
P
r
o
c
e
e
d
i
n
g
s
 
C
L
I
N
 
2
0
0
1
,
 
R
o
d
o
p
i
,
 
7
7
-
8
8
,
 
2
0
0
2

A Named Entity Recognition System for Dutch
Fien De Meulder, Walter Daelemans and Véronique Hoste
April 25, 2002

Abstract

We describe a Named Entity Recognition system for Dutch that combines gazetteers, hand-
crafted rules, and machine learning on the basis of seed material. We used gazetteers and
a corpus to construct training material for Ripper, a rule learner. Instead of using Ripper
to train a complete system, we used many different runs of Ripper in order to derive rules
which we then interpreted and implemented in our own, hand-crafted system. This speeded
up the building of a hand-crafted system, and allowed us to use many different rule sets
in order to improve performance. We discuss the advantages of using machine learning
software as a tool in knowledge acquisition, and evaluate the resulting system for Dutch.

1 Introduction

Named Entity Recognition (NER) is the problem of identifying different kinds
of names in texts. For this system, we limited ourselves to finding the names of
persons, companies, and locations. But this could later be extended to include
names of organizations, and even different kinds of numerical expressions (e.g.
dates and weights). The task we set ourselves can be illustrated by the following
example:

[..], Lt. Governor ¡person¿Mary Donohue¡¿ today announced that
¡company¿Bristol-Myers Squibb Company¡¿ has approved the expan-
sion of its existing facilities in ¡location¿East Syracuse¡¿.

There are different ways in which the problem of NER has been solved in
the field of computational linguistics. Many systems use a combination of hand-
crafted sets of rules, in combination with gazetteers, or lists, of names, and gram-
mars of names. There are many different hand-crafted systems for NER, such as
Appelt and Martin (1999), Black, Rinaldi, and Mowatt (1998), Wacholder, Ravin,
and Choi (1997), and Wakao, Gaizauskas, and Wilks (1996). The main disadvan-
tage in hand-crafting such a system is that the development requires a lot of ex-
pertise and is very time-consuming: huge gazetteers need to be compiled, or many
context rules need to be thought up. These rules then all have to be hand-coded.
The system also needs a lot of testing and tweaking. According to Appelt and
Martin (1999), the advantage of a hand-crafted system is that changes are quickly
and easily implemented. One module can easily be changed, while a statistical ap-
proach might require the annotation of new training material, followed by another
training phase. Even though Mikheev, Moens and Grover (1999a, 1999b) use a
combination of hand-crafted rules and a statistical approach, we used them as our
main inspiration for the hand-crafted part of our system only. Their sure-fire rules
served as an inspiration for our rule component, and their partial match for our
reprocessing steps.

1



2 Fien De Meulder, Walter Daelemans and Véronique Hoste

The statistical approach to NER, on the other hand, looks at a combination
of context features and internal features of words to be classified as NEs by some
statistical model. Some of the main statistical approaches are Bikel et al. (1997),
Borthwick et al. (1998a), Borthwick et al. (1998b), and Miller et al. (1999). All
of these systems learn which features are important in NER. The advantage is that
rules do not all have to be hand-coded any more, and that less tweaking of the
system is necessary, because the computer will itself learn the order in which rules
should be applied - i.e. the order of importance of context features. All systems
cited above were Hidden Markov Model or maximum entropy learners. The dis-
advantage with this approach is that vast amounts of hand-annotated training data
need to be produced. An additional disadvantage is that all statistical methods
need some kind of post-processing step to generalize tags found for a type to all
that type’s tokens.
In our approach, we combined the advantages of the hand-crafted systems and

the statistical systems.
Our system has two main components:

In the first part, the system uses gazetteers or lists of names, combined with
very simple grammars of names. Words are checked for membership of a
class by looking them up in lists. The grammars are used to recognize strings
of words as names.

In the second part of the system, context rules are used to detect additional
Named Entities. These rules were found by using the machine learning
algorithm Ripper (Cohen 1995). These rules were then integrated into the
rest of the system.

In the following Section we describe the hand-crafting component and rule-
learning component of our NER system in more detail. Section 3 gives a global
overview of our system architecture. In Section 4 we report on the results of our
NE recognizer on a hold-out test set. In Section 5 we name some shortcomings of
the current system and propose possible solutions. We end with some concluding
remarks.

