
Information Extraction via Double Classification

An De Sitter
Dept. of Mathematics and Computer Science

University of Antwerp
Middelheimlaan 1

2020 Antwerpen, Belgium
anneleen.desitter@ua.ac.be

Walter Daelemans
CNTS

University of Antwerp
Universiteitsplein 1

2610 Antwerpen, Belgium
daelem@uia.ua.ac.be

Abstract

Information Extraction is concerned with extract-
ing relevant information from a (collection of) doc-
uments. We propose an approach consisting of two
classification-based machine learning loops. In a
first loop we look for the relevant sentences in a doc-
ument. In the second loop, we perform a word-level
classification. We test the system on the Software
Jobs corpus and we do an extensive evaluation in
which we discuss the influence of the different pa-
rameters. Furthermore we show that the type of
evaluation method has an important influence on
the results.

1 Introduction

An Information Extraction (IE) system has as goal
to extract relevant information from a (collection
of) document(s). What kind of information is rele-
vant is defined by a template.

In this paper we propose an approach consisting
of two classification-based machine learning loops.
In the first loop we select the sentences in the doc-
ument that might contain relevant information. In
a second loop we perform a deeper analysis of those
relevant sentences by performing word-level classi-
fication. By using a rule-based classifier (namely
Ripper [3]) for the second loop (unlike a Naive
Bayes classifier for the first loop), we obtain human-
readable rules.

We did an extensive evaluation of this Dou-
ble Classification approach. To achieve this, we
adapted the evaluation described by Freitag [4]. We
test our method on the Software Jobs corpus 1 and
study the influence of the parameter settings on the
one hand, and the evaluation methodology on the

1Downloaded from ftp:/ftp.cs.utexas.edu/pub/mooney/job-
data/job600.tar.gz

other hand. We obtain good results on most of the
template slots, although for some slots (language
and area) the word-classification approach is not
yet capable of finding good rules. Excluding those
two slots, we obtain a recall of 77% and a precision
of up to 59% if we require that all occurrences of an
item are extracted. If we use the one best per docu-
ment approach, we obtain recall up to 77% and pre-
cision up to 65%. Other IE systems that are evalu-
ated on this corpus (RAPIER [2] and WHISK [12])
obtain a better precision but a worse recall. We
also show that the double classification approach
indeed improves upon a single word-based classifi-
cation approach.

The main contributions of this paper are the in-
troduction of the double classification method on
the one hand, and on the other hand, an exten-
sive evaluation in which we show that the method
of evaluation has an important influence on the
results, and therefore on any comparison between
systems and approaches. The organization of the
paper is as follows: in section 2 we introduce the
double classification approach. Section 3 discusses
the need for a clear evaluation methodology, sec-
tion 4 shows the experimental results. Finally, sec-
tion 5 gives conclusions, related research and fur-
ther work.

2 Double Classification

The intuition for our approach comes from the ob-
servation that humans, when looking for a specific
piece of information in a document, don’t read the
whole document in detail at once. One starts read-
ing globally and based on a quick and superficial
analysis then starts reading parts of the text in
more depth. It is only in the second phase that
the information to be extracted is identified.

In practice, we divide each document into sen-

tences. For each sentence we use a Naive Bayes
classifier working on a bag-of-words representation
of the sentence to decide wether it is relevant or not.
By doing this, we get a set of relevant sentences
s1, s2, . . . per document ordered by a measure of
certainty. In a second step, we use a rule-based
classifier that decides for each word in the sentence
whether it belongs to the entity to be extracted.
We can do this for the best, the two best,... or all
relevant sentences.

Example 1 Figure 1 shows an example of a job
advertisement from the Software Jobs corpus. The
item to be extracted is e.g. the job title. Suppose
that a Naive Bayes classifier considers three sen-
tences as relevant, thus having a confidence higher
than 0.5. In the second step we may use the best
relevant sentence, the two best or all the relevant
sentences to do the word-level classification. In sec-
tion 4 we discuss the consequences of each choice.

