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Abstract

An important problem in the field of Information Extraction (IE) is the lack of clear guidelines
for evaluating the correctness of the output generated by an extraction algorithm. This paper
tries to handle this problem by providing a formal framework for IE and its evaluation. We
define IE in two different, but frequently used approaches: the “All Occurrences” and the “One
Best per Document” settings, and we give a formal approach for evaluating an IE system in
both settings. Our approach is based on the observation that most commonly used evaluation
measures use the confusion matrix as a basis for their computation. We also shortly discuss the
most frequently used evaluation measures.

1 Introduction

Research on Information Extraction (IE) has been going on for about 15 years. During this period,
research was focussed mostly on finding “good” algorithms for extraction. Datasets vary from
structured over semi-structured to unstructured documents, from real-life applications to cleaned
versions, ... The literature on IE is widely scattered. Workshops, tutorials and papers about IE
may for example be found in machine learning, data mining, computational linguistics and AI
conferences. A more important problem is, that there are no clear standards for the evaluation of
IE algorithms, which makes comparison between them very difficult. Some questions that arise are:

• How is IE defined, i.e., is it about filling a template, or about finding all occurrences of a
certain piece of information in a document?

• When is an extracted item correct? Since there is only about 70% - 85% inter-annotator
agreement on a typical IE task, it is clear that there may be discussions about correctness.

∗The authors gratefully acknowledge the support of the Special Research Fund of the University of Antwerp
†Research Assistant of the Fund for Scientific Research - Flanders.
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• What measures should be used to compute “goodness” of an IE system? Most researchers
report Fβ-scores (e.g. [3], [9]), sometimes recall and precision are reported as well (e.g. [1]).

There is a need for clear guidelines concerning evaluation of IE. The field needs standard eval-
uation procedures, standard datasets which should be clearly described, a formal framework about
how to decide when an item is (in)correct, and clear, informative, standard measures. Concerning
the standard datasets, a lot of work has been, and is done by the RISE consortium [8]. Even though,
it remains important to clearly describe the dataset(s) used in a paper discussing an IE system.
Evaluation procedures are often copied from the IR community and concern mostly cross-validation,
or splitting in training- and testsets. There as well, a clear explanation of the test strategy used is
necessary. This paper deals with a formal framework on how to decide when an extracted item is
(in)correct.

The organization of the paper is as follows: in Section 2, we introduce a formal definition
of Information Extraction, where we need to make a distinction between the “All Occurrences”-
approach and the “One Best per Document”-approach. In Section 3, we formalize the evaluation
of an Information Extraction system. Section 4 discusses a few of the most used measures for
evaluation, and finally we conclude the paper.

2 Defining Information Extraction

2.1 Preliminaries

In the literature, there are multiple proposals for a definition of IE. We shortly discuss three of
them.

Wendy G. Lehnert gave following informal definition of an IE system.

• IE systems analyze unrestricted text in order to extract specific types of information.

• IE systems do not attempt to understand all of the text in all input documents, but they do
analyze those portions of each document that contain relevant information.

• Relevance is determined by pre-defined domain guidelines which must specify, as accurately
as possible, exactly what types of information the system is expected to find.

D. Freitag described the “Information Extraction task” he tried to solve in his work as follows:
Find the best unbroken fragment of text from a document that answers some domain-specific question
[2]. As we will see further on, this only applies on the One Best per Document approach.

A. McCallum and W. Cohen explain the IE task as filling slots in a database from sub-segments
of text [6].

Before we are able to discuss evaluation of IE, it is important to agree on what we mean by IE,
i.e. to define what is an IE task. In what follows, we will formally define an IE task and a solution
to an IE task.

Depending on the intended purpose of the IE system, different approaches may be useful. A first
possibility is the One Best per Document approach. In this case, we see the IE task as filling a given
template structure. This is for example useful if the goal of the IE system is to fill a database in
order to be able to query the information contained in the documents. For example, in the Seminar
Announcements domain [8], we want to fill a database with start-times, end-times, locations and
speakers of seminars. In the Job Advertisements domain [8], a logical application could be to set up
a database containing all information (job title, salary, company,...) about the jobs in the corpus.
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A second possibility is the All Occurrences approach. In this case, we want to find every
occurrence of a certain item (e.g. speaker in the Seminar Announcements domain) in a document.
This may be useful for e.g. annotation purposes.

Which approach should be used, usually depends on the format in which the corpus is given.

Example 1 The document in Figure 1 was taken from the Seminar Announcements corpus. It was
slightly edited for readability and illustrative purpose. The subscripts indicate the word numbers.
The tags between “<” and “>” do not belong to the original document, but indicate the correct
solution in the All Occurrences approach. There are four kinds of information to extract: speaker,
location, start-time (stime) and end-time (etime). In this particular document, no end-time is
provided.