2 Combining hand-crafting and rule learning to build our system

Our NER system is hand-coded, but includes information learned by a machine
learning technique which makes use of seed material. The hoped-for advantages
were: on the one hand, a greater precision (because of the intervention of a human
interpreter who can dismiss nonsense rules proposed by the learning algorithm),
and, on the other hand, less time spent on designing the system (only the easy
and well-described grammars of words were put into code by ourselves, while
all the context rules were taken straight from the output of the machine learning
algorithm).



A Named Entity Recognition System for Dutch 3

First Names 4,931
Small Surname Words 12
Company Names 1,262
Words before Companies 62
Words after Companies 297
Place Names 3,284
Words before Place Names 9

Table 1: Size of the gazetteers which we used in our NE recognition system.

2.1 Gazetteers and grammars of names

The first component of the system recognizes NEs, using only lists of names (or
gazetteers), and grammars of names. We used 7 gazetteers (see Table 1).
For person names, we used a list of first names, and one of words which com-

monly appear in surnames (eg. de for Dutch names, and di or Italian names). We
did not use a list of surnames, because there are just too many of them to be able
to make a good list. It is also not too hard to identify a lot of surnames to use as
seed names, as we shall discuss later.
For companies, we compiled a list of the most important companies worldwide

and in Belgium. We also manually compiled a list of words which often appear
at the start of company names (eg. International), and a list of words which often
appear at the end of company names (eg. Limited). These last two lists were
necessary in order to keep the size of the gazetteer of companies down. If the
system could not use this list, all partial orders of company names would also have
to be stored in the list of company names. For example, just now we have the name
Microsoft in our list of company names, and the words Corporation and Corp. in
our list of words which can go after company names. These last two words can
therefore be used for any corporation name ever encountered, while only one entry
is needed for Microsoft in the gazetteer.
Finally, we compiled a list of international and Belgian location names, as well

as a list of words which often appear before locations (eg. South, New). This had
the added advantage that if a place like Hamphshire was included in the list of
locations, New Hampshire would also automatically be recognized.
All lists were checked so that they did not contain any names which could be

ambiguous between the different categories, or any names that could be interpreted
as common nouns.
In addition to the gazetteers, we also integrated a simple grammar of names.

Names have quite predictable structures. For example, if a first name appears
with a capitalized word straight after it, chances are that this second word will be a
surname. For Dutch names, the picture is slightly more complicated, because some
words can appear in surnames without being capitalized (eg. de, van). However,
none of these options are that hard to analyse, and regularities are easy to put
into formalisms. For person names, we allowed a first name, one middle name,
up to two small words, and then up to two capitalized words as a surname. For



4 Fien De Meulder, Walter Daelemans and Véronique Hoste

companies: (optionally) a sequence of words which appear before companies + a
word/phrase from the company list + (optionally) a sequence of words which go
after companies = a company name. Considered as a location was: (optionally)
one word which can precede a location + a word from the locations list.
We now brought the gazetteers and grammars together, and wrote a NER sys-

tem which basically only recognized the companies and locations which were
stored in the lists (plus extra words before and after). This system was enriched
with a reprocessing step for the person names. The original program recognized
person names if they started with a first name that could be found in the gazetteer
of first names. Because these surnames might be repeated on their own elsewhere
in the text, we introduced this reprocessing step into the system so that any sur-
names found after first names will also be recognized elsewhere in the text. This
hugely increases the number of person names found in newspaper text.

2.2 Towards context rules

After the relatively straightforward step of building this name recognizer, we
wanted to make it more ‘intelligent’ by learning context rules, and introducing
these back into our system. We did this by creating seed material from Dutch
newspaper text, and introducing this material as input into a rule learner, Ripper
(Cohen 1995, Cohen 1996).

