lower accuracy by itself than HMM, yet leads
to better combination results, again witnessed by the “Gain” columns. In some cases,
MXP is even able to outperform pairs of components in combination: both MXP+MBT
and MXP+HMM are better than HMM+MBT+TBL.

5.6 Effects of granularity
The final influence on combination which we measure is that of the granularity of the
tagset, which can be examined with the highly structured Wotan tagset. Part of the ex-
amination has already taken place above, as we have added the WotanLite tagset, a
less granular projection of Wotan. As we have seen, the WotanLite taggers undeniably
have a much higher accuracy than the Wotan ones. However, this is hardly surprising,
as they have a much easier task to perform. In order to make a fair comparison, we
now measure them at their performance of the same task, viz. the prediction of Wotan-
Lite tags. We do this by projecting the output of the Wotan taggers (i.e. the base taggers,
WPDV(tags) and WPDV(tags+context)) to WotanLite tags. Additionally, we measure all
taggers at the main wordclass level, i.e. after the removal of all attributes and ditto tag
markers.

All results are listed in Table 12. The three major vertical blocks each represent a
level at which the correctness of the final output is measured. Within the lower two
blocks, the three lines represent the type of tags used by the base taggers. The lines
for Wotan and WotanLite represent the actual taggers, as described above. The line for
BestLite does not represent a real tagger, but rather a virtual tagger which corresponds
to the best tagger from among Wotan (with its output projected to WotanLite format)
and WotanLite. This choice for the best granularity is taken once for each system as a
whole, not per individual token. This leads to BestLite being always equal to WotanLite
for TBL and MBT, and to projected Wotan for MXP and HMM.

The three major horizontal blocks represent combination strategies, viz. no combi-
nation, combination using only the tags and combination using tags and direct context.
The two combination blocks are divided into three columns, representing the tag level at
which combination is performed, e.g. for the Lite column the output of the base taggers
is projected to WotanLite tags which are then used as input for the combiner.

We hypothesized beforehand that, in general, the more information a system can
use, the better its results are. Unfortunately, even for the base taggers, reality is not that
simple. For both MXP and HMM, the Wotan tagger indeed yields a better WotanLite
tagging than the WotanLite tagger itself, thus supporting the hypothesis. On the other
hand, the results for MBT do not confirm this, as here the WotanLite tagger is more accu-
rate. However, we have already seen that MBT has severe problems in dealing with the
complex Wotan data. Furthermore, the lowered accuracy of the MBL combiners when
provided with words (cf. 4.3) also indicate that memory-based learning sometimes has
problems in coping with a surplus of information. This means that we have to adjust
our hypothesis: more information is better, but only up to the point where the wealth of
information overwhelms the machine learning system. Where this point is found obvi-
ously differs per system.

For the combiners, the situation is rather inconclusive. In some cases, especially for
WPDV(tags), combining at a higher granularity (i.e. using more information) produces
better results. In others, combining at a lower granularity works better. In all cases, the
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Table 12
Accuracy for base taggers and different levels combiners, as measured at various levels of
granularity. The rows are divided into blocks, each listing accuracies for a different comparison
granularity. Within a block, the individual rows list which base taggers are used as ingredients in
the combination. The columns contain, from left to right, the accuracies for the base taggers, the
combination accuracies when using only tags (WPDV(tags)) at three different levels of
combination granularity (Full, Lite and Main) and the combination accuracies when adding
context (WPDV(tags+context)), at the same three levels of combination granularity.

base taggers WPDV(tags) WPDV(tags+context)
TBL MBT MXP HMM Full Lite Main Full Lite Main

Measured as Wotan tags
Wotan – 89.78 91.72 92.06 92.83 – – 93.03 – –

Measured as WotanLite tags
Wotan – 94.56 95.71 95.98 96.50 96.49 – 96.53 96.54 –
WotanLite 94.63 94.92 95.56 95.26 – 96.32 – – 96.42 –
BestLite 94.63 94.92 95.71 95.98 – 96.58 – – 96.64 –

Measured as main wordclass tags
Wotan – 96.55 97.23 97.54 97.88 97.87 97.85 97.88 97.89 97.91
WotanLite 96.37 96.76 97.12 96.96 – 97.69 97.71 – 97.76 97.77
BestLite 96.37 96.76 97.23 97.54 – 97.91 97.90 – 97.94 97.93

difference in scores between the columns is extremely small and hardly supports any
conclusions either way. What is obviously much more important for the combiners is
the quality of the information they can work with. Here, higher granularity on the part
of the ingredients is preferable, as combiners based on Wotan taggers perform better
than those based on WotanLite taggers,�� and ingredient performance seems to be even
more useful, as BestLite yields yet better results in all cases.