The main motivation for this approach is that
the first loop helps to solve the unbalanced training
data problem. Suppose we have 100 documents of
40 sentences each. A sentence consists of 10 words.
Every document has exactly 1 sentence containing
a three-word slot filling. Without the selection of
sentences in the first loop, only 0.8% of the words
belong to the positive class. Because of this skewed
class distribution, a word-based classification ap-
proach is infeasible. In our approach however, with
the selection of resp. 1 or 3 sentences in each loop,
the sizes of the positive classes become respectively
30% and 10%, hence enabling a word-based classi-
fication.

We now describe the two classification loops in
more detail.

2.1 Sentence classification

In the first loop we want to decide at sentence-level
whether a sentence contains relevant information or
not. Because we are only doing a deeper analysis
of those sentences that this step selects as relevant
ones, we need a high recall. In addition, we want
the precision to be as high as possible, but this is
less crucial than the high recall. For the sentence
classification loop, we use a Naive Bayes classifier.
We used Bow [9], a library of C-code designed and
written by Andrew McCallum, and in particular we
used Rainbow, a front-end that does document clas-
sification. Rainbow first reads all training data and
archives a model containing their statistics. Using
this model, Rainbow performs classification for each
test document.

In this case, each sentence is seen as a separate
document. We use the sentences as bags of words
without adding any further linguistic information
such as POS tags.

The greatest problem we encountered was the
large difference between the number of relevant and
non-relevant sentences. In our experiments (see sec-
tion 4) we typically have 1 relevant sentence for
each 40 non-relevant ones. This leads to highly un-
balanced classes with which standard Naive Bayes
has difficulties. As an initial solution, we sample
from the set of non-relevant sentences about the
same amount of data as we have relevant sentences.
For testing purposes we use the data as is (with
unbalanced classes). By doing this, we achieve our
goal of high recall (we obtain 95-100% recall) and
precision of 80-90% at sentence level. So, almost all
relevant sentences are recognized, and not too many
mistakes are made on the non-relevant sentences.

2.2 Word Classification

The word-level classification is developed in anal-
ogy with (NP) chunking. Chunking groups words
in sentences into coherent groups such as Nomi-
nal Phrases (NPs, e.g. “the old man) and Adver-
bial Phrases (AdvP, e.g. “not very well). [11] de-
scribed chunking as a tagging task to be solved with
transformation-based error-driven learning. There-
fore each word is classified as in, out, or at the bor-
der of a particular chunk. In analogy to this, we
classify each word of the sentence as being in or
out of the entity to be extracted.

Example 2 If the entity to be extracted is the job
title, sentence 13 from the advertisement in Figure
1 should be annotated as follows (I stands for
in, O for out the entity): MajorO corporationsO

haveO immediateO openingsO forO juniorO

databaseI administratorsI .O In this represen-
tation ‘database administrators’ is unambiguously
annotated as the job title to be extracted.

For the word-level classification, we prefer hav-
ing human-readable rules, such that we have some
insight into how the task has been solved. We used
RIPPER [3], a rule-based classification algorithm.

To keep the system easily adaptable to other
tasks, we tried to use as little information as pos-
sible to solve the task. The default feature vector
(per word) consists of the word to be classified, its
POS tag, a set of the three words before, a set of the
three POS tags before, a set of the three words af-
ter, and a set of the three POS tags after the word.
We made following variations on this default:

class-before We added the class of the former
word. For training we used the actual class
of the former word, for testing the predicted
class. By doing this, we simulate a simple
HMM-approach without losing the advantage
of having readable rules.

context Instead of using only the immediate con-
text of a word, we use the whole sentence
(words and POS tags), still divided in a set of
words (tags) before and a set of words (tags)
after the actual word.

attributes We tried adding a few different extra
attributes: place in the sentence, and boolean
values which indicate if the word starts with
a capital, consists of all capitals or contains a
digit.