2.2.1 Use of seed material

Using seed material gets around the problems concerned with generating hand-
annotated training data. For named entities, this approach was used already by
Collins and Singer (1999), Cucerzan and Yarowsky (1999), and Buchholz and van
den Bosch (2000). This method works by creating training material using the lists
(e.g. by collecting the contexts where a word in the list occurs). This training
material is then used to learn how to find those entities which could not be found
in any of the lists.1 Of the English NE finders, Cucerzan and Yarowsky (1999)
used seed lists of between 40 and 300 words, whereas Collins and Singer (1999)
surprisingly used only 7 seed rules. This shows that only a little bit of information
is needed to get quite good accuracy (up to and accuracy of 91% in the case of
Collins and Singer (1999)).2 The Dutch approach (Buchholz and van den Bosch
2000) was to compare their system with small gazetteers (100 per class) to the
performance of their system with extensive lists (53,065 names in total). They
found that precision was improved when using smaller lists, and this with only a
slight reduction in recall. Their overall accuracy was reported at 71% (on tokens).
1In some approaches, these new instances will then again be used as training material, starting an
iterative process, which should lead to more and better results each time. We only implemented one
such iteration.
2All accounts of NER systems seem to suggest that lists of very frequently occurring NEs work better
than long lists of rare names. In the case of the use of seed material, it also seems that extra rounds of
boosting do more than making lists of NEs longer ever could.



A Named Entity Recognition System for Dutch 5

The potential advantages of this kind of seed approach are considerable: lists
are very easy to make, and can be found on the internet as well.
Using lists of names, it is relatively easy to build an NER system with very

high precision. This means that most of the named entities it finds will be correctly
identified. However, this kind of system will typically have very low recall, so it
will actually identify too few of the entities you would like to find. You can now
use those few very good instances which you did identify in order to learn how
to find the ones that got away. The way we did this was by using the very simple
gazetteer look-up system to tag a large corpus. We then used the NEs identified to
construct instances for the Ripper rule-learner. Ripper then learned context rules
from these training instances. These training instances were then used to find
the other NEs (those that were not included in our gazetteers). Introducing these
context rules made for a big improvement in recall, while not affecting precision
too dramatically.

2.2.2 Data

We used 250 days’ worth of the Flemish financial newspaper De Financieel
Economische Tijd (FET). This amounted to 13,951,459 tokens. This paper was
chosen because of its economic orientation, meaning that it has more mentions of
company names, thus providing us with more training data for this category than a
more general paper would. Preprocessing was needed on the text. We first needed
to strip it of its HTML tagging. Afterwards, it was tokenized and tagged with parts
of speech using the memory-based tagger MBT (Daelemans et al. 1996), trained
on the Dutch Eindhoven corpus. These tags were then available as features for the
rule learner.
These data were processed with the simple NE tagger built so far. 270,899NEs

were extracted, of which 90,902 were tagged as person names, 80,157 as compa-
nies, and 99,840 as locations. Every portion of the text with a recognized NE in it
was now turned into a training instance for the learning algorithm. Originally, we
used an array of 75 features, but these were gradually reduced to leave only the 5
most important ones. The word before the NE turned out to be the most important
feature. Using an idea from Mikheev, Moens, and Grover (1996b), we also added
a feature to include nouns which appear in apposition to NEs, positioned after the
NE. The following is an example of a regular expression used to find the noun (N),
which was then used as a feature value:

,? een? Adj* N
is? het?

de?

2.2.3 Learning context rules

We then used these data as training material for the Ripper (Cohen 1995) learning
algorithm. Ripper is a member of the family of rule induction algorithms. Rip-
per’s hypothesis is expressed as a set of if-then rules. Before learning, Ripper first



6 Fien De Meulder, Walter Daelemans and Véronique Hoste

heuristically orders the classes. After arranging the classes, ripper finds rules to
distinguish between the classes. The final class becomes the default class. We used
Ripper as a knowledge acquisition device: we made it produce rules to structure
our data, then read and interpreted them, and reused them in a separate module in
our hand-coded system. All the rules which Ripper came up with (in the best runs)
were read and interpreted by a human programmer, who took all the rules that
made sense and put them in a new module for our NE recognizer. The following
is an example of the rules which Ripper came up with. The words in bold were
found to be indicators of NEs by the Ripper algorithm.

De resultaten van Axa Royale Belge (The results of Axa Royal
Belge)
VEV-voorzitterKarel Vinck (VEV chairman Karel Vinck)
Barton Biggs, de grote baas van (Barton Biggs, the big boss of)

By varying the Ripper algorithm parameter settings, we managed to get better
rules for different classes. We did not have to choose one of the runs over the oth-
ers, but could simply reap the benefits from all, by putting all good rules together
in our new module. Another fruitful strategy was to manipulate the training data.
We varied the proportions of each of the NE classes, so that we got the best rules
for each class. These rules were then again all combined to make a far stronger rule
component than any individual Ripper rule set on its own could. Ripper also found
some ‘bad’ rules. This was partly due to mistakes made by the gazetteer look-up
system, and partly due to the lack of negative examples in the training data. These
bad rules, however, were easily dismissed in the manual post-processing step.

