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Abstract
This paper presents the results of our machine learning experiments in verb classification. Using Beth Levin’s semantic classification of
the English verbs as a gold standard, we (i) test the hypothesis that the syntactic behavior of a verb can be used to predict its semantic
class, and (ii) investigate whether a robust shallow parser can provide the necessary syntactic information. With 277 verbs belonging to
six of Levin’s classes, we dotype classificationexperiments usingRIPPER, an inductive rule learner. Having only a set ofn most likely
subjects or objects as features, this machine learning algorithm is able to predict the correct class with± 58% accuracy. This result is
comparable with results from other researchers, like Merlo and Stevenson, Stevenson and Joanis, and Schulte im Walde.

1. Introduction
1.1. Overview

In this paper, we present the results of our machine
learning experiments in verb classification. We will start
by sketching the background of this line of research, start-
ing with Beth Levin’s manual classification of the English
verbs (Levin, 1993), and linking our work to it. Next, we
will show the gold standard – six classes from Beth Levin’s
verb classification – used for evaluating the outcome of our
experiments. We continue by explaining how we gathered
data from the British National Corpus (BNC), and how
we presented the data to the machine learning algorithm
(RIPPER) used in the experiments. Finally, we report and
analyze the results, compare them with related work and
present the lines of research we will follow in the near fu-
ture.

1.2. Background

In 1993, Beth Levin published her Ph.D. thesis (Levin,
1993), in which she described her handcrafted semantic
classification of the English verbs. Her – very simplified
– hypothesis is that the semantics of a verb determine to
a large extent its syntactic behavior. By analyzing the En-
glish verbs along some syntactic criteria – among others the
sub-categorization frames in which the verbs appear – she
manages to distinguish 49 semantically coherent classes.

Levin’s work was a source of inspiration, and a possi-
bility for evaluation, for computational linguists working
on semantic (verb) classification. The main goals of this
line of research are (i) trying to classify or cluster words –
in this case verbs – automatically according to their seman-
tics, and (ii) determining which features are informative for
this task.

Research on verb classification will enable us to dolex-
ical acquisitionfor verbs: it will help in making or extend-
ing a lexicon with, for example, information on the seman-
tic class of a verb. Another possible benefit of verb clas-
sification is that these techniques will help us to decide on
the sub-categorization frame, or other syntactic or semantic

information, ofunknownor newverbs.

1.3. Our Research

In our research, we aim attype classificationof English
verbs into Levin’s classes. With type classification, we
mean that we collect information for the verbs, and for each
particular verb we merge this information into one data vec-
tor. Then, on the basis of the collected information, we try
to predict the semantic class of an unknown or new verb.

The information we use to classify the verbs is provided
by ashallow parser: in the experiments reported here, we
limited the information to the subjects and objects of the
verbs. This information is fairly easy to extract from a shal-
low parsed corpus: we did not need to develop (complex)
heuristics.

2. The Gold Standard
From Levin’s classification, we selected a subset of 6

classes, some of which are divided in subclasses. These
classes contain 318 verbs, of which we used only 277, be-
cause for the remaining 41 verbs we did not find or found
not enough data in our corpus. Some of these verbs are am-
biguous and appear in two of the six classes. For practical
reasons, we ignored this ambiguity in our experiments: we
assume that the ‘main’ class of a verb is the first class it
appears in.