Example 3 For sentence 13 from the job adver-
tisement shown in Figure 1 the class-before feature
vector for the word ’developers’ is :

WORDS-BEFORE: for Visual Basic

TAGS-BEFORE: IN JJ NNP

WORDS-AFTER: .

TAGS-AFTER: Punc

WORD: developers

TAG: NNS

CLASS-BEFORE: the prediction on the former word.

The word-level classifier was trained only on the
relevant sentences.

Figure 2 shows an example of a hypothesis built
by RIPPER for extracting salary from the Soft-
ware Jobs corpus. The first rule, for example, can
be read as follows: if the class of the word before
was ‘I’, the word itself is ‘$’ and the tag after the
word is ‘CD’, the current word is tagged as ‘I’.

3 Evaluation

For the evaluation of IE systems, typically stan-
dard metrics from Information Retrieval are used,
namely precision and recall. Precision is the num-
ber of correctly predicted entities divided by all en-
tities predicted. Recall is the number of correctly
predicted entities divided by the number of entities
that should have been found. To compute those and
other metrics, we construct a confusion matrix.

In Information Retrieval or in standard classifi-
cation applications, a confusion matrix is straight-
forward to build: a document is relevant or not, a
mushroom is poisoned or not,... However, in IE the
situation is not always as straightforward. Even

with manually annotating a text, different annota-
tors will often disagree.

Example 4 Consider the following sentence:
Our company is looking for a senior
database administrator (male/
female) to lead the team.
there are different possibilities for job title:
database administrator, senior database
administrator, database administrator
(male/female), and senior
database administrator (male/female) can all
be seen as valid answers by different annotators.

As a result of this, researchers have used vari-
ous criteria for counting an extracted item as being
correct. Some require the exact same boundaries as
were manually annotated in the training set, others
consider “almost the same” boundaries sufficient.

What criterion has to be used, may depend on
the situation as well. If the goal of the IE system
is to fill a database on which queries can be asked,
one wants to be sure that whatever gets into the
database is exact. On the other hand, if someone
has as task to point out the job title in each doc-
ument in a set of job advertisements, he will be
helped more by a system that gives a solution over-
lapping with the correct answer for each document,
than by one that returns the exact answer for only
a small portion of the documents.

However, to be able to interpret results and to
compare different IE systems, it is important to
know how one has performed the evaluation. To
define an evaluation, the first choice that has to be
made, is whether we want to find all occurrences
(AO) of an entity (e.g. every mention of the job title
in the advertisements should be found), or whether
it suffices to find one occurrence for each template
slot. The latter approach is called one best per doc-
ument (OBD).

On the other hand, we have to decide when an
extracted entity is counted as a true positive. In or-
der to implement the ideas mentioned before, Fre-
itag proposed three basic criteria [4]:

exact The predicted instance matches exactly an
actual instance.

contain The predicted instance strictly contains
an actual instance, and at most k neighboring
tokens.

overlap The predicted instance overlaps an actual
instance, there are at most k neighboring to-
kens, and maximum l missing tokens.

We implemented those criteria as three opera-
tors, the latter two having 1 (k) and 2 (k,l) param-
eters.

Example 5 Suppose the sentence in Example 4 is
annotated as follows:
Our company is looking for a <title>
senior database administrator
</title> (male/female) to lead the team.

• senior database administrator is correct
for the three operators;

• senior database administrator
(male/female) is wrong when using the
exact operator, is correct using the contain
and overlap operators admitting 1 neighboring
token.

• database administrator (male/female) is
wrong when using the exact or contain oper-
ator, and is correct when using the overlap op-
erator and admitting 1 neighboring token and
1 missing token.

In our experiments, we show that the choice be-
tween AO and OBD on the one hand, and the type
of operator on the other hand, often has a large
influence on the results obtained. Thus, it is of
utmost importance that the evaluation method is
clearly indicated, to be able to interpret the results
correctly.

