
P
r
o
c
e
e
d
i
n
g
s
 
C
L
I
N
 
2
0
0
1
,
 
4
7
-
6
1
,
 
R
o
d
o
p
i
,
 
2
0
0
2

Memory-Based Phoneme-to-Grapheme Conversion
A Method for Dealing with Out-of-Vocabulary Items in Speech Recognition

Bart Decadt, Jacques Duchateau, Walter Daelemans and Patrick Wambacq
CNTS Language Technology Group, University of Antwerp
ESAT-PSI Speech Group, K.U. Leuven

Abstract

In this paper, we describe a method to enhance the readability of out-of-vocabulary items
(OOVs) in the textual output in a large vocabulary continuous speech recognition system.
The basic idea is to indicate uncertain words in the transcriptions and replace them with
phoneme recognition results that are post-processed using a phoneme-to-grapheme (P2G)
converter.

We concentrate on the final step, P2G conversion: we show that the phoneme recogni-
tion results can be reasonably reliably transcribed orthographically using machine learning
techniques. More specifically, (i) we present experimental results of a machine learning
approach to P2G conversion, and compare these results with an estimation of the upper and
lower baseline performance, (ii) we give an error analysis and list some examples of the
converter’s output, (iii) we investigate spelling correction as post-processing of the ortho-
graphic transcriptions, and (iv) we report on the interaction of the P2G converter with a
speech recognizer.

1 Introduction

One of the major problems in speech recognition is the reliable recognition of
words not present in the speech recognizer’s vocabulary (out-of-vocabulary items,
OOVs). Current speech recognition technology makes use of (among other infor-
mation sources) a restricted pronunciation lexicon (typically 40k words) to pro-
duce word graphs (lattices of possible sequences of words detected in the input)
from which the most likely sequence is chosen. This approach cannot handle
words not present in the restricted lexicon: when an OOV occurs in the input
speech, the speech recognizer cannot map that part of the input to a word in its lex-
icon, and maps it to a similar sounding sequence of words from the lexicon, which
can make the output difficult to read. In ESAT’s speech recognizer (Duchateau,
Demuynck and Van Compernolle 1998, Demuynck, Duchateau, Van Compernolle
and Wambacq 2000), for example, the word gespreksonderwerp (topic of conver-
sation) is not in the lexicon: the speech recognizer maps it to the words gesprek
zonder werk (conversation without work).

A possible solution to this problem is to detect these OOVs using confidence
measures provided by the speech recognizer, produce a phoneme string for them
using a phoneme recognizer, and finally use a phoneme-to-grapheme (P2G) con-
verter to find a likely orthographic transcription of the OOV (see also: (Decadt,
Duchateau, Daelemans and Wambacq 2001) and (Decadt, Duchateau, Daelemans
and Wambacq 2002)).

In the next section, we outline the basic system architecture and introduce the

1



2 Bart Decadt, Jacques Duchateau, Walter Daelemans and Patrick Wambacq

input =
speech

output =
text

Suspected OOV

Spelling

Phoneme String

Training
Data

Confidence Threshold

P2G
Converter Spelling Corrector

with large vocabulary

Phoneme
Recognizer

Speech
Recognizer

Figure 1: A speech recognizer enhanced with a phoneme-to-grapheme converter

machine learning technique we used to build the P2G converter. In section 3, we
present the results of experiments with the P2G converter on the output of ESAT’s
phoneme recognizer, and estimate an upper and lower baseline performance on the
P2G conversion task. We analyze the errors in the converter’s output in section 4,
and investigate spelling correction of the output as a possible post-processing step,
in section 5. Finally, in section 6, we report on the interaction of the P2G converter
with the speech recognizer.

2 Memory-based Phoneme-to-Grapheme Conversion

Basic system architecture. Figure 1 is a schematic representation of the basic
architecture of a large vocabulary speech recognizer enhanced with a P2G con-
verter. First, we extend the ESAT speech recognizer with confidence measures for
detecting possible OOVs in the input speech. The suspected OOVs serve as in-
put for the ESAT phoneme recognizer, which produces a phoneme string for the
OOV.1 This phoneme string then serves as input for a P2G converter, which turns
the phonemes into a grapheme string. Finally, spelling correction with a large vo-
cabulary is used as a post-processing step. The resulting grapheme string is then
put in its place in the output text from the speech recognizer.
1The phoneme recognizer mentioned is not a separate system: for phoneme recognition, we use the
speech recognizer with a vocabulary of 40 phonemes, instead of using it with a large vocabulary of
40k words. The context-dependent acoustic modeling and the statistical model of phoneme sequences
(5-gram) were estimated on a dataset containing six hours of speech read aloud (different from the
CGN recording (see section 3) used as training data).