The selected classes and subclasses, with the number
given by Levin to that class between brackets, are:

• verbs of contact by impact(18), containing four sub-
classes:

– hit verbs(18.1)

– swat verbs(18.2)

– spank verbs(18.3)

– non-agentive verbs of contact by impact(18.4)

• poke verbs(19)

• verbs of contact(20)



• verbs of cutting(21), containing two subclasses:

– cut verbs(21.1)

– carve verbs(21.2)

• verbs of combining and attaching(22), containing five
subclasses:

– mix verbs(22.1)

– amalgamate verbs(22.2)

– shake verbs(22.3)

– tape verbs(22.4)

– cling verbs(22.5)

• verbs of separating and disassembling(23), contain-
ing four subclasses:

– separate verbs(23.1)

– split verbs(23.2)

– disassemble verbs(23.3)

– differ verbs(23.4)

Table 1 shows the distribution of the 318 verbs over the
6 classes and 17 subclasses, expressed in numbers and per-
centages, and also lists some example verbs. Some classes
are very small, like class 19, 22.5 and 23.4: machine learn-
ing algorithms can be expected to have difficulties learning
these classes.

We evaluated our machine learning experiments in two
ways. A first evaluation was done by looking at only the
main classes: we will call this thecoarse-grained evalu-
ation. A second evaluation was done by taking the sub-
classes into account: we will call this thefine-grained eval-
uation.

From Table 1, we can induce arandomanddefaultbase-
line to compare our results with. The random baseline re-
sult is obtained by assigning class labels to the verbs ac-
cording to the distribution in Table 1: in the coarse-grained
case this results in 29.8% accuracy and in the fine-grained
case in 9.4% accuracy. For the default baseline, we label
each verb with the most frequent class label: this is class
22 in the coarse-grained case, resulting in 43.3% accuracy,
and class 22.4 in the fine-grained case, resulting in 16.2%
accuracy.

3. Data Acquisition and Representation
For the 277 verbs in the six classes from Levin, we col-

lected information in the written part of the BNC (± 60M
words). This corpus was shallow parsed with a memory-
based shallow parser (Buchholz et al., 1999; Daelemans
et al., 1999), developed at our research site1. After shallow
parsing, we were able to make two lists for each verb: one
with all the head nouns of the subjects and one with all the
head nouns of the objects. These two lists were sorted by
the statistical measurelikelihood ratio: with this measure,
the following two hypotheses for a subject-verb or object-
verb pair are examined – see also (Manning and Schütze,
1999):

1The shallow parser was developed in co-operation with the
ILK research group from the University of Tilburg (The Nether-
lands).

• Hypothesis 1 is the formulation of independence: the
fact that the noun occurs in the subject position is not
heavily determined by the verb.

H1 : P (noun as subject|verb) = p =
P (noun as subject|¬verb)

• Hypothesis 2 is the formulation of dependence: the
fact that the noun occurs in the subject position is to a
large extent determined by the verb.

H2 : P (noun as subject|verb) = p1 6= p2 =
P (noun as subject|¬verb)

The values forp, p1 andp2 are computed as follows:

s = f(noun as subject)

sv = f(noun as subject,verb)

v = f(verb) V = f(all verbs)

p =
s

V
p1 =

sv

v
p2 =

s− sv

V − v

Assuming a binomial distribution:

b(k;n, x) =
(

n

k

)
xk(1− x)(n−k) (1)

the likelihoods of the two hypotheses above for the counts
for s, v andsv attested in the BNC, are:

L(H1) = b(sv; v, p)b(s− sv;V − v; p) (2)

L(H2) = b(sv; v, p1)b(s− sv;V − v; p2) (3)

The log of the likelihood ratio can then be computed as
follows:

log λ = log
L(H1)
L(H2)

(4)

log λ = log
b(sv; v, p)b(s− sv;V − v; p)

b(sv; v, p1)b(s− sv;V − v; p2)
(5)

log λ = log L(sv; v, p) + log L(s− sv;V − v; p)
− log L(sv; v, p1) (6)

− log L(s− sv;V − v; p2) (7)

where:L(k, n, x) is equal toxk(1− x)n−k.
The collected data was presented to the machine learn-

ing algorithm as follows: for each verb, we have only two
features. The first feature is then most likely head nouns in
the subject positionof the verb, and the second feature is the
n most likely head nouns in the object position of the verb.
The variablen ranged from 5 to 25, in steps of 5. Withn
most likelywe actually meanthe at most n most likelysub-
jects or objects. If we only find 10 different head nouns in
the subject or object position of some verb, we still include
it in our experiments where the variablen is larger than 10.