4 Experiments

4.1 Setup

For our experiments we used the Software Jobs
corpus: a set of 600 computer-related job postings.
Figure 1 shows an example of a job advertisement
from the corpus. The templates for this corpus con-
sist of 17 slots: id, country, state, city, company,
title, salary, recruiter, post-date, desired
years of experience, required years of
experience, desired degree, required degree,
platform (e.g. Windows NT), application (e.g.
SQL server), area and language (e.g. Java)).
Several of those slots take multiple fillers (e.g.
language, area, ...). Not all entities appear in each
document.

For our experiments we used 10-fold cross-
validation2. We report recall and precision, aver-

2Except for some rare slots as e.g. desired years of expe-
rience. In this case we used 5-fold cross-validation to omit
large fluctuations in the scores.

feature vector AO OBD

recall precision recall precision

class-before 77% 43% 74% 26%

attributes 78% 44% 75% 38%

small context 49% 46% 58% 40%

Table 1: Influence of the feature vector used to ex-
tract the “company”. All relevant sentences were
used, we report the scores obtained on finding the
exact boundaries.

nr sentences AO OBD

recall precision recall precision

1 18% 33% 33% 37%

2 34% 35% 34% 37%

3 40% 34% 35% 37%

all 43% 31% 35% 35%

Table 2: Influence of the number of relevant sen-
tences used in the word-level classifier to extract
the “title”. The feature vector containing the class-
before was used, we report the scores obtained on
finding the exact boundaries.

aged over those cross-validations. For some overall
results, we report F1-measure as well. We evaluate
the AO as well as the OBD setting. We evaluate
each slot separately and report average recall and
precision (and F1-measure) over all slots as overall
scores.

4.2 Results

We report results on two fields: first we evaluate
the influence of different parameter settings of the
double classification method on recall. Secondly,
we report on how the different evaluation criteria
influence the results on single slots and on the over-
all result. Finally, we did some testing with using
only the word-level classifier, and show that perfor-
mance suffers a lot from omitting the sentence-level
classifier.

Influence of the parameter settings

The double classification method has two impor-
tant parameters: the feature vector used for the
word-level classification and the number of sen-
tences indicated as relevant by the sentence-level
classifier that are used for the word-classifier.

Table 1 shows the influence of the feature vec-
tor used to extract company from the job advertise-
ment. Early tests(not included in the table) showed
that adding the (predicted) class of the former word

AO OBD

recall precision recall precision

exact 43% 31% 35% 35%

contains(2) 54% 39% 44% 45%

overlaps(2,1) 84% 61% 70% 71%

Table 6: Influence of the operator used to evalu-
ate the extraction of the “title”. All relevant sen-
tences were used, feature vector is default with
class-before.

adds important information. The first row gives
the scores when using the class-before feature vec-
tor. In the second row, we add extra attributes as
described before. In the third row, more context
is added to the class-before feature vector. We see
that adding extra attributes does improve the pre-
cision somewhat in the OBD-case, but doesn’t help
otherwise. In this case of extracting ‘company’,
adding extra context deteriorates the results as far
as recall is concerned, while precision is improving
the result somewhat. We tested this on other enti-
ties as well and noticed similar results.

Table 2 shows the influence of the number of rel-
evant sentences that are passed from the sentence-
level classifier to the word-level classifier, tested in
particular for the ‘title’ slot. As might be expected,
this has no real influence on recall or precision in
the OBD setting, but it has a rather large impact
on the recall in the AO setting. By using more
sentences, we obtain a higher recall, but when us-
ing all relevant sentences, the precision decreases,
although not too much.