Memory-Based Phoneme-to-Grapheme Conversion 3

In this paper, we concentrate on the P2G converter: we will see that P2G con-
version is a fairly easy task with perfect input - however, the phoneme strings
generated by the phoneme recognizer are not free from errors: the typical error
rate for a phoneme recognizer is 25% (the sum of deletions, substitutions and
insertions of phonemes). The motivation for the experiments reported here is our
hypothesis that machine learning techniques can adapt to the peculiarities of the
errors made by the phoneme recognizer, and can provide the necessary robustness
and accuracy to the P2G conversion task when provided with sufficient training
data (pairs of words and corresponding output of the phoneme recognizer).

Machine learning method. Our P2G converter is constructed with TIMBL, a
memory-based learning implementation. Memory-based learning is based on the
hypothesis that in domains like language processing, where relatively few regular-
ities compete with many sub-regularities and exceptions, a lazy form of learning
(keeping in memory all examples and using similarity-based reasoning on all ex-
amples at classification time) is superior to an eager learning approach (extract-
ing rules or other abstractions from the examples and using these to handle new
cases) (Daelemans, van den Bosch and Zavrel 1999). Furthermore, the results of
research on a similar task (grapheme-to-phoneme conversion (Daelemans and van
den Bosch 1996, van den Bosch and Daelemans 1998, Busser, Daelemans and van
den Bosch 1999, Hoste, Gillis and Daelemans 2000)), suggest that memory-based
learning may be very well suited for our task, P2G conversion.

TIMBL is a software package for memory-based learning implementing a wide
range of algorithms, weighting metrics, and other parameters. It can take as input
patterns (or instances) of feature values with a corresponding class symbol (su-
pervised, example-based learning). During the learning phase, TIMBL stores all
instances in memory and collects statistical data about these instances. To evalu-
ate the performance of TIMBL on a task, a test set containing previously unseen
instances is used: TIMBL predicts the class of these new instances by comparing
them with the instances from the training set. The new instance gets the same
label as the most similar instance(s) from the training set. We will describe here
only the algorithms which we used in our experiments, for a full description of the
implementation of all available algorithms and metrics, we refer to (Daelemans,
Zavrel, van der Sloot and van den Bosch 2001).

The basic similarity between two instances is computed using an overlap met-
ric. In the case of our symbolic, nominal data (phonemes as features), this means
that similarity between two patterns is the number of features for which the two
patterns have the same value. Obviously, this would in general give bad results
as not all features are equally relevant for solving a particular task. We use an
information-theoretic approach (information gain in its form normalized for num-
ber of values per feature; i.e. gain ratio, see (Quinlan 1993)) to weigh the rel-
evance of the different features. We will call this algorithm IB1-IG, introduced
in (Daelemans and van den Bosch 1992). Another factor of importance in memory-
based learning is the number of neighbors that is taken into account to extrapolate
from (the parameter k). Finally, we have used in our experiments the IGTREE



4 Bart Decadt, Jacques Duchateau, Walter Daelemans and Patrick Wambacq

algorithm (Daelemans, van den Bosch and Weijters 1997), a decision tree based
heuristic approximation of memory-based learning which is more efficient than
IB1-IG.

Data preprocessing. In the machine learning set-up we chose, each phoneme of
each word is represented with its surrounding context as an instance or pattern that
has to be classified with the grapheme corresponding with that phoneme (there
are as many patterns to be classified as there are phonemes). This implies that to
work properly, the grapheme and the phoneme strings for each word should be
of equal length. As the phoneme strings are rarely as long as their corresponding
grapheme strings, they have to be aligned. Most grapheme strings are longer:
we use compound graphemes to shorten the grapheme strings. For example, in the
Dutch word slaap (sleep), with pronunciation //, we replace the graphemes aa with
the compound grapheme A:

slaap s l A p / /

In the reverse case, a shorter grapheme string, we insert the null symbol ‘-’ in
that string. An example is the alignment of the Dutch word taxi with its phoneme
string //:

taxi t a x - i / /

We insert these null symbols with the Dynamic Programming algorithm (also
known as Dynamic Time Warping) (Wagner and Fischer 1974, Kondrak 2000).
Given two strings to be aligned, this algorithm computes an alignment cost for
each pair of symbols in the two strings, and stores this cost in a matrix. When the
cost for each pair is computed, the algorithm searches for the least expensive way
through the matrix.