6. Related Research

Combination of ensembles of classifiers, although well-established in the Machine Learn-
ing literature, has only recently been applied as a method for increasing accuracy in
Natural Language Processing tasks. There has of course always been a lot of research
on the combination of different methods (e.g. knowledge-based and statistical) in hy-
brid systems, or on the combination of different information sources. Some of that work
even explicitly uses voting and could therefore also be counted as an ensemble ap-
proach, e.g. (Rigau, Atserias, and Agirre, 1997) combine different heuristics for word
sense disambiguation by voting and (Agirre et al., 1998) do the same for spelling correc-
tion evaluation heuristics. The difference between single classifiers learning to combine
information sources, i.e. their input features (see (Roth, 1998) for a general framework),
and the combination of ensembles of classifiers trained on subsets of those features is
not always very clear anyway.

For part of speech tagging, significant accuracy increase by combining the output of
different taggers was first demonstrated in (van Halteren, Zavrel, and Daelemans, 1998)
and (Brill and Wu, 1998). In both approaches, different tagger generators were applied
to the same training data and their predictions combined using different combination
methods, including stacking. Yet, the latter paper reported much lower accuracy im-

33 However, this comparison is not perfect, as the combination of Wotan tags does not include TBL. On the
one hand, this means the combination has less information to go on and we should hence be even more
impressed with the better performance. On the other hand, TBL is the lowest scoring base tagger, so
maybe the better performance is due to not having to cope with a flawed ingredient.
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Table 13
A comparison of our results for WSJ with those by Brill et al. (1998).

Brill and Wu Our experiments
training/test split 80/20 = 90/10
Unigram 93.26 LexProb 94.57
Trigram 96.36 TnT 96.63
– MBT 96.41
Transformation 96.61 Transformation 96.28
Maximum Entropy 96.83 Maximum Entropy 96.88
Transf. based comb. 97.16 WPDV(tags+context) 97.23
Error rate reduction 10.4% Error rate reduction 11.3%

provement figures. As we now apply the methods of (van Halteren, Zavrel, and Daele-
mans, 1998) to WSJ as well, it is easier to make a comparison. An exact comparison is
still impossible, as we have not used the exact same data preparation and taggers, but
we can put roughly corresponding figures side by side (Table 13). As for base taggers,
the first two differences are easily explained: Unigram has to deal with unknown words,
while LexProb does not, and TnT is a more advanced trigram system. The slight differ-
ence for MaxEnt might be explained by the difference in training/test split. What is
more puzzling is the substantial difference for the transformation based tagger. Possible
explanations are that Brill and Wu used a much better parametrisation of this system or
that they used a different version of the WSJ material. Be that as it may, the final results
are comparable and it is clear that the lower numbers in relation to LOB are caused by
the choice of test material (WSJ) rather than by the methods used.

In (Tufiş, D., 1999), a single tagger-generator is trained on different corpora repre-
senting different language registers. For the combination, a method called credibility pro-
files worked best. In such a profile, for each component tagger, information is kept about
its overall accuracy, its accuracy for each tag, etc. In another recent study, (Màrquez et
al., 1999) investigate several types of ensemble construction in a decision tree learning
framework for tagging specific classes of ambiguous words (as opposed to tagging all
words). The construction of ensembles was based on bagging, selection of different sub-
sets of features (e.g. context and lexical features) in decision tree construction, and selec-
tion of different splitting criteria in decision tree construction. In all experiments simple
voting was used to combine component tagger decisions. All combination approaches
resulted in a better accuracy (an error reduction between 8% and 12% on average com-
pared to the basic decision tree trained on the same data). But as these error reductions
refer to only part of the tagging task (18 ambiguity classes), they are hard to compare
with our own results.