Table 3 gives an overview of the scores of each
template slot, requiring exact boundaries, using
the class-before feature vector and all relevant sen-
tences. RIPPER failed to find good rules for the
slots language and area using the current feature
vectors, and obtained no better results than the
default error (on word-basis). One possible expla-
nation is that those fields mostly take multiple slot
fillers which typically are mentioned in the docu-
ment as an enumeration of some sort. Regular ex-
pressions probably would do better for those enti-
ties. Further important remarks are:

1. Some entities, e.g. ‘company’ and ‘title’ obtain
much better results using more lenient evalua-
tion methods, as is discussed in the next para-
graph.

2. ‘state’ as well as ‘city’ obtain a better precision
but worse recall by using only the best relevant
sentence for the word-classification instead of
all relevant sentences.

Influence of evaluation methodology

In section 3 we discussed that a more lenient eval-
uation than requiring exact boundaries can be use-
ful. We evaluated all entities with three operators:
requiring exact boundaries (exact), admitting two
neighboring tokens (contain(2)), and admitting two
neighboring tokens plus missing at most one token
(overlap(2,1)). Table 6 shows the results of those
evaluations for the ‘title’ slot. Recall as well as
precision increase a lot by using a more lenient op-
erator. This gives us an important insight in the
errors made by the IE system as well: the large
gap between exact and overlap-scores show that the
method is capable of finding “almost correct” solu-
tions.

Although not all entities are influenced equally
by this, we see important differences in the over-
all scores. Table 5 gives recall and precision for
the overall score. The overall score has been cal-
culated by taking the average over all slots, except
for language and area, because for those results
we did not obtain better results than the default
error. Two other systems that have been trained
on (subsets of) the same data set, RAPIER [2] and
WHISK [12], both obtain recall of about 55% and
precision of about 85%. They used different meth-
ods to count performance, so comparison is diffi-
cult, but it still seems clear that although we ob-
tain a significant lower precision, our recall is much
higher. A more extensive comparison using exactly
the same evaluation method and data should be
done to allow more reliable comparisons.

Single level classification

In Table 4 we compare our double classification
approach with a baseline system which uses only
the word-level classifier. For this baseline system
we trained Ripper on approximately 250 (randomly
selected) job advertisements, using all (positive as
well as negative) sentences. We tested on approxi-
mately 60 (randomly selected) job advertisements.
Because of memory requirements, it was not pos-
sible to use all available data. We did use the
class-before setting. We tested the slots country,
state, salary, company and title. The scores for
country are comparable to the scores obtained by
the double classification, salary gives worse, but
still acceptable results, but the other fields give
much worse results than obtained by the double
classification approach. For state we see that the
single classifier is not able to distinguish between
the states that should be extracted and the other

mentions of states. A deeper look at the results for
company and title taught us that although the sin-
gle classifier is able to find the ‘almost’ place of the
entities (title obtained 35% precision, 37% recall
for all occurrences, 30% precision, 27% recall for
one best per document using the overlap(2,1) mea-
sure), it is not capable of finding the correct fillers.

5 Conclusions, related re-
search and further work

We proposed a double classification loop approach
to alleviate the problem of unbalanced training data
sets in a classification-based learning approach to
IE. An important advantage of this method is that
by using a rule-based classifier for the second loop,
we obtain human-readable extraction rules. We
used no semantic information and only POS tags as
syntactic information in order to keep the system
as portable as possible. Furthermore we did an ex-
tensive evaluation in which we discussed the effect
of different parameters of the system and showed
that it is of utmost importance to be clear about
the evaluation methodology used to be able to in-
terpret the results correctly.

Although a hmm approach[1, 5, 6, 10] to IE also
uses basically a classification-based approach with a
state for words that are part of the filler of a slot to
be extracted and a state for the ’empty tag’, they
are limited in the amount of lexical context they
can take into account, and in the amount and types
of information they can take into account without
running into severe sparse data problems. In [13]
it is shown that word-classification based learning
methods can outperform hmms.