The context of a phoneme consists of its preceding and following phonemes:
with a context-size of three phonemes, for example, the Dutch word kast (cup-
board), pronounced //, would be represented as the four instances below:

Left context Focus Right context Class
= = = k
= = = a
= = = s

= = = t

The last symbol in a pattern (i.e., the class to be output) always indicates the or-
thographic representation of the phoneme in focus, which here occurs in fourth
position, while the other positions represent phonemes in the context of the focus
phoneme, with the symbol ‘=’ indicating a word boundary.

3 Experimental Results

We experimented with the P2G converter on two datasets: the first dataset was
the Dutch word list (174k words with their pronunciation) from CELEX (Baayen,



Memory-Based Phoneme-to-Grapheme Conversion 5

1. Upper Baseline IB1-G IGTREE
(experiments with CELEX) k = 1 k = 3 k = 5

graph. level acc. 99.1% 98.9% 98.9% 99.0%
word level acc. 91.4% 90.2% 89.7% 91.2%

2. Lower Baseline Basic statistical
(exp. with phon. rec. output) approach

COMPLETE graph. level acc. 70.5%
DATASET word level acc. 30.0%
OOVS IN graph. level acc. 60.2%
DATASET word level acc. 3.0%

3. P2G Converter Performance IB1-G IGTREE
(exp. with phon. rec. output) k = 1 k = 3 k = 5

COMPLETE graph. level acc. 76.2 77.3 77.4 76.4
DATASET word level acc. 46.4 46.5 46.5 46.3
OOVS IN graph. level acc. 58.1 62.3 63.0 59.1
DATASET word level acc. 6.2 6.7 6.9 6.1

Table 1: Results (accuracy in % at word and grapheme level) of the experiments with the
P2G converter

Piepenbrock and van Rijn 1993); the second dataset was made by running the
ESAT phoneme recognizer on a recording (129k words, with an orthographic tran-
scription) from the Corpus Gesproken Nederlands (CGN, Spoken Dutch Corpus). 2

The first one was used to estimate the upper baseline performance on the P2G
conversion task, whereas the second one was used to estimate the lower baseline
performance, and to train and test the P2G converter. In both datasets, we aligned
the phoneme and grapheme strings as described in the previous section.

The phoneme strings produced by the phoneme recognizer contain three kinds
of errors: substitutions, insertions and deletions (the total error rate is 25%).
Substitutions make the classification task more difficult: for each phoneme, there
will be more possible graphemes (or class labels). Insertions are not that dif-
ficult to handle: the P2G converter has to convert the inserted phonemes to
empty graphemes. However, the deletions are problematic: the architecture of
our P2G converter requires a one-to-one correspondence between phonemes and
graphemes, and as we are not able to predict where deletions occur in an unseen
phoneme string, the P2G converter can never convert a phoneme string with dele-
tions to a completely correct word – there will be graphemes missing. In the CGN
dataset, 27% of the words is recognized with deletions: even if the P2G converter
2The CGN project is sponsored by the Dutch NWO and the Flemish IWT, see
http://lands.let.kun.nl/cgn/ehome.htm.



6 Bart Decadt, Jacques Duchateau, Walter Daelemans and Patrick Wambacq

is able to convert all phonemes correctly, the maximum word level accuracy would
not be higher than 63%.

3.1 Estimation of Upper and Lower Baseline Performance

Upper baseline performance. To estimate an upper baseline for the perfor-
mance on the P2G conversion task, we used CELEX because the phoneme strings
in this lexicon are free from errors (they do not contain substitutions, insertions
and deletions of phonemes as in the phoneme recognizer’s output). We trained
and tested the P2G converter with ten-fold cross-validation (10CV, the dataset is
split in 10 parts, and ten experiments are conducted with each part as test set while
the remaining nine parts serve as training set) for various parameter settings for
TIMBL: IB1-IG with k = 1, 3, and 5, and IGTREE. The context of a phoneme in
focus position consisted of its three preceding and following phonemes. The re-
sults of this experiment are presented in the first part of Table 1: the best scoring
parameter setting is IB1-IG with k = 1, resulting in 99.1% grapheme level accuracy
and, more importantly, 91.4% word level accuracy. We see that P2G conversion is
almost an easy task if the phoneme strings are free from errors.