In (Abney, Schapire, and Singer, 1999), ADABOOST variants are used for tagging
WSJ material. Component classifiers here are based on different information sources
(subsets of features), e.g. capitalization of current word, and the triple “string, capital-
ization, and tag” of the word to the left of the current word are the basis for the training
of some of their component classifiers. Resulting accuracy is comparable to, but not
better than, that of the maximum entropy tagger. Their approach is also demonstrated
for prepositional phrase attachment, again with results comparable to but not better
than state-of-the-art single classifier systems. High accuracy on the same task is claimed
by (Alegre, Sopena, and Lloberas, 1999) for combining ensembles of neural networks.
ADABOOST has also been applied to text filtering (Schapire, Singer, and Singhal, 1998)
and text categorization (Schapire and Singer, 1998).

In (Chen, Bangalore, and Vijay-Shanker, 1999), classifier combination is used to
overcome the sparse data problem when using more contextual information in supertag-
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ging, an approach in which parsing is reduced to tagging with a complex tagset (con-
sisting of partial parse trees associated with lexical items). When using pairwise voting
on models trained using different contextual information, an error reduction of 5% is
achieved over the best component model. Parsing is also the task to which (Hender-
son and Brill, 1999) apply combination methods with reductions of up to 30% precision
error and 6% recall error compared to the best previously published results of single
statistical parsers.

This recent research shows that the combination approach is potentially useful for
many NLP tasks apart from tagging.

7. Conclusion

Our experiments have shown that, at least for the wordclass tagging task, combination
of several different systems enables us to raise the performance ceiling which can be
observed when using data driven systems. For all tested data sets, combination provides
a significant improvement over the accuracy of the best component tagger. The amount
of improvement varies from 11.3% error reduction for WSJ to 24.3% for LOB. The data
set that is used appears to be the primary factor in the variation, especially the data set’s
consistency.

As for the type of combiner, all stacked systems using only the set of proposed tags
as features reach about the same performance. They are clearly better than simple vot-
ing systems, at least as long as there is sufficient training data. In absence of enough
data, one has to fall back to less sophisticated combination strategies. Addition of word
information does not lead to improved accuracy, at least with the current training set
size. However, it might still be possible to get a positive effect by restricting the word
information to the most frequent and ambiguous words only. Addition of context in-
formation does lead to improvements for most systems. WPDV and Maccent make the
best use of the extra information, with WPDV having an edge for less consistent data
(WSJ) and Maccent for high error rate material (Wotan).

Although the results reported in this paper are very positive, many directions of
research remain to be explored in this area. In particular, we have high expectations of
the following two directions. First, there is reason to believe that better results can be
obtained by using the probability distributions generated by the component systems,
rather than just their best guesses (see e.g. (Ting and Witten, 1997a)). Second, in the
present paper we have used disagreement between a fixed set of component classifiers.
However, there exist a number of dimensions of disagreement (inductive bias, feature
set, data partitions, and target category encoding) that might fruitfully be searched to
yield large ensembles of modular components that are evolved to cooperate for optimal
accuracy.

Another open question is whether and, if so, when combination is a worthwile tech-
nique in actual NLP applications. After all, the natural language text at hand has to be
processed by each of the base systems, and then by the combiner. Now none of these is
especially bothersome at runtime (most of the computational difficulties being experi-
enced during training), but when combining N systems, the time needed to process the
text can be expected to be at least a factor N � � more than when using a single system.
Whether this is worth the improvement that is achieved, which is as yet expressed in
percents rather than in factors, will depend very much on the amount of text that has
to be processed and the use that is made of the results. There are a few clear-cut cases,
such as a corpus annotation project where the CPU-time for tagging is negligible in re-
lation to the time needed for manual correction afterwards (i.e. do use combination),
or information retrieval on very large text collections where the accuracy improvement
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does not have enough impact to justify the enormous amount of extra CPU-time (i.e. do
not use combination). However, most of the time the choice between combining or not
combining will have to be based on evidence from carefully designed pilot experiments,
for which this paper can only hope to provide suggestions and encouragement.
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