In the One Best per Document approach, a correct solution is the following template:

stime 5:00 PM

etime

speaker Al Roth, Ido Erev

location CMU , Adamson Wing ( Baker Hall )

We do not need the annotations in the document for this approach.

Type1 :2 cmu.andrew.org.heinz3

Topic4 :5 Pitt-CMU6 Rationality7 Seminar8

Dates9 :10 23-Feb-9511

Time12 :13 <stime> 5:0014 PM15 </stime>

Place16 :17 <location> CMU18 ,19 Adamson20 Wing21 (22 Baker23 Hall24 )25 </location>

.26

PostedBy27 :28 Cristina29 Bicchieri30 on31 10-Feb-9532 at33 16:3234 from35

andrew.cmu.edu36

Abstract37 :38

Please39 disregard40 the41 previous42 announcement43 ,44 the45 date46 was47 wrong48

!49

Pitt-CMU50 Rationality51 Seminar52 :53

<speaker> Al54 Roth55 </speaker> and56 <speaker> Ido57 Erev58 </speaker> will59

speak60 on61 "62 Low63 versus64 high65 game66 theory67 ,68 part69 I70 :71 Boundedly72

rational73 adaptive74 behavior75 in76 the77 intermediate78 term79 "80 .81

Thursday82 ,83 February84 2385

Time86 :87 <stime> 5:0088 pm89 </stime> --90

Place91 :92 <location> CMU93 ,94 Adamson95 Wing96 (97 Baker98 Hall99 )100 </location>

.101

Figure 1: Document cmu.andrew.org.heinz-8113-0 from the Seminar Announcements corpus.

In what follows, we formally define the IE task and solution for both approaches.
First, we define a document as follows:
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Definition 1 A document is a sequence of tokens (t1; . . . ; tN ), where a token may be any non-
empty sequence of characters, and usually will be a word, number, or punctuation mark. N is the
length of the document.

We will use D to indicate a set of documents, and D for a single document. With “text fragment”,
we mean a contiguous subsequence of a document.

2.2 All Occurrences

The All Occurrences (AO) approach can be seen as annotating every occurrence of the information
needed (e.g. speaker or start-time in the Seminar Announcements domain) in a document. For
evaluation of an IE system following the AO approach, we need both the exact locations of the
correct answers, and of the predictions made by the system.

Definition 2 An All Occurrences Information Extraction task for a particular type of information
is a function

F : D → 2N×N : D 7→ {(ik,jk); 1 ≤ ik ≤ jk ≤ |D|}

• ik and jk indicate the left and right boundaries of a text fragment;

• (ik,jk) is called an answer;

• |D| is the number of tokens in the document.

An AO IE task is a set of functions F , one for each type of information 1.

Example 2 The AO IE task for the item ‘location’ gives for the document D in Figure 1: Floc(D) =
{(18, 25), (93, 100)}.

The AO IE task for the item ‘speaker’ gives for the document D in Figure 1: Fsp(D) =
{(54, 55), (57, 58)}.

Note that in the first case (‘location’), both answers indicate different occurrences of the same
location. In the second case (‘speaker’), both answers indicate a different speaker. However, since
we want to find every occurrence of every instance, this doesn’t matter in the formal setting.

Definition 3 A solution for an AO IE task F for a particular type of information is a function
F̂ : D → 2N×N : D 7→ {(ik,jk); 1 ≤ ik ≤ jk ≤ |D|}
with

• ik and jk indicate the left and right boundaries of a text fragment;

• (ik,jk) is called a prediction;

• |D| is the number of tokens in the document.

An IE system provides us with a function F̂ for each type of information.

Example 3 A possible solution for Floc is F̂loc(D) = {(18, 25), (50, 50), (93, 101)}. This function
reflects the situation of a trained IE system returning annotations at positions (18,25), (50,50) and
(93,101) as fillings for the slot “location” in document D.

1If an IE system tries to solve different tasks at once, we still can evaluate each task separately.
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2.3 One Best per Document

The One Best per Document (OBD) approach can be seen as filling a template, as was shown in
Example 1. For evaluation of an IE system following the OBD approach, the exact location of the
items is not important.

Note: (x1, . . . , xn) v (y1, . . . , ym) indicates that (x1, . . . , xn) is a subsequence of (y1, . . . , ym).
That is, ∃j∀i = 1 . . . n : xi = yj+i (thus (x1, . . . , xn) is a contiguous subsequence).