Lower baseline performance. To estimate a lower baseline, we used the output
of the phoneme recognizer on the CGN recording with a basic statistical approach
to the P2G conversion task: we simply convert a phoneme to the most frequent
grapheme for that phoneme. If the phoneme //, for example, corresponds in 78%
of the cases with the grapheme p and in only 22% with b, then we always convert
// to p. This experiment was also done with 10CV: probabilities were computed on
nine parts of the dataset, and tested on the remaining part. The result is presented
in the second part of Table 1: 70.5% at grapheme level, and 30.0% at word level
for all words in the CGN dataset. As the OOVs are tagged in this dataset, we
can also give figures for these words: 60.2% at grapheme level, and 3.0% at word
level.

In the basic statistical approach, adaptation to the peculiarities of the phoneme
recognizer errors is not possible, because context is not taken into account and each
phoneme has only one possible grapheme. The P2G converter, on the other hand,
takes the previous and following phonemes into account, and can give multiple
graphemes for one particular phoneme: if the converter adapts to the errors, it
should score better.

3.2 Performance of the Phoneme-to-grapheme Converter

To test the performance of the P2G converter, we trained and tested the converter
on the CGN data with 10CV for the same parameter settings of TIMBL as in the
experiment with the CELEX data. The context of a phoneme was also the same:
its three preceding and following phonemes. The results are presented in the third
part of Table 1: the best scoring algorithm is IB1-IG with k = 5, resulting in 77.4%
grapheme level accuracy and 46.5% word level accuracy for the complete dataset.



Memory-Based Phoneme-to-Grapheme Conversion 7

The conversion accuracy for the OOVs in the CGN dataset is much lower: 63.0%
grapheme level and 6.9% word level accuracy.

Both for the complete dataset and for the OOVs only, at grapheme and at word
level, the P2G converter with TIMBL scores better than the statistical baseline
method, though the difference in performance is more outspoken in the results
for the complete dataset. This indicates that there are probably few regularities for
P2G conversion in the OOVs.

4 Error Analysis

Ambiguous phonemes. Examining the output of the P2G converter when
trained and tested on CELEX data, we learn that, when the phoneme strings are
free from deletions, substitutions and insertions, most errors are due to ambiguous
phonemes. We distinguish three types of ambiguous phonemes: the most fre-
quent type contains phonemes that have different possible spelling forms, and the
spelling form belonging to a particular word is conventional (there are no contex-
tual cues which can decide on the spelling form needed). Some examples of this
type are listed in Table 2.

AMBIGUOUS PHONEMIC P2G CORRECT
PHONEME REPRESENTATION CONVERTER CONVERSION
// can be // incleding inkleding

k or c // voetbalkompetitie voetbalcompetitie
// can be // bijbelsitaten bijbelcitaten

c or z // censatiebladen sensatiebladen
// can be // elektrolitisch elektrolytisch

i or y // fyle file
// can be // ziektigedrag ziektegedrag

e or i // oorlogscrises oorlogscrisis
// can be // zeefouna zeefauna
au or ou // triplexhaut triplexhout
// can be // zenuwleider zenuwlijder
ei or ij // uitwijdt uitweidt

Table 2: Some examples of ambiguous phonemes due to convention

Words in which assimilation processes are at work may introduce ambiguity
in phonemes which are otherwise not ambiguous. The phoneme //, for example,
usually has to be converted to the grapheme m, but when a // follows, it is possi-
ble (though not necessary) to convert it to n. In some cases, there is not enough
contextual evidence to decide on one of the two alternatives. In Table 3 are some
examples of this second type of ambiguous phonemes.

Words (or parts of words) with the same pronunciation but a different spelling,
can also result in incorrect predictions. The P2G converter predicts ladikant as



8 Bart Decadt, Jacques Duchateau, Walter Daelemans and Patrick Wambacq

KIND OF PHONEMIC P2G CORRECT
ASSIMILATION REPRESENTATION CONVERTER SPELLING
// // before // // eembaansweg eenbaansweg
// // before // // stugbreken stukbreken

// // at word-end // rotatietijt rotatietijd
// // at word-end // lop lob

// // after // // dagsuster dagzuster
// // after // // praktijkfakken praktijkvakken

Table 3: Some examples of ambiguous phonemes due to assimilation

the spelling for the phoneme string // (ledikant), because CELEX contains a lot
of words beginning with lady- (ladyshave, ladykiller, ladylike, . . . ). The same
goes for the string // (lieders), which is converted to leaders, because lieder(s)
and leader(s) are pronounced in the same way. Errors of this kind are not very
frequent, though.

