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Abstract

We describeTADPOLE, a modular memory-based morphosyntactic tagger and dependency
parser for Dutch. Though primarily aimed at being accurate,the design of the system is
also driven by optimizing speed and memory usage, using a trie-based approximation of
k-nearest neighbor classification as the basis of each module. We perform an evaluation
of its three main modules: a part-of-speech tagger, a morphological analyzer, and a depen-
dency parser, trained on manually annotated material available for Dutch – the parser is
additionally trained on automatically parsed data. A global analysis of the system shows
that it is able to process text in linear time close to an estimated 2,500 words per second,
while maintaining sufficient accuracy.

1 Introduction

In this paper we introduceTADPOLE (TAgger, DependencyParser, and
mOrphoLogical analyzEr), a modular morpho-syntactic tagger, analyzer and parser
for Dutch. In designingTADPOLE we aim for three partially competing goals:
(1) high accuracy, (2) high and preferably linear processing speed, and (3) low
memory usage. TADPOLE is particularly targeted at the increasing need for fast,
automatic NLP systems applicable to very large (multi-million to billion word)
document collections that are becoming available due to theprogressive digitiza-
tion of both new and old textual data. This scale does not fit well with systems that
perform exponentially in terms of the length of their input,spending perhaps min-
utes on single sentences, and neither with linear-time but slow processing system
that would take, e.g., a second per word – which would imply more than ten days
to process just one million words of text.

Rather than a mix of methods, we opt for a single processing engine to be
used in all modules to simplify the software engineering aspects. As the core
engine we chose memory-based learning, in particular a fasttrie-based approxi-
mation ofk-nearest neighbor classification, IGTREE (Daelemans, Van den Bosch
and Weijters 1997a). Memory-based learning has been shown to produce com-
petitive, state-of-the-art performance in part-of-speech tagging (Daelemans, Za-
vrel, Berck and Gillis 1996) and morphological analysis (Van den Bosch and
Daelemans 1999), and has recently also been employed in a dependency parser
(Canisius, Bogers, Van den Bosch, Geertzen and Tjong Kim Sang 2006) with some
initial success. IGTREE has been shown to speed up normalk-nearest neighbor
classification several orders of magnitude, while retaining much of its generaliza-
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Figure 1: Schematic architecture ofTADPOLE. The grey boxes represent non-machine-
learning-based modules.

tion accuracy. With IGTREE we aim to reach high processing speed (an aspect
of goal 2) and low memory usage (goal 3); the accuracy levels (goal 1) are ex-
pected to be lower than those ofk-nearest neighbor classification; empirical tests
are needed to ascertain the gap.

Linear processing speed (another aspect of goal 2) is straightforwardly
achieved with memory-based part-of-speech tagging and morphological analy-
sis; both approaches are fully linear in their default sequence processing method
(Daelemans et al. 1996, Van den Bosch and Daelemans 1999). With dependency
parsing, however, linearity is an issue. The approach proposed by Canisius et
al. (2006) involves a processing step that is quadratic in principle, but linearly
bounded, and a deterministic search through the predicted dependency relations.

In this paper we first lay out the architecture of the system inSection 2. We
then provide evaluations of the three modules in Section 3, and we evaluate the
system globally in Section 4. Related work is discussed in Section 5. We close the
paper with a discussion of future work in Section 6.

2 Architecture

The intended function ofTADPOLE is to automatically annotate Dutch text with
morpho-syntactic information at the word level, and syntactic dependency rela-
tions between words at the sentence level. To enable a propertreatment of in-
coming text, a tokenizer is used for preprocessing. We adopted a rule-based
tokenizer that splits punctuation markers from words, using seed lists of com-
mon Dutch abbreviations, and that splits sentences according to a set of heuristic
rules (Reynaert 2007). Tokenized text is then fed to the part-of-speech tagger and
the morphological analyzer. Subsequently, predicted part-of-speech tags are for-
warded to the morphological analyzer, which uses the tags tochoose among the
analyses it has generated for ambiguous words. The tags are also used as input
to the dependency parser, which in turn demands that a fixed list of multi-word
phrases and all multi-word proper nouns are collated by a straightforward lookup-
based multi-word chunker.