Definition 4 A One Best per Document Information Extraction task for a particular type of
information is a function

F : D → {set of sequences} : D 7→ {(a1, . . . , ak); (a1, . . . , ak) v D}. We call (a1, . . . , ak) a
template slot filling, or an answer.

An OBD IE task is a set of functions, one for each template slot.

Example 4 The OBD IE task for the item ‘location’ for the document D in Figure 1 would give
Floc(D) = {(CMU; ,; Adamson; Wing; (; Baker; Hall; ))}.

The OBD IE task for the item ‘speaker’ for the document D in Figure 1 would give
Fsp(D) = {(Al; Roth), (Ido; Erev)}.

Note that in the first case (‘location’), only 1 slot filling is mentioned, although there are multiple
occurrences of this slot in the document. However, in the OBD approach, we don’t mind which
occurrence has been found. In the second case (‘speaker’), both answers indicate a different speaker,
as in the AO setting, but this time we are not interested in the exact positions of the slot fillings,
we only care about the content of the fillings.

Definition 5 A solution for an OBD IE task for a particular type of information is a function
F̂ : D → {set of sequences} : D 7→ {(p1, . . . , pn); (p1, . . . , pn) v D}. We call (p1, . . . , pn) a

template slot prediction.
An IE system provides us with a function F̂ for each type of information.

Example 5 A solution for the OBD IE task Floc for the item ‘location’ for the document D in
figure 1 is F̂loc(D) = {(Adamson; Wing; (; Baker; Hall; ))}.

A solution for the OBD IE task Fsp for the item ‘speaker’ for the document D in figure 1 is

F̂sp(D) = {(Al; Roth), (Ido)}.

3 Evaluating Information Extraction Systems

3.1 Preliminaries

We evaluate each template slot/kind of information separately. If necessary, the overall scoring of
an IE system can easily be computed by averaging over all results.

A typical way to evaluate an IE system is by using a confusion matrix. This is a well-known
technique of counting results. Figure 3.1 shows a confusion matrix.

For each extracted entity, we have to evaluate if it is correct (and thus a true positive) or not
(and thus a false positive). The false negative in the matrix is the number of entities that should
have been extracted, but haven’t. In IE applications, the true negative is usually not used.

All usually reported measures (recall, precision,...) can be computed from the confusion matrix.
In order to fill the matrix, we have to compare F(D) and F̂(D) for each document D in the test

set. It is obvious that the way how we fill the matrix, and thus the way we decide if an extracted
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answer
+

-

prediction

+ -

true positive false negative

false positive true negative

Figure 2: Confusion matrix: the columns indicate the decision of the system, the rows indicate the
correct decisions.

entity (“prediction”) is correct or not, is crucial in the computation of the scores. D. Freitag gives
three different possibilities [2]:

• exact rule: a prediction is only correct, if it is exactly equal to an answer. Thus, if ‘Al Roth’
is the given answer, ‘dr. Al Roth’ would not be correct.

• contain rule: a prediction is correct, if it contains an answer, plus possibly a few extra
neighboring tokens. Thus, if ‘Al Roth’ is the given answer, ‘dr. Al Roth’ would be correct as
well.

• overlap rule: a prediction is correct, if it contains a part of a correct instance, plus possibly
some extra neighboring tokens. Thus, if ‘dr. Al Roth’ would be the given answer, ‘Al Roth’
would be correct as well.

What rule is preferable, depends on the situation at hand. If the goal of the IE system is to
fill a database on which queries can be asked, one wants to make sure that whatever gets into the
database is exact. On the other hand, if someone has as task to point out the job title in each
document in a set of job advertisements, a system that gives a solution overlapping with the correct
answer for each document will be more helpful than one that returns the exact answer for only a
small portion of the documents.

In the following two subsections, we define the above mentioned rules formally in the AO and
the OBD settings.

3.2 All Occurrences

We first define a few intermediate operators:

Definition 6 Let 1 ≤ i ≤ j ≤ N , 1 ≤ ik ≤ jk ≤ N , and let e, m be positive integers.

(a) (ik, jk) ≡E (i, j) ⇔ i = ik and j = jk

(b) (ik, jk) ≡C(e) (i, j) ⇔ [i, j] ⊆ [ik, jk] and (jk − ik) − (j − i) ≤ e

(c) Define first:

– ml = max(0, ik − i), the number of missing tokens at the left;

– mr = max(0, j − jk), the number of missing tokens at the right;

– el = max(0, i − ik), the number of extra tokens at the left;

– er = max(0, jk − j), the number of extra tokens at the right.
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then, (ik, jk) ≡O(e,m) (i, j) ⇔ [ik, jk] ∩ [i, j] 6= {}, and el + er ≤ e (thus there are at most e

extra tokens), and ml + mr ≤ m (thus there are at most m missing tokens).