Some ambiguous words or phonemes can never be classified correctly by in-
cluding only previous and following phonemes in the context: morphological or
syntactic cues are needed to resolve the ambiguity. A typical example is the Dutch
verb worden (to become), which is pronounced // in the first, second and third per-
son singular (present tense) but is spelled differently: word in the first person, and
wordt in the second and third person. Without morphological or syntactic cues, the
P2G converter can never predict the correct spelling. Some examples are listed in
Table 4.

PHONEMIC P2G CORRECT
REPRESENTATION CONVERTER SPELLING

// bespied bespiedt
// doodbloed doodbloedt
// onderscheidt onderscheid
// onderhoudt onderhoud
// afraat afraadt

Table 4: Some examples of ambiguous phonemes for which morphological or syntactic
cues are needed

Atypical spelling. Incorrect conversions are not always due to ambiguity: errors
also occur in words which are spelled in a way that is not typically Dutch (mainly
because these words come from other languages and were added to the Dutch
vocabulary without adapting it to Dutch spelling conventions), like the words in
Table 5.



Memory-Based Phoneme-to-Grapheme Conversion 9

PHONEMIC P2G CORRECT
REPRESENTATION CONVERTER SPELLING

// rokuille rocaille
// sykcurij cichorei
// peperclips paperclips
// tiekwondo taekwondo
// curasau curacao
// projectiems projectteams
// foyee foyer
// matiner matinee
// bazoeka bazooka
// gekroest gecruist

Table 5: Some examples of Dutch words with an atypical spelling

Analysis of the OOVs. Looking at the OOVs, we see that the errors made by
the P2G converter are not equally distributed over the OOVs: Figure 2 compares
the expected number of errors in a word of length n (= word-length average
percentage of errors at grapheme level, i.e. 38.3% (100 - 61.7%)) with the observed
average number of errors in the words of that length. The bars in Figure 2 depict
the frequency of words with length n. We see that the two curves are not totally
equal: short OOVs contain more errors than expected, while long OOVs have
fewer errors. Only in words with length 10 to 15, the observed number of errors
is more or less equal to the expected number. However, as the bars in Figure 2
illustrate, the shorter words, with a higher than expected number of errors, are
more frequent than the longer words.

The low word-level accuracy for the OOVs does not mean that the P2G con-
verter’s output is not readable: incorrectly converted OOVs containing only one or
two errors, could still give the reader a clear idea of what the correct word should
be. Figure 3 shows that such OOVs are quite numerous: in the output from the ex-
periment with the CGN data, we counted how many OOVs had a certain amount
of errors per word, and put the averages in the chart in Figure 3. The bad news
is that OOVs with 3, 4, 5 and even 6 incorrectly predicted graphemes per word -
words which should be difficult to read - are as frequent as the readable ones.

5 Spelling Correction as a Post-processing Step

In the previous section, we noted that (i) short OOVs, on average, tend to have
more errors than expected, and (ii) OOVs containing 4, 5 and even 6 errors are
quite frequent. On the basis of these observations, we did not expect an enormous
improvement from using a spelling corrector for post-processing. Assuming that
only words with 1 or 2 errors have a reasonable chance of being corrected by a
spelling corrector, the maximum increase in word level accuracy we may expect,



10 Bart Decadt, Jacques Duchateau, Walter Daelemans and Patrick Wambacq

AVERAGE ERRORS FOR WORDLENGTH

146

343

896
781

1067
997

946
881

729

568

417

295 255
203

113 93
46 40 28

0

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
WORDLENGTH

ER
R

O
R

S

FREQUENCY PREDICTED ERRORS AVERAGE ERRORS

Figure 2: Average errors per word for word-length in the OOVs

0

200

400

600

800

1000

1200

1400

1600

1800

A
ve

ra
ge

 n
um

be
r o

f w
or

ds

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Errors per word

Average number of words
for errors per word

Figure 3: Number of words for errors per word in the OOVs



Memory-Based Phoneme-to-Grapheme Conversion 11

Correctly converted words: Incorrectly converted words:
612 (6.9%) 8280 (93.1%)

marked as correct 487 marked as correct 1291
marked as incorrect marked as incorrect

with suggestions 109 with suggestions 3018
marked as incorrect marked as incorrect
without suggestions 16 without suggestions 3971

Loss in accuracy (correct Gain in accuracy (incorrect Total
words marked as incorrect) words with correct suggestion) accuracy

considering only the
suggestion: +2.4% 7.8%

considering the first
-1.4% 3 suggestions: +4.1% 9.6%

considering all
suggestions: +4.8% 10.3%

Table 6: The result of spelling correction on the output of the P2G converter with IB1-IG
and k set at 5

is 25%. However, this is still quite an improvement compared to the 7% word
level accuracy we have now.