Figure 1 schematically illustrates the information flow of the processing mod-
ules. Each memory-based module (the white boxes) uses a classification engine
that converts its input to a partial output; each conversionstep is one classification
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of a windowed snapshot of the input sequence into an output label. Sequences of
output labels are gathered until the end of the word or sentence, and subsequently
converted into a full output (per word for the morphologicalanalyzer, and per sen-
tence for the part-of-speech tagger and dependency parser). Section 3 provides
more detailed information on the functioning of each module.

The classifier engine in the three memory-based processing modules is
IGTREE (Daelemans et al. 1997a), an algorithm for the top-down induction of
decision trees. It compresses a database of labeled examples into a lossless-
compression decision-tree structure that preserves the labeling information of all
examples, and technically should be named atrie according to Knuth (1973). A
labeled example is a feature-value vector encoding input (in our case, windowed
subsequences of letters, words, or part-of-speech tags) and output (in our case,
labels encoding morphological information, part-of-speech tags, or syntactic de-
pendency relation types).

An IGTREE is a hierarchical tree composed of nodes that each representa
partition of the original example database, and are labeledby the most frequent
class of that partition. Besides a majority class label, thenodes also hold complete
counts of all class labels in the database partition they represent. The root node
of the trie thus (1) represents the entire example database,(2) carries the most fre-
quent value as class label, and (3) holds the occurrence counts of all classes in the
full training set. In contrast, end nodes (leafs) representa homogeneous partition
of the database in which all examples have the same class label; the node merely
stores this label along with the size of the homogeneous partition. Non-ending
nodes branch out to nodes at deeper levels of the trie. Each branch represents a
test on a feature value; branches fanning out of one node teston values of the same
feature.

To attain high compression levels, IGTREEbranches out from the root node by
testing on the most informative, or most class-discriminative feature first, followed
at the next level by the second-most discriminative feature. IGTREE uses infor-
mation gain (IG) to estimate discriminativeness. The IG of featurei is measured
by computing the difference in uncertainty (i.e. entropy) between the situations
without and with knowledge of the value of that feature with respect to predicting
the class label:IGi = H(C)−

∑
v∈Vi

P (v)×H(C|v), whereC is the set of class
labels,Vi is the set of values for featurei, andH(C) = −

∑
c∈C

P (c) log
2
P (c)

is the entropy of the class labels. IGTREE computes the IG of all features once
on the full database of training examples, makes a feature ordering once on these
computed IG values, and uses this ordering throughout the whole trie.

IGTREE effectively performs a lossless compression of the labeling informa-
tion of the original example database. As long as the database does not contain
fully ambiguous examples (with the same features, but different class labels), the
trie produced by IGTREE is able to reproduce the classifications of all examples
in the original example database perfectly.
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3 Modules

We describe for each of the three IGTREE-based modules how their tasks are en-
coded into classification tasks, and provide estimates of their generalization per-
formance on unseen words and text.

3.1 Part-of-speech tagging

The approach to part-of-speech tagging taken inTADPOLE was originally intro-
duced by Daelemans et al. (1996). The proposed tagger is a combination of a
submodule that disambiguates the tags of words it has seen before, given their
context, and a submodule that predicts tags to words it has not seen before. Both
taggers process from left to right, and use windowing to represent the local context
around the word to be tagged. The left part of the window also includes the joint
tagger’s previously predicted tags, while in the right partof the window the yet
ambiguous tags of the known right neighboring words are incorporated.

The second submodule, theunknown wordstagger, cannot use the word in fo-
cus as a predictive feature since it has not seen it before, but some surface features
of the word are represented. Furthermore, both taggers are helped by converting
low-frequency words to more generic placeholder strings that retain some of their
surface features. Also, the unknown words tagger is not trained on the full training
set, but rather on a subset of low-frequency words in their context in the training
set, as they are the most representative of actual unseen words, which will tend to
occur in the same frequency band. In detail, the features forthe two subtaggers are
the following:

• For theknown wordstagger: the focus word and its immediate left and
right neigboring words, the three preceding predicted tags, and the two still
ambiguous tags to the right.

• For theunknown wordstagger: the first two letters and the last three letters
of the focus word; binary features marking whether the word is capitalized,
contains a hyphen, or one or more numbers; its immediate leftand right
neighboring words; the three preceding predicted tags, andthe two still am-
biguous tags at the right.