We believe the double classification approach
is new in machine learning-based IE. The first,
sentence-level, classification loop is similar to ma-
chine learning approaches to document summariza-
tion, such as [8], in which sentences are classified as
relevant or not for appearing in the summary. A
two-stage approach in the context of hybrid statis-
tical and knowledge-based IE can be found in [7].

Future research concerns the improvement of the
double classification approach by extracting differ-
ent template slots at the same time. Furthermore,
we are planning to test this IE system on other do-
mains and compare it to alternative methods. We
are also working on a formalization of the evalua-
tion methodology for IE systems.

References

[1] D. Bikel et al. Nymble: a high-performance
learning name-finder. In Proc. ANLP, 194–
201, 1997.

[2] M. E. Califf and R. J. Mooney. Bottom-
up relational learning of pattern match-
ing rules for information extraction. In
http://citeseer.nj.nec.com/califf02bottomup.html.

[3] W. Cohen. Fast effective rule induction. In
Proc. ICML, 1995.

[4] D. Freitag. Machine learning for information
extraction in informal domains. In Phd thesis,
Carnegie Mellon University, Pittsburgh PA.,
1998.

[5] D. Freitag and A. McCallum. Information ex-
traction using hmms and shrinkage. In Proc.
AAAI-99 Workshop on Machine Learning for
Information Extraction, 1999.

[6] D. Freitag and A. McCallum. Information ex-
tractaction with hmm structures learned by
stochastic optimization. In Proc. of AAAI,
2000.

[7] P. Jacobs, G. Krupka, and L. Rau. Lexico-
semantic pattern matching as a companion
to parsing in text understanding. In Fourth
DARPA Speech and Natural Language Work-
shop, 337–342, 1991.

[8] J. Kupiec, J. O. Pedersen, and F. Chen. A
trainable document summarizer. In ACM SI-
GIR, 68–73, 1995.

[9] A. McCallum. Bow: a toolkit for sta-
tistical language modeling, text re-
trieval, classification and clustering. In
http://www.cs.cmu.edu/∼mccallum/bow,
1996.

[10] A. McCallum, D. Freitag, and F. Pereira. Max-
imum entropy markov models for information
extraction and segmentation. In Proc. ICML,
2000.

[11] L. Ramshaw and M. Marcus. Text chunking
using transformation-based learning. In Proc.
Workshop on Very Large Corpora, ACL, 82–
94, 1995.

[12] S. Soderland. Learning information extraction
rules for semi-structured and free text. In Ma-
chine Learning 34, 233–272, 1999.

[13] J. Zavrel and W. Daelemans. Feature-rich
memory-based classification for shallow nlp
and information extraction. In Text Mining.
Theoretical aspects and applications. Springer
LCNS series., 2003.

1. From : spectrum@onramp.net
2. Newsgroups : austin.jobs
3. Subject : <country> US </country> - <state> TX </state> - <city> Austin

</city>

- <language> VISUAL BASIC </language> <title> Developers </title>

<salary> 50Kto 70K </salary> Date : Sat , <post-date> 23 Aug 97
</post-date> 09 : 52 : 21

4. Organization : OnRamp Technologies , Inc. ; ISP
5. Lines : 65
6. Message - ID : < <id> NEWTNews.872347949.11738.consultsws - n </id> >

NNTP - Posting - Host : ppp10 - 28.dllstx.onramp.net
.

10. <country> US </country> - <state> TX </state> - <city> Austin </city>

- junior <title> database administrators </title>

<salary> 50Kto 70K </salary>

11. POSTING I.D .
12. D05
13. Major corporations have immediate openings for junior

<title> database administrators </title> .
14. <req-years-experience> 2 </req-years-experience>

- <desired-years-experience> 5 </desired-years-experience> years
experience ; <application> Oracle </application> or <application> SQL
Server </application> helpful .

15. <platform> Windows 95 </platform> and <platform> Windows NT
</platform> programming a plus .

16. Please contact Bill Owens at (972) 484 - 9330 ; FAX (972) 243 - 0120 at
<recruiter> Resource Spectrum </recruiter> .
.