For our experiments, we did not develop a spelling corrector specifically
adapted to our task: we used Ispell, UNIX’ spelling corrector. The Dutch lexi-
con for Ispell contains 114k words, and a list of affixes to form new words with.
Ispell can be used in an automatic mode in which each input word is checked for
correctness: each word receives a mark (correct or incorrect), and for the incorrect
ones, Ispell gives a list of suggestions, if there are any.

In Table 6, we present the results of running Ispell on the list of P2G conver-
sions for the OOVs in ESAT’s dataset (obtained by running the P2G converter with
IB1-IG and k set at 5). These results are only indicative: we could get better results
if we use a spelling corrector specifically adapted to our task, with e.g. a lexicon
containing more proper names.

It is clear that Ispell is not able to correct most of the words containing only one
or two errors: the gain in word level accuracy is 2.4% (taking into account only
the first suggestion) to 4.8% (considering all suggestions). Moreover, spelling
correction also degrades performance: we lose 1.4% word level accuracy because
of correctly converted words marked as incorrect by Ispell. This does not mean
that spelling correction is useless as a post-processing step: gaining 4.8% in word
level accuracy (resulting in 10.3%) means an improvement of 70% compared
to our previous result, 6.9%. Furthermore, Ispell is able to mark 84.4% of the
incorrectly converted words as incorrect. This information can be used in the final
transcriptions of the speech recognizer enhanced with our P2G converter, e.g. it
can be presented with color codes.



12 Bart Decadt, Jacques Duchateau, Walter Daelemans and Patrick Wambacq

6 Interaction with the Speech Recognizer

To test how the P2G converter influences the performance of the speech recognizer,
we trained the P2G converter with the CGN data (see section 3), and tested the
whole system (as presented in Figure 1) with a separate test set of 3.6k words.

The vocabulary of the speech recognizer consists of 40k words: these are the
most frequent words in newspaper texts for which a phonetic transcription was
available in a pronunciation dictionary (this excludes proper names). With this
lexicon, a 3.5% OOV rate was found on a test set. The speech recognizer uses a
trigram language model, trained on newspaper texts. The cross word context de-
pendent acoustic modeling is based on a phoneme set with 38 three state phonemes
and one noise state. A global phonetic decision tree defines 575 tied states, which
are modeled with in total 10k tied Gaussians. These numbers are rather small due
to the size of the acoustic training database for Dutch, namely 6 hours of speech.

With the above lexicon and modeling, a 14.7% word error rate (WER) was
found on the test set. This is higher than the typical error rate for speaker indepen-
dent large vocabulary recognition due to the small acoustic models and the high
OOV rate. For comparison, with a similar type of acoustic modeling we achieved
a 7.3% WER on the well known Wall Street Journal (WSJ) recognition task for the
November 92 evaluation test set (trigram, 20k word vocabulary, 1.9% OOV rate,
69 hours of acoustic training data).

For the P2G converter, we find 55.2% accuracy at the word level on this test
set: this number is only the average accuracy over all test set words. On the 3.5%
OOVs, a word level accuracy of only 7.9% is found: the OOVs are often long
words, or a-typical for Dutch. The word level accuracy on the recognition errors
(including the OOV words) is 19.2%, one of the reasons for this low accuracy is
that difficulties in the acoustic data (for instance a bad pronunciation for a word)
will result in errors in both the word recognizer and the phoneme recognizer.

At the time of writing, the confidence measures were not yet implemented -
we have to make an estimate of the interaction with what we find in the literature:
from (Kemp and Schaaf 1997), we know that, for a recognition task with a WER
as in our experiments, the threshold in the confidence measure can be adjusted so
that about 75% of the recognition errors are tagged as uncertain word (thus missing
25% of the errors), while tagging (wrongly) only 10% of the correctly recognized
words.

If we suppose that the 75% tagged recognition errors will be converted with the
19.2% accuracy average for recognition errors, and the 10% tagged correct words
with the accuracy average for correct words (which is 59.9%), then transcriptions
in which all tagged words are re-written by the P2G converter will result in a
slightly higher WER: about 16.0% instead of the 14.7% mentioned earlier.