When trained on a substantial training corpus, often less than 10% (or even
less than 5%) of words in new text will not have occurred in thetraining corpus.
Hence, the first submodule, theknown wordstagger, is responsible for a major
part of the work. Yet, the remaining work for the unknown wordtagger is harder.
For theTADPOLE part-of-speech tagger we opted to use IGTREE for the known
words tagger, but useTRIBL for the unknown words tagger. TRIBL is a hybrid
between the fast approximation IGTREE and the slowerIB1-IG algorithm that
implementsk-nearest neighbor in its unabridged form (Daelemans, Van den Bosch
and Zavrel 1997b)1; it builds a trie structure for the most informative features, and
1IGTREE, TRIBL, andIB1-IG are included in the TiMBL software package, version 5.1, available from
http://ilk.uvt.nl/timbl.
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Task Full tag Main tag
Known words 96.8 98.7
Unknown words 76.4 84.3
All words 96.5 98.6

Table 1: Percentages of correctly tagged test words, overall (bottom line) and split into
known words and unknown words, on the full tag and on the main tag only.

performsk-nearest neighbor classification on the remaining features. For building
the tagger, the Mbt wrapper was used2.

The data used for training theTADPOLE tagger consists of a broad selection
of available manually annotated part-of-speech tagged corpora for Dutch tagged
with the Spoken Dutch Corpus tagset (Van Eynde 2004): The approximately nine-
million word of the transcribed Spoken Dutch Corpus itself (Oostdijk, Goedertier,
Van Eynde, Boves, Martens, Moortgat and Baayen 2002), the ILK corpus with
approximately 46 thousand part-of-speech tagged words, the D-Coi corpus with
approximately 330 thousand words, and the 754-thousand word Eindhoven corpus
(Uit den Boogaart 1975) which has been automatically retagged with the Spoken
Dutch Corpus tagset. Together this accounts for 10,979,827manually-checked
part-of-speech tagged words, all using the same rich tagsetof 316 tags.

We split this 10 million-word corpus randomly (at the sentence level) into a
90% training set and a 10% test set. The performance of the tagger on known
words and unknown words in the test set, as well as on all test words, is listed
in Table 1. Not surprisingly, the tagger has significantly more trouble tagging
unknown words. The Spoken Dutch Corpus tagset makes a distinction between the
main tag (a traditional 12-tag distinction) and the morphosyntactic subtags, which
are not always used in higher-level applications; the generalization accuracy on the
main tag reaches a respectable 98.6%.

In the overall tagging accuracy, the influence of the unknown-word tagger is
of course related to the amount of unknown words in the text tobe tagged. In
the 10% test set, about 98.8% of all tokens is also present in the 90% training
set, but this test is a sentence-level partition of the same texts as the training set
is drawn from. Typically, coverage of tokens in a randomly selected text from
outside the (genres of the) training set will be somewhat lower, as illustrated by
the following two examples. A first random text, offering general instructions on
Unix, containing many foreign words and command line fragments, is covered
by 89.8%. The second text, the full text of the novelHet boetekleed, a Dutch
translation of Ian McEwen’sAtonement, is covered by 97.9%.

2Mbt, version 2.0.1:http://ilk.uvt.nl/mbt
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instance left focus right
number context letter context TASK

1 a b n o r m A
2 a b n o r m a 0
3 a b n o r m a l 0
4 a b n o r m a l i 0
5 a b n o r m a l i t 0
6 a b n o r m a l i t e 0
7 b n o r m a l i t e i 0
8 n o r m a l i t e i t 0+Da
9 o r m a l i t e i t e N A∗

10 r m a l i t e i t e n 0
11 m a l i t e i t e n 0
12 a l i t e i t e n 0
13 l i t e i t e n 0
14 i t e i t e n m
15 t e i t e n 0

Table 2: Instances with morphological analysis classifications derived fromabnor-
maliteiten, analyzed as[abnormaal]A[iteit]N A∗[en]m.