We conclude this section with Table 2, in which we list
some verbs with their 5 most likely (according tolikelihood
ratio) subjects and nouns, to illustrate how we presented
our data to the machine learning algorithmRIPPER. Table 2
also shows that verbs from the same semantic class (can)
have some nouns in common in their list of most likely sub-
jects or objects.



class # verbs % subclass # verbs % examples
18 70 21.3% 18.1 24 7.3% beat knock

18.2 11 3.4% bite shoot
18.3 25 7.6% flog belt
18.4 10 3.0% crash thud

19 6 1.8% / / / poke stick

20 12 3.7% / / / kiss lick

21 42 12.8% 21.1 10 3.0% hack slash
21.2 32 9.8% chop squash

22 142 43.3% 22.1 15 4.6% blend link
22.2 42 12.8% unify pair
22.3 29 8.8% roll splice
22.4 53 16.2% string knot
22.5 3 0.9% cleave cling

23 56 17.1% 23.1 12 3.7% divide part
23.2 13 4.0% break pull
23.3 29 8.8% unzip unlace
23.4 2 0.6% differ diverge

Table 1: The distribution of the verbs over the (sub)classes

verb 5 most likely subjects 5 most likely objects main class label

pound heart head foot rain pavement stair earth CLASS 18
blood road head

drum finger heart rain roar finger business CLASS 18
blood support interest heel

chop tbsp onion stir parsley onion tomato CLASS 21
mushroom wash garlic herb

slice blade onion oz carrot bread tomato onion CLASS 21
pain mushroom loaf

seal fate police lip fate envelope CLASS 22
door end victory gap deal

clamp hand finger car police hand teeth lip CLASS 22
mouth technique jaw

Table 2: Some examples of verbs with their 5 most likely
subjects or objects.

4. Machine Learning Experiments
The machine learning algorithm we have experimented

with is calledRIPPER. RIPPERis an inductive rule learner:
it induces classification rules from labeled examples by it-
eratively growing and then pruning rules. For more details
on this algorithm, we refer to (Cohen, 1995) and (Cohen,
1996).

The advantage of usingRIPPER is that it allows set-
valued attributes: you do not need to convert the set-valued
features to a binary format. Set-valued attributes is exactly
what we are using: the featuren most likely subjectsis the
setof nouns appearing as head of the subject.

For each value ofn, we searched the optimal parameter
setting for this machine learning algorithm by doing leave-
one-out training and testing: each one of the 277 verbs
acted as test material, while the remaining 276 verbs were
used as training material.

Depending on the type of features used – nominal, nu-
meric, set-valued –RIPPERlearns rules of the form “if value
for feature X (matches|contains|is greater than|is lesser
than| . . .), then assign class label Y”. Below are two ex-
amples of rules – related to the verbs in Table 2 – learned

set- default best default random
size setting setting baseline baseline

5 51.6 53.8
10 54.5 56.7
15 53.4 54.2 43.3 29.8
20 51.3 57.8
25 52.7 56.7

Table 3: Coarse-grained evaluation results – accuracy in
percentages

by RIPPERfrom our dataset:

• CLASS21 4 0 IF OBJS ∼ onion .

• CLASS18 5 1 IF SUBJS ∼ heart .

We use nominal set-valued features, so these rules must be
interpreted as “if the set of n most likely objects contains
onion, then assign class label CLASS21”, and “if the set
of n most likely subjects contains heart, then assign class
label CLASS18”, respectively2.