The first rule indicates when 2 tuples are exactly the same. The second rule defines when a tuple
contains another tuple, plus at most e neighboring tokens. Figure 3 illustrates the ≡O(e,m)-operator.

correct answer

prediction 1: 1 extra, 2 missing tokens

prediction 2: 1 extra, 2 missing tokens

prediction 3: 2 extra, 0 missing tokens

prediction 4: 0 extra, 2 missing tokens

Figure 3: Illustration of the ≡O(e,m)-operator.

It is obvious from the definitions that ≡C(0) is equal to ≡E , and that ≡O(e,0) is equal to ≡C(e).
We are now able to define the three operators. A prediction p belongs to the set of answers,

and thus is correct, if and only if the prediction is “equal” in one of the above senses to an answer.

Definition 7 Let p = (ik, jk) be a prediction for document D.
p inE F(D) ⇔ ∃(i, j) ∈ F(D) : (ik, jk) ≡E (i, j)
p inC(e) F(D) ⇔ ∃(i, j) ∈ F(D) : (ik, jk) ≡C(e) (i, j)

p inO(e,m) F(D) ⇔ ∃(i, j) ∈ F(D) : (ik, jk) ≡O(e,m) (i, j)

We are now ready to fill the confusion matrix. Figure 4 states the algorithm that fills the matrix.
Note that in the case that F(D) = {} and F̂(D) = {}, this is not counted as a true positive,

nor as a false positive or false negative.
Example 6 illustrates the algorithm.

Example 6 F(D) = {(18, 25), (93, 100)}
F̂(D) = {(20, 25), (93, 101), (50, 52)}
Confusion matrix, using inE:

answer
+

-

prediction

+ -

0 2

3

Confusion matrix, using inC(1):

answer
+

-

prediction

+ -

1 1

2

Confusion matrix, using inO(1,2):

7



Given: an inθ-operator as defined. θ is one of E, C(e) or O(e, m).
for each document D in the testset:

• if F(D) = {} and F̂(D) 6= {}:

(The IE system did some predictions, while the information needed was not

present in the document, thus all predictions must be false.)

add #F̂(D) to the number of false positives.

• else

– for each prediction p ∈ F̂(D):

if p inθ F(D): add 1 to the number of true positives

else add 1 to the number of false positives.

– for each answer a ∈ F(D), such that ¬∃p ∈ F̂(D) : p ≡θ a

(the answer a is not covered by the predictions made by the system)

add 1 to the number of false negatives.

Figure 4: Filling the confusion matrix

answer
+

-

prediction

+ -

2 0

1

3.3 One Best per Document

As in the AO-setting, we first define a few intermediate operators:

Definition 8 Let (p1, . . . , pn) and (a1, . . . , ak) be sequences of tokens.

(a) (p1, . . . , pn) ≡E (a1, . . . , ak) ⇔ n = m ∧ ∀i = 1 . . . n : pi = ai

(b) (p1, . . . , pn) ≡C(e) (a1, . . . , ak) ⇔ k ≤ n ≤ k + e ∧ (a1, . . . , ak) v (p1, . . . , pn)

(c) (p1, . . . , pn) ≡O(e,m) (a1, . . . , ak) if and only if one of the following four cases applies:

1. The answer is included in the prediction, and at most e tokens in the prediction are extra
w.r.t. the answer; that is:

(p1, . . . , pn) ≡C(e) (a1, . . . , ak)

2. The prediction is included in the answer, and at most m tokens in the answer are missing
in the prediction; that is:

(a1, . . . , ak) ≡C(m) (p1, . . . , pn)
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3. The right side of the prediction overlaps with the left side of the answer, and the prediction
misses at most m tokens (on the right) of the answer, and has at most e tokens extra
(on the left side) w.r.t. the answer; that is:

∃i ≥ n − k : a1 = pi+1, a2 = pi+2, . . . , an−i = pn,

and i ≤ e and k − (n − i) ≤ m

4. This case is the mirror image of case 3; the left side of the prediction overlaps with the
right side of the answer, and the prediction misses at most m tokens (on the left) of the
answer, and has at most e tokens extra (on the right side) w.r.t. the answer; that is:

∃i ≥ k − n : ai+1 = p1, ai+2 = p2, . . . , ak = pk−i,

and i ≤ m and n − (k − i) ≤ e

The first rule indicates when two sequences are exactly equal. The second one contains 2 parts:
the first part defines that there are at most e extra tokens, and no missing tokens, the second part
requires that (t′k)k is a subsequence of (tn)n, as defined in Section 2.3. Figure 5 illustrates the third
rule.

ak correct answera1 ...

pn case 1: the answer is included in the predictionp1 ...