3.2 Morphological analysis

We take the task of analyzing the morphology of Dutch words toinclude (1) seg-
menting a wordform into its morphemes; (2) labeling each morpheme with its
function (e.g. a stem with a certain part-of-speech tag, or being a derivational af-
fix, or an inflection), and (3) identifying all spelling changes between the wordform
and its underlying morphemes (Van den Bosch and Daelemans 1999). We draw
our examples from the CELEX lexical database (Baayen, Piepenbrock and van
Rijn 1993), which features a full morphological analysis for 363,690 of them. We
took each wordform and its associated analysis, and createdtask examples using a
windowing approach, which transforms each wordform into asmany examples as
it has letters. Each example focuses on one letter, and includes a fixed number of
left and right neighbor letters, chosen here to be five. Consequently, each example
spans eleven letters, which is also the average word length in the CELEX database.

To illustrate the construction of examples, Table 2 displays the 15 examples
derived from the Dutch example wordabnormaliteiten (abnormalities) and their
associated classes. The class of the first example is “A”, which means that the
morpheme starting ina is an adjective (“A”). This morpheme continues up to the
eighth example, which is labeled with “0+Da”, meaning that at that position, an
a is deleted from the underlying morpheme. The coding thus tells that the first
morpheme is the adjectiveabnormaal. The second morpheme,iteit, has class
“N A∗”. This complex tag indicates that wheniteit attaches right to an adjective
(encoded by “A∗”), the new combination becomes a noun (“N”). Finally, the third
morpheme isen, which is a plural inflection (labeled “m” in CELEX).
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This way we generated a database of 3,209,064 examples. Within these exam-
ples, 3,806 different class labels occur. The most frequently occurring class label
is “0”, occurring in 69.3% of all instances. The three most frequent non-null labels
are “N” (6.9%), “V” (4.2%), and “A” (1.3%).

When a wordform is listed in CELEX as having more than one possible mor-
phological labeling (e.g., a morpheme may be N or V, the inflection -en may be
plural for nouns or infinitive for verbs), these labels are joined into ambiguous
classes (“N/V”). Ambiguity in syntactic and inflectional tags occurs in 3.6% of all
morphemes in our CELEX data. When the morphological analyzer generates more
than one analysis based on these ambiguous classes, it asks for the part-of-tagger
to break the tie – hence the arrow from the tagger to the analyzer in Figure 1.
We created a translation table between combinations of CELEX main tags and
inflectional markers such as “m” on the one hand, and the CGN tags of the part-of-
speech tagger on the other hand, to allow matching the CGN tags to the ambiguous
analyses. We observed that when the tagger is correct and theanalyzer generates
the appropriate analyses, the CGN tags predicted by the tagger, with their main
tag and the morpho-syntactic subtags, always provide sufficient matches to disam-
biguate between ambiguous analyses. If due to an error of either module no match
is possible to break the tie, a random choice is made.

To evaluate the morphological analyzer, we split the CELEX database ran-
domly in a 90% training set (of 362,690 words, or 2,888,197 examples) and a
10% test set (of 36,369 words, or 320,867 examples). When trained on the full
90% training set, IGTREE correctly segments 79.0% of test words; e.g., it would
segmentabnormaliteiten correctly into[abnormal][iteit][en]. Also taking into
account spelling changes and morpheme types (stems with part-of-speech, affixes,
inflections, e.g.[abnormaal]A[iteit]N A∗[en]m), 56.3% of all test words are fully
correctly analyzed. These generalization accuracies, obtained on a random 10% of
CELEX words, can be seen as approximations of the analyzer’sperformance on
unknown words in free text. Performing a coverage check similar to the one in the
previous section, we observe that CELEX covers about 98.3% of the tokens in the
test material of the tagger, 83.9% of the Unix instruction document, and 98.1% of
the word tokens inHet boetekleed. As IGTREE performs a lossless compression
of the training set, the analysis or alternate analyses of any word that is also in
CELEX will be flawlessly retrieved; hence, the effective accuracy of the analyzer
on a text such as the novel is at least 98.1%, and possibly around 99%, as we
estimated that about 56.3% of unknown words receives a correct analysis.