5. Results and Analysis
Table 3 shows the classification results ofRIPPER, eval-

uated in the coarse-grained way. The numbers are accu-
racies expressed in percentages. The columnset-sizeindi-
cates the number of most likely subjects or objects we have
used in the set-valued attributes for each verb. Though the
accuracies are not very high, in all cases the default setting

2The two pairs of numbers in these rules (4 0 and5 1) indi-
cate the number of data points in the training set to which the rule
applies: the first number in the pair is the number of data points
for which the rule predicts the class correctly, the second number
is the number of data points to which the rule assigns an incorrect
class label.



set- default best default random
size setting setting baseline baseline

5 23.1 25.6
10 26.7 28.5
15 25.6 31.4 16.2 9.4
20 24.6 31.1
25 23.1 30.3

Table 4: Fine-grained evaluation results – accuracy in per-
centages.

18 19 20 21 22 23

prec. 58.5 0.0 66.7 75.0 57.4 33.3
rec. 45.3 0.0 72.7 25.0 90.6 7.0

FB=1 55.3 / 67.8 53.6 62.0 19.0

Table 5: Precision, recall and FB=1 scores for the six main
classes.

scores better than both baseline results. With parameter op-
timization, we can improve the results a bit: the best result
is obtained when the set-size is 20, yielding a classification
accuracy of 58%.

Table 4 shows the results ofRIPPERwhen analyzed in a
fine-grained manner. It is clear that this task is much more
difficult – but again all results withRIPPER’s default set-
tings are better than both baseline results. After parameter
optimization and with a set-size of 15, the highest accuracy
obtained is 31%.

In both evaluation types, the results are better than the
baseline results, though the error reduction in the coarse-
grained case is higher than in the fine-grained case. In the
coarse-grained evaluation, the error reduction compared to
the default baseline result is 23.6% and to the random base-
line result is 39.8%. In the fine-grained case, the error re-
duction is 17.7% compared to the default and 24.3% com-
pared to the random baseline.

Table 5 shows the precision, recall and FB=1 scores for
the six main classes in the best output we obtained with
RIPPERin the coarse-grained evaluation. For most classes,
precision is acceptable, but recall is quite low – exceptions
are class 19 and 23. The reasonable precision but low recall
suggests that for most classes,RIPPER learns a few rules
which work well for a small set of verbs, but not for the
whole class. The results for class 19 are very bad: it has
zero precision and recall. Containing only 6 verbs, this
class is the smallest:RIPPERdoes not have a lot of training
material for this class. If we leave out during evaluation the
classes with fewer than 10 verbs, which are class 19, 22.5
and 23.4, the classification accuracy improves a bit: 59% in
the coarse-grained and 33% in the fine-grained case.

For class 22, recall is very high: more than 90%. This
is because it is thedefault classfor RIPPER: the machine
learning algorithm starts by making rules for the smallest
class first, then for the second smallest, and so on. For the
largest class, there are no rules: if a new verb has to be
classified, and all rules fail,RIPPERassigns it the label of
the majority class.

The results in Tables 3, 4 and 5 indicate that to a cer-
tain extent, we can predict semantic classes from text with
a machine learning algorithm by using little information
provided by a shallow parser. For the coarse-grained case
the results are reasonable, but for the fine-grained case we
probably need more or other features.

6. Related Work
Table 6 summarizes very briefly the work of other re-

searchers in the area of verb classification. The main dif-
ference between our research and the work summarized in
Table 6 is that we have used nominal values, selected with
a statistical criterion, whereas other researches have used
numeric values – frequencies or probabilities.

The most work has been done by Merlo and Stevenson
(see (Merlo and Stevenson, 2001; Stevenson and Merlo,
1999; Stevenson et al., 1999; Stevenson and Merlo, 2000;
Merlo et al., 2002): with a decision tree learner and with
frequency counts for five features, they obtain 69% clas-
sification accuracy. However, they classify verbs in only
three classes which are not really semantically coherent and
which do not correspond to classes from Beth Levin’s clas-
sification.