But this does not mean that the resulting transcriptions are less readable than
the original ones. Albeit only 19.2% of the wrongly recognized words is tran-
scribed correctly by the P2G converter, 41.0% is transcribed with at most 1 error
(counting each substituted, inserted or deleted letter as an error), and 62.6% is
transcribed with at most 2 errors.



Memory-Based Phoneme-to-Grapheme Conversion 13

A lot of the words with only a few errors can be understood by a reader. More-
over the transcribed words often do not exist in Dutch, giving the reader a clear
lead that that word is uncertain (the original transcription is a concatenation of
existing words, known by the recognizer).

As examples we give the longest words that are wrongly recognized by the
speech recognizer. They are compounds, and OOV words for the recognizer. The
transcription by the speech recognizer and by the P2G converter is given.

programmaproducent programma producent (speech rec.)
(program producer) programaprodusent (P2G)

gespreksonderwerp gesprek zonder werk (speech rec.)
(topic of conversation) gespreksonberwerp (P2G)

speelgoedmitrailleur speelgoed moet hier (speech rec.)
(toy machine gun) spergoetnietrijer (P2G)

For the recognition errors, only the first word is readable (the speech recognizer
did not recognize it as a compound but as two separate words). The other two
words are nonsense: gesprek zonder werk means conversation without work and
speelgoed moet hier means toys must here. The P2G converter’s output is closer to
the correct words and more readable: programaprodusent contains two errors and
gespreksonberwerp only one. The last conversion, spergoetnietrijer, containing 9
errors, is an example of a loan word with a spelling atypical for Dutch. Due to the
fact that both the phoneme recognizer and the P2G converter are trained to produce
strings typical for Dutch, these words will always result in bad conversions.

Finally, spelling correction again proves to be useful as post-processing: it
increases the word level accuracy for OOVs to 8.7%, for recognition errors to
20.9%, and to 60.1% on average over all words in the test-set. The word error rate
of the speech recognizer combined with our P2G converter then drops from 16.0%
to 15.4%. From the examples above, only the second word (gespreksonderwerp)
could be corrected by Ispell.

7 Conclusion

In this paper we investigated the feasibility of P2G conversion for OOVs in speech
recognition, and the ability of machine learning methods for this task to adapt to
the errors produced by the phoneme recognizer. We have discussed the results
of experiments in which TIMBL, a memory-based learner was used for this task.
We saw that it can carry out this task almost perfectly with a clean dataset, i.e.
presupposing perfect phoneme recognition. In that case, 91% correctly transcribed
words is feasible, with errors mainly related to the conventional lexical aspects of
Dutch spelling.

Using a dataset with phoneme strings generated by a phoneme recognizer that
contains more or less 25% errors, we achieved a lower, but still reasonable result:
46% at word level on the entire dataset. However, performance on the OOVs in this
dataset, in which we are especially interested, is only 7% at word level (about 60%



14 Bart Decadt, Jacques Duchateau, Walter Daelemans and Patrick Wambacq

of the graphemes correctly predicted). Although at a very low level, this accuracy
may still be useful because many of the orthographically transcribed words can
be recognized easily. Furthermore, post-processing the grapheme strings with a
spelling corrector, proves to be useful, increasing the word-level accuracy to 8%.

An important problem is that the phoneme recognizer deletes a lot of pho-
nemes, which is a situation impossible to handle in the current architecture of the
system. Although word level accuracy on the OOVs is not very high, we showed
that TIMBL did learn to adapt to the errors of the phoneme recognizer to a certain
extent. Even when in an integration with the speech recognizer the total WER
increases, readability of the output can nevertheless be improved with this method.

We believe the spelling error correction post-processing can be made more re-
liable by using lexicons and correction strategies tuned to OOVs and tuned to the
type of errors the P2G module makes. More work can also be done on optimiza-
tion of feature selection and algorithm parameters for the learning task, and the
approach should be further tested in combination with different types of confi-
dence measures.

Also, both the 5-gram statistical phoneme sequence model in the phoneme
recognizer and the P2G converter are trained on Dutch in general, not specifically
on OOV words. It may be better to train on OOV words only, as the properties of
OOV words (typically loan words or proper names) may differ from the properties
of Dutch in general.