3 System architecture

Schematically, the final system looked like Figure 1.

The first step is that of gazetteer look-up. This is the same module as the
one that was used to produce the seed rules earlier.

The second step is the reprocessing of surnames. This was also already
done when making seed rules: the surnames found after first names from
the gazetteers are also tagged when they appear on their own elsewhere in a
document.

The third step, that of the context rules, is new. This is the collection of
rules which Ripper found. These are context rules, mainly focused on nouns
found in apposition to NEs. Another kind of rule involves nouns separated
from an NE by a preposition (eg. the capitalized words after aandelen van
(shares in) most likely refer to a company). These rules are implemented by
simple regular expressions.

Finally, in the fourth step, another reprocessing round follows. Person
names and company names which were identified in the previous step are



A Named Entity Recognition System for Dutch 7

GAZETTEER LOOK-UP

REPROCESSING
Surnames

CONTEXT RULES

REPROCESSING
Person Names and
Company Names

Figure 1: Sketch of the system.

now tagged elsewhere in the text. Not only full names are tagged elsewhere,
but so are different partial orders of NE phrases. (Eg. if Joe Bloggs is
recognized as a person, so will Bloggs on its own. The same goes for Acme
Inc. and Acme.) This final step is important, because it means that it is
sufficient for the context rules to only recognize one single token for each
type of NE. The system will then itself generalize over all other tokens of
the same type.

This full cycle of four steps is applied to each newspaper article separately. The
small gazetteers of frequently occurring names are used as before. It might seem to
make sense to update these with the new NEs found in the course of the runs of the
system, but this is not done, in order to reduce errors. Each article is also processed
separately: when NEs are found, they are tagged as the same kind of NE elsewhere
in the article, but not elsewhere in the whole of the document. There is a logic to
this: when a new NE is introduced, especially a rarer one (which is also less likely
to occur in the gazetteers), this will often be reflected in the language surrounding
this new name. NEs are often ‘introduced’ to people. For example, a lesser known
minister will first be introduced as Minister of Culture and Sports Jane Smith, but
she will later just be referred to as Smith. If the context rules are good, our system
should catch the first occurrence of this NE, and reprocessing will then correctly



8 Fien De Meulder, Walter Daelemans and Véronique Hoste

tag all other references to the same person in the same article.It is sensible to
generalize the tagging of types to tokens within articles, but it is not sensible to
generalize over a whole newspaper, or a full corpus to be tagged. For example, if
Permeke (the company) is identified in an article, it is temporarily remembered and
identified as a company elsewhere in the same article. If it was then also stored for
use in other articles, the artist Permeke may be wrongly identified as a company
later. The same goes for NEs which have the same form as a common noun, eg.
Apple. If this word is kept in a gazetteer permanently, it may be that a mention of a
piece of fruit is wrongly tagged as referring to a company. within the same article,
this is far less likely to occur. 3
The final system was implemented in Perl. Its structure stayed modular, mak-

ing it very easy to change in the future. For example, the name grammars could
very easily be changed to allow for names from different countries than the ones
already included. The gazetteers could easily be updated, if new names replace
older popular names. If the system was applied to a different domain (a different
kind of text), then the grammars of names and gazetteers could be kept the same,
as well as all reprocessing steps. The only thing needed in this case would be
a quick round of making new training material and training Ripper on it. In the
modular system, only the context rules would then need to be adapted.

4 Experimental results

In order to test the performance of our NER system, we extracted a hold-out test
file extracted from the FET newspaper. It had 32,826 tokens and was manually
tagged for NEs. The test file contained 469 person NEs, 342 companies, and 279
locations. Scores were computed per NE class (Person, company and Location),
and the measures used were Precision (of the tags allocated by the system, how
many were right), Recall (of the tags the system should have found, how many did
it spot), and F-score (a combination of Recall and Precision). The scores on the
test set are displayed in Table 2. The results are broken down into the different
categories. We measured the performance of the system with only the first module
working, then the first two modules together, and so on.
Table 2 shows that:

the person category started off performing well in the first module. Pre-
cision was high, and recall not too bad (at 41.59%). The F-score for this
category consistently rises with each module, but there is a marked drop in
precision (of more than 15%).