...p1 pn case 2: the prediction is included in the answer

p1 ... pn
case 3: the right side of the prediction overlaps
            with the left side of the answer

pn...p1 case 4: the left side of the prediction overlaps
            with the right side of the answer

Figure 5: Illustration of the ≡O(e,m)-operator in the OBD-setting.

Again, it is obvious from the definitions that ≡C(0) is equal to ≡E , and that ≡O(e,0) is equal to
≡C(e).

We are now able to define the three operators. A prediction p belongs to the set of answers,
and thus is correct, if and only if the prediction is “equal” in one of the above senses to an answer.

Definition 9 Let (p1, . . . , pn) be a prediction for document D.
(p1, . . . , pn) inE F(D) ⇔ ∃(a1, . . . , ak) ∈ F(D) : (p1, . . . , pn) ≡E (a1, . . . , ak)
(p1, . . . , pn) inC(e) F(D) ⇔ ∃(a1, . . . , ak) ∈ F(D) : (p1, . . . , pn) ≡C(e) (a1, . . . , ak)

(p1, . . . , pn) inO(e,m) F(D) ⇔ ∃(a1, . . . , ak) ∈ F(D) : (p1, . . . , pn) ≡O(e,m) (a1, . . . , ak)

We can now use the algorithm in Figure 4 again to fill the confusion matrix.
Example 7 illustrates the algorithm.

Example 7 F(D) = {(Al; Roth), (Ido; Erev)}
F̂(D) = {(Al; Roth), (Ido), (Cristina; Bicchieri)}
Confusion matrix, using inE:
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answer
+

-

prediction

+ -

1 1

2

Confusion matrix, using inO(1,2):

answer
+

-

prediction

+ -

2 0

1

4 Evaluation measures

Since we evaluate each type of information in isolation with a separate confusion matrix, we are
able to calculate different evaluation measures for each slot. In practice, it has been found that the
difficulty of the IE task depends on the field that has to be recognized, e.g., an email address is
easier to recognize than a job title. Thus, it is certainly useful to report evaluation measures for
each of the tasks (i.e. speaker, start-time, end-time and location) separately. One can obtain an
overall scoring of an IE system by computing the (weighted) average over all results.

The most used evaluation measures in IE are recall, precision and F-measure. Recall and
precision can be calculated from the confusion matrix [5]:

Definition 10

recall =
true positive

true positive + false negative

precision =
true positive

true positive + false positive

Recall indicates how many of the items that should have been found, are effectively extracted.
Precision indicates how many of the extracted items are correct. Usually there is a trade off of recall
against precision. Therefor, often an average accuracy is reported in the form of the Fβ-measure
[5]. This is a harmonic mean which in its most general form provides a weight to determine the
bias towards recall or precision. More commonly it is used with equal weighting for precision and
recall, as in Definition 11.

Definition 11

F =
2 × p × r

p + r

[7] discusses other possibilities for averaging over recall and precision, but those are to our
knowledge not used in IE.

Often only the F-measure is reported as the evaluation measure of an IE system. If the same
weighting for recall and precision is used in calculating the F-measure, this gives an indication
of which system is the better one. However, often it may be important to know the individual
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recall and precision scores of a system to be able to fully compare different systems. When one
system has a recall of 10% and a precision of 90%, this will obtain the same F-measure as a system
which obtains a recall of 90% and a precision of 10%, even though both systems are very different.
Differences on how a system scores w.r.t. recall and precision will be unnoticed when reporting
only F-measure.

Other measures that are used in text categorization applications, are fallout and overlap [4].

Definition 12

fallout =
false positive

false positive + true negative

overlap =
true positive

true positive + false positive + false negative

Since we don’t count true negative in IE, fallout is not useful in this domain. Overlap may be
used, but it is not clear what kind of extra information this measure gives.

5 Conclusions

This paper deals with a formal framework for evaluation of Information Extraction. We gave a
formal definition of IE and defined how evaluation can be done, based on the notion of a confusion
matrix. We gave a short discussion of the evaluation measures most commonly used in IE.

This paper does not deal with some other important problems concerning evaluation and com-
parison of IE:

• How to describe the corpus used for training and testing, and how to make sure that in
comparing the results of different IE systems, the exact same corpus is used.

• Which train-test strategy is used?

To be able to compare results of different IE systems, it should not only be clear how the confu-
sion matrix was built (as we describe in this paper), but these two questions should be adequately
answered as well.
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