Another direction for further research is the use of a more sophisticated de-
scription of the phoneme recognizer result. At this moment, the input for the P2G
converter consists of only one phoneme string for a word. This means an important
loss of information which may be useful for the converter. The use of a phoneme
graph, possibly including probabilities for the phonemes, could be a solution to
this problem.

Acknowledgments

This research is funded by IWT in the STWW programme, project ATraNoS. 3 We
would like to thank Erik Tjong Kim Sang and Véronique Hoste from the CNTS
research group for their support during the development of the proposed system.

References

Baayen, R. H., Piepenbrock, R. and van Rijn, H.(1993), The CELEX lexical data
base on CD-ROM, Linguistic Data Consortium, Philadelphia, PA.

Busser, B., Daelemans, W. and van den Bosch, A.(1999), Machine learning
of word pronunciation: the case against abstraction, Proceedings of Eu-
roSpeech99, Budapest, Hungary, pp. 2123–2126.

Daelemans, W. and van den Bosch, A.(1992), A neural network for hyphenation, in
I. Aleksander and J. Taylor (eds), Artificial Neural Networks 2: proceedings

3ATraNoS is the acronym for the project’s title Automatic Transcription and Normalization of Speech.
The project’s homepage is located at http://atranos.esat.kuleuven.ac.be.



Memory-Based Phoneme-to-Grapheme Conversion 15

of the International Conference on Artificial Neural Networks, Elsevier,
Amsterdam, pp. 1647–1650.

Daelemans, W. and van den Bosch, A.(1996), Language-independent data-
oriented grapheme-to-phoneme conversion, in J. P. H. V. Santen, R. W.
Sproat, J. P. Olive and J. Hirschberg (eds), Progress in Speech Processing,
Springer-Verlag, Berlin, pp. 77–89.

Daelemans, W., van den Bosch, A. and Weijters, A.(1997), IGTree: using trees
for compression and classification in lazy learning algorithms, Artificial
Intelligence Review 11, 407–423.

Daelemans, W., van den Bosch, A. and Zavrel, J.(1999), Forgetting exceptions is
harmful in language learning, Machine Learning, Special issue on Natural
Language Learning 34, 11–41.

Daelemans, W., Zavrel, J., van der Sloot, K. and van den Bosch, A.(2001),
TiMBL: Tilburg memory based learner, version 4.0, reference guide,
ILK Technical Report 01-04, Tilburg University. Available from:
http://ilk.kub.nl.

Decadt, B., Duchateau, J., Daelemans, W. and Wambacq, P.(2001), Phoneme-
to-grapheme conversion for out-of-vocabulary words in large vocabulary
speech recognition, Proceedings of ASRU, IEEE, Madonna di Campiglio.

Decadt, B., Duchateau, J., Daelemans, W. and Wambacq, P.(2002), Transcription
of out-of-vocabulary words in large vocabulary speech recognition based
on phoneme-to-grapheme conversion, Proceedings of ICASSP, IEEE, Or-
lando, Florida. To appear.

Demuynck, K., Duchateau, J., Van Compernolle, D. and Wambacq, P.(2000), An
efficient search space representation for large vocabulary continuous speech
recognition, Speech Communication 30(1), 37–53.

Duchateau, J., Demuynck, K. and Van Compernolle, D.(1998), Fast and accurate
acoustic modeling with semi-continuous HMMs, Speech Communication
24(1), 5–17.

Hoste, V., Gillis, S. and Daelemans, W.(2000), Machine learning for modeling
Dutch pronunciation variation, in P. Monachesi (ed.), CLIN 1999. Selected
papers from the tenth CLIN meeting, pp. 73–83.

Kemp, T. and Schaaf, T.(1997), Estimating confidence using word lattices, Pro-
ceedings of EuroSpeech97, vol. II, Rhodes, Greece, pp. 827–830.

Kondrak, G.(2000), A new algorithm for the alignment of phonetic sequences,
Proceedings of the First Meeting of the North American Chapter of the
Association for Computational Linguistics, NAACL, Seattle, pp. 288–295.

Quinlan, J. R.(1993), C4.5: Programs for Machine Learning, Morgan Kaufmann,
San Mateo, CA.

van den Bosch, A. and Daelemans, W.(1998), Do not forget: Full memory in
memory-based learning of word pronunciation, in D. Powers (ed.), Pro-
ceedings of NeMLaP3/CoNLL98, Sydney, Australia, pp. 195–204.

Wagner, R. A. and Fischer, M. J.(1974), The string-to-string correction problem,
Journal of the Association for Computing Machinery 21(1), 168–173.