The company tag is consistently assigned with high precision, but recall
is quite disastrously low (ranging between 23.17% and 37.70%). There is
a marked improvement in recall, however, between modules 1 and 4, so
the way to improve the performance in this area may well be through a

3There may be an argument for adding non-ambiguous very frequently occurring names, but no such
mechanism has been implemented in the system so far.



A Named Entity Recognition System for Dutch 9

Precision Recall F-score
1 module Person 90.19% 41.59% 56.93%

Company 98.47% 23.17% 37.51%
Location 76.19% 66.90% 71.24%

2 modules Person 77.88% 52.37% 62.63%
Company 98.47% 23.17% 37.51%
Location 75.61% 64.81% 69.79%

3 modules Person 76.13% 65.30% 70.30%
Company 94.44% 26.53% 41.42%
Location 74.74% 74.22% 74.48%

4 modules Person 74.63% 75.43% 75.03%
Company 91.81% 37.70% 53.45%
Location 76.34% 74.22% 75.27%

Table 2: Scores of our NE recognition system on a hold-out test set.

combination of extending the gazetteers and more training runs for Ripper
in order to find more context rules.

For the category of locationNEs, it is remarkable to see how little influence
context rules have. Even though precision is not very good throughout, lo-
cation starts off in module 1 with the highest F-score of all the categories
(71.24%), and it does not improve much beyond that with the addition of
context rules (a mere 4% improvement). This indicates that Ripper was not
able to formulate good context rules for the location NEs, which is also
shown by the fact that reprocessing locations in the last module actually
worsened performance in the design stages of the system (so this reprocess-
ing step was not kept in the final design). The main way to improve locations
therefore seems to be through the extension of the gazetteer. Precision will
probably also need to be tackled by re-examining the gazetteer, and check-
ing it again for possible ambiguous words.

A methodologically correct quantitative comparison with other NE recognition
systems is impossible because of differences in target language, text style and
annotation conventions. The results reported below are merely an indication of
the performance of other NE recognizers. For English, results for the hand-crafted
systems are reported to hover around an F-score (combined Recall and Precision)
of 90%. The results of the statistical systems ranged from an F-score in the 80s
to and F-score in the middle 90s (Borthwick et al. (1998b) using a combination
of different NE systems). The combined approach of Mikheev, Grover and Moens
(1999a, 1999b) had an F-score of 90% and higher. For Dutch, Buchholz and van
den Bosch (2000) reported an overall accuracy on types of 71%.



10 Fien De Meulder, Walter Daelemans and Véronique Hoste

5 Problems and future research

The currently implemented system still suffers from some shortcomings. One
problem with our system is that it is not very flexible. For example, the gram-
mar of names is very rigidly applied, so it deals badly with events like spelling
mistakes, such as [..] minister van Ambtenarenzaken Luc dan den Bossche (Eng.:
[..] Minister of Civil Service Luc dan den Bossche). The grammar of names will
not recognize this as a name, because it says dan rather than van.) A more sta-
tistical approach might be trained to deal with this kind of event (if it occurs in
regularly), but our system will ruthlessly reject this name.
Another problem is the very narrow scope of the context rules. This compo-

nent should in the future be taught to look much further afield for interesting nouns
which might signal the presence of an NE. Our system, for example, does not yet
recognize the noun in the following sentence: De voorzitter van het Duitse Fed-
erale Bureau voor de Statistiek, Johann Hahlen (Eng.: The chairman of the Ger-
man Federal Bureau of Statistics, Johann Hahlen). Better use of parts of speech
tags may well help to solve this kind of problem.
We intend to introduce two further modules into this system. A first module

would allow the system to deal with conjunctions. Consider the following exam-
ple: China, Roemenië en Spanje [..] (Eng.: China, Romania and Spain [..]). If
two of these words are recognized as locations, it is extremely likely that the third
one is, too. However, our system does not yet know how to handle this kind of
construction. The second major shortcoming of our system is that it does not yet
use its gazetteers of company and place name indicators sufficiently. Nicos Life
will not be recognized as a company if Nicos is not included in the list of com-
panies, and no suggestive context is found around it, even though Life is included
in the gazetteer of words which go after company names. The system should be
taught to recognize this as a potential company in the future.
Finally, we would like to test our intuition that our use of Ripper rules makes

this system easily adaptable for new domains. If we use the simple gazetteer look-
up system to make training material in a very different domain, we expect the
output of Ripper rules to look different as well. A more general newspaper, for
example, will probably give less context rules to find person names with business
functions in them, and probably more context rules with sports terms, or entertain-
ment functions.