26. <recruiter> Resource Spectrum </recruiter>

27. 5050 Quorum Dr. , Ste 700
28. Dallas , Texas 75240

.

Figure 1: (Part of) an annotated example of a job advertisement.

i :- CLASS BEFORE=i, TAGS AFTER CD, WORD ’$’.

i :- CLASS BEFORE=i, TAG CD.

i :- CLASS BEFORE=i, TAGS AFTER CD, WORDS BEFORE ’:’.

i :- WORD ’$’.

i :- CLASS BEFORE=i, TAGS AFTER CD, WORDS AFTER ’000’.

i :- CLASS BEFORE=i, TAG NN, WORD ’-’.

i :- TAG TO.

i :- CLASS BEFORE=i, WORDS AFTER ’:’, WORDS BEFORE ’$’.

i :- CLASS BEFORE=i, WORD ’-’.

i :- CLASS BEFORE=i, WORD hr.

i :- CLASS BEFORE=i, WORDS BEFORE ’-’, WORDS AFTER ’;’.

i :- CLASS BEFORE=i, WORD ’55K’.

i :- CLASS BEFORE=i, TAG NN, TAGS AFTER IN.

i :- WORDS BEFORE Salary, WORDS BEFORE ’:’, WORDS AFTER ’-’.

i :- WORDS BEFORE in, WORDS AFTER ’.’.

i :- CLASS BEFORE=i, WORDS AFTER and.

i :- WORDS AFTER ’70K’, TAG CD.

default o.

Figure 2: Hypothesis built by RIPPER for the ’salary’ entry.

AO OBD
recall precision F1 recall precision F1

ID 98% 97% 97% 96% 99% 97%
country 98% 92% 95% 94% 91% 92%
state 97% 77% 86% 95% 93% 94%
city 95% 84% 89% 92% 90% 91%
company 78% 45% 57% 74% 26% 38%
title 43% 31% 36% 35% 35% 35%
salary 70% 56% 62% 72% 62% 67%
recruiter 79% 40% 53% 74% 44% 55%
post-date 99% 84% 91% 97% 99% 98%
desired degree 45% 28% 35% 37% 29% 33%
required degree 43% 29% 35% 51% 41% 45%
desired years
experience 55% 33% 41% 66% 36% 47%
required years
experience 80% 50% 62% 81% 72% 76%
platform 34% 31% 32% 38% 35% 36%
application 29% 32% 30% 30% 31% 30%
area 17% 16% 16% 18% 16% 17%
language 27% 25% 26% 34% 33% 33%
overall 63.9% 49.9% 55.5% 63.7% 54.8% 58.0%

Table 3: Individual results for each entity. All relevant sentences were used, feature vector is default
with class-before, exact boundaries were required.

AO OBD
single double double single double double

best relevant all relevant best positive all positive
company 6%/4% 41%/22% 49%/77% 0%/0% 40%/80% 26%/74%
country 87%/92% 77%/97% 96%/49% 90%/87% 91%/94% 97%/93%
state 23%/23% 93%/95% 97%/93% 22%/22% 93%/95% 97%/93%
title 9%/10% 33%/18% 31%/43% 3%/3% 38%/33% 35%/35%
salary 55%/55% 56%/70% 64%/54% 46%/48% 62%/72% 68%/72%

Table 4: Comparison between single loop information extraction (only word-based classification using
Ripper) and the double classification approach. For the latter approach we report results from using
the best relevant sentence and using all relevant sentences for the word-level classification. We report
(precision/recall).

AO OBD
recall precision F1 recall precision F1

exact 70% 54% 61% 70% 59% 64%
contains(2) 73% 55% 63% 72% 60% 65%
overlaps(2,1) 77% 59% 67% 77% 65% 70%

Table 5: Influence of the operator used to evaluate on the overall score, minus language and area. All
relevant sentences were used, feature vector is default with class-before.