In further research, Stevenson, in joint work with Joa-
nis (Stevenson and Joanis, 2003), did use Levin’s classes
to evaluate the verb classification results: using a feature
selection algorithm, which has to select among 220 fea-
tures, and a decision tree learner, the best result they obtain
is 58%. They also experimented with unsupervised learn-
ing, but results are much lower: their hierarchical clustering
algorithm is able to reconstruct Levin’s classification with
29% accuracy.

The state-of-the-art research comes from Schulte im
Walde (Schulte im Walde, 1998): using frequency counts
of verbs for a set of sub-categorization frames, she is able
to reconstruct Levin’s classification with unsupervised ma-
chine learning algorithms with 61% accuracy. She also did
classification experiments with German verbs, using simi-
lar sub-categorization information (Schulte im Walde and
Brew, 2002), but unfortunately she did not report the results
in terms of classification accuracies.

Making a sound comparison of our results with the
above mentioned research is not easy: they all use differ-
ent classes and different machine learning methods. More-
over, it is never very clear whether the reported results are
at the coarse-grained or at the fine-grained level. Still, we
feel that our research can be best compared with Stevenson
and Joanis’ research – we even obtain similar results, 58%
accuracy.

7. Future Work
In the following paragraphs we will briefly discuss our

plans for near future work within the field of verb classifi-
cation.

Comparison with other work. First of all, to make a
sound comparison with other researchers’ results, we will
do similar experiments using the verbs used in Stevenson
and Joanis’ experiments (Stevenson and Joanis, 2003). The
classes to which these verbs belong are listed in Table 7.



authors classes features algorithm result
Merlo and Stevenson 3 ( Levin classes) freq. counts C5.0 69%

for 5 features
Joanis and Stevenson 13 Levin classes freq. counts C5.0 58%

for 220 hierarchical 29%
features clustering

Schulte im Walde 30 Levin classes freq. of verb iterative 61%
with sub- clustering

categorization latent class 54%
frames analysis

Table 6: A summary of related work.

class subclasses
9 9.1-6 (other verbs of putting)

9.7 (spray/load verbs)
9.8 (fill verbs)

10 10.1, 10.5 (steal and remove verbs)
10.4.1-2 (wipe verbs)
10.6 (cheat verbs)

13 13.1, 13.3 (recipient verbs)
26 26.1, 26.3 (benefactive verbs)

26.1, 26.3, 26.7 (object-drop verbs)
31 31.1 (amuse verbs)

32.2 (admire verbs)
43 43.2 (sound emission verbs)
45 45.1-4 (change of state verbs)
51 51.3.2 (run verbs)

Table 7: Levin’s classes used in Stevenson and Joanis’ ex-
periments.

The class labels between brackets in this table are Steven-
son and Joanis’ interpretation of Levin’s classes. The gran-
ularity of this classification is somewhere in between what
we’ve called coarse- and fine-grained.

More features. We will also try to add more features
which a shallow parser can provide, like for example the
prepositions following a verb and the list of nouns in the
prepositional phrase, and do similar experiments to find out
whether these features can contribute to verb classification.

Token-based verb classification. Our verb classification
experiments reported in this paper weretype-based: infor-
mation is collected by looking at individual tokens of a verb
in a corpus, and for each verb, this information was col-
lapsed in one data vector. It is interesting to investigate
whether atoken-basedapproach will also be successful at
classifying verbs. The experimental set-up will then be as
follows: for each token of a verb in a set ofn verbs, a vec-
tor with information from a shallow parsed corpus (nominal
values such as Part-of-Speech, chunk and relation tags of
the focus word and surrounding words) will be constructed.
For testing/evaluating this approach, we will do some kind
of leave-one-out cross-validation: we will use all vectors
for the tokens ofn-1 verbs as training material, and clas-
sify all vectors for the tokens of the remaining verb (the

unknownverb). In this architecture, the semantic class of
theunknown verbis the label that is most often predicted.

This work is planned for the near future, and the results
will be presented and discussed at the workshop.
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