6 Conclusion

We showed that also in a handcrafting approach to language engineering,Machine
Learning can play a role as a tool in knowledge acquisition and knowledge engi-
neering. Our pragmatic use of the rule induction system Ripper combined with a
seed approach to collecting training data, enabled us to build a reasonably good
system with no time wasted on manual annotation and painstaking design of con-
text rules. The only thing which still took up some time in this method, is the
different training runs Ripper needed to go through in order to find the best rules.



A Named Entity Recognition System for Dutch 11

Setting up an approach to controlling this process in more detail would be a useful
topic for future research.
Using this methodology, we succeeded in quickly building a system for NER

in Dutch with at least for Dutch state-of-the-art precision and recall.

References

Appelt, D. E. and Martin, D. L.(1999), Named entity recognition in speech: Ap-
proach and results using the textpro system, Proceedings of the DARPA
Broadcast News Workshop, pp. 51–56.

Bikel, D. M., Miller, S., Schwartz, R. and Weischedel, R.(1997), Nymble: a high-
performance learning name-finder, Proceedings of the 5th Conference on
Applied Natural Language Processing, pp. 194–201.

Black, W. J., Rinaldi, F. and Mowatt, D.(1998), Facile: Description of the ne
system used for muc-7, Proceedings of the 7th Message Understanding
Conference.

Borthwick, A., Sterling, J., Agichtein, E. and Grishman, R.(1998a), Exploiting
diverse knowledge sources via maximum entropy in named entity recogni-
tion, Proceedings of the 6th Workshop on Very Large Corpora.

Borthwick, A., Sterling, J., Agichtein, E. and Grishman, R.(1998b), Nyu: Descrip-
tion of the mene named entity system as used in muc-7, Proceedings of the
7th Message Understanding Conference.

Buchholz, S. and van den Bosch, A.(2000), Integrating seed names and n-grams
for a named entity list and classifier, Proceedings of LREC, pp. 1215–1221.

Cohen, W. W.(1995), Fast effective rule induction, Machine Learning: Proceed-
ings of the 12th International Conference, pp. 115–123.

Collins, M. and Singer, Y.(1999), Unsupervised models for named entity classifi-
cation, Proceedings of the Joint SIGDAT Conference on Empirical Methods
in NLP and Very Large Corpora.

Cucerzan, S. and Yarowsky, D.(1999), Language independent named entity recog-
nition combining morphological and contextual evidence, Proceedings of
theWorkshop on Very Large Corpora at the Conference on Empirical Meth-
ods in NLP.

Daelemans, W., Zavrel, J., Berck, P. and Gillis, S.(1996), Mbt: A memory-based
part of speech tagger-generator, in E. Ejerhed and I. Dagan (eds), Fourth
Workshop on Very Large Corpora, pp. 14–27.

Mikheev, A., Grover, C. and Moens, M.(1999a), Xml tools and architecture for
named entity recognition,Markup Languages 1(3), 89–113.

Mikheev, A., Moens, M. and Grover, C.(1999b), Named entity recognitionwithout
gazetteers, Proceedings of the 10th Conference of the European Chapter of
the ACL.

Miller, D., Schwartz, R., Weishedel, R. and Stone, R.(1999), Named entity extrac-
tion from broadcast news, Proceedings of DARPA Broadcast News Work-
shop.



12 Fien De Meulder, Walter Daelemans and Véronique Hoste

Wacholder, N., Ravin, Y. and Choi, M.(1997), Disambiguation of proper names in
text, Proceedings of the 5th Applied NLP Conference, pp. 202–208.

Wakao, T., Gaizauskas, R. and Wilks, Y.(1996), Evaluation of an algorithm for
the recognition and classification of proper names, Proceedings of the 16th
International Conference on Computational Linguistics, pp. 418–423.