3.3 Dependency parsing

In the TADPOLE approach to dependency parsing, IGTREE is trained to predict
(directed) labeled dependency relations between a head anda dependent. For each
token in a sentence, examples are generated where this tokenis a potential de-
pendent of each of the other tokens in the sentence. To prevent explosion of the
number of classification cases to be considered for a sentence, we restrict the max-
imum distance between a token and its potential head. We selected this distance
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so that 95% of the dependency relations in the training data are covered, which is
at a maximum distance of eight words. The label that is predicted for each classi-
fication case serves two different purposes at once: 1) it signals whether the token
is a dependent of the designated head token, and 2) if the instance does in fact
correspond to a dependency relation in the resulting parse of the input sentence, it
specifies the type of this relation as well.

The features we used for encoding instances for this classification task corre-
spond to a rather simple description of the head-dependent pair to be classified. For
both the potential head and dependent, there are features encoding a 1-1-1 window
of words and part-of-speech tags predicted by our tagger; inaddition, there are
two spatial features: a relative position feature, encoding whether the dependent is
located to the left or to the right of its potential head, and adistance feature that
expresses the number of tokens between the dependent and itshead.

Thus, dependency parsing is first broken down into classifications at the level
of word-to-word dependency relations. In a second step these relations need to be
gathered per sentence to form a dependency tree. A dependency tree is regarded as
a set of dependency relations connecting a head and a dependent. For a set of such
relations to form a valid dependency tree, some constraintsshould be satisfied:
1) each token can only be linked as a dependent to maximally one head token
(though a token may be a head to more than one dependent), and 2) dependency
relations should not form a cycle. As long as these two constraints are satisfied, a
dependency tree can be treated as a set of dependency relations without losing any
information.

Naively applying this approach results in a number of practical issues however,
which may also negatively affect the performance. First, the classification task
as formulated gives rise to a highly skewed class distribution in which examples
that correspond to a dependency relation are largely outnumbered by “negative”
examples. Second, there is a quadratic increase of instances to be classified as
sentence length increases, that is, a sentence ofn tokens translates ton(n − 1)
classification cases.

One issue that may arise when considering each potential dependency relation
as a separate classification case is that inconsistent treesare produced. For exam-
ple, a token may be predicted to be a dependent of more than onehead. To recover
a valid dependency tree from the separate dependency predictions, a simple infer-
ence procedure is performed. Consider a token for which the dependency relation
is to be predicted. For this token, a number of classificationcases have been pro-
cessed, each of them indicating whether and if so how the token is related to one
of the other tokens in the sentence. Some of these predictions may be negative, i.e.
the token is not a dependent of a certain other token in the sentence, others may be
positive, suggesting the token is a dependent of some other token.

If all classifications are negative, the token is assumed to have no head, and
consequently no dependency relation is added to the tree forthis token. If one of
the classifications is non-negative, suggesting a dependency relation between this
token as a dependent and some other token as a head, this dependency relation
is added to the tree. Finally, there is the case in which more than one prediction
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is non-negative. By definition, at most one of these predictions can be correct;
therefore, only one dependency relation should be added to the tree. To select
the most-likely candidate from the predicted dependency relations, the candidates
are ranked according to the classification confidence of the base classifier that pre-
dicted them, and the highest-ranked candidate is selected for insertion into the tree.
For example, if in the sentenceIk hoor haar zingen, I hear her singing, the word
haar is classified as relating tohoor in the “OBJ1” relation (direct object) with
confidence 8, and tozingen in the “DET” relation (determiner) with confidence 5,
the first prediction is selected, and the second discarded.

As a measure of confidence for the predictions made by IGTREE we divide
the tree-node counts assigned to the majority class by the total counts assigned
to all classes. Though this confidence measure is rather crude, and should not
be confused with any kind of probability, it tends to work quite well in practice
(Canisius et al. 2006).

The base classifier in our parser is faced with a classification task with a highly
skewed class distribution, i.e. instances that correspondto a dependency relation
are largely outnumbered by those that do not. In practice, such a huge number
of negative instances usually results in classifiers that tend to predict fairly con-
servatively, resulting in high precision, but low recall. In the approach introduced
above, however, it is better to have high recall, even at the cost of precision. A
missed relation by the base classifier can never be recoveredby the inference pro-
cedure. Also, due to the constraint that each token can only be a dependent of one
head, excessive prediction of dependency relations can still be corrected by the
inference procedure. An effective method for increasing the recall of a classifier
is downsampling of the training data. In downsampling, instances belonging to
the majority class (in this case the negative class) are removed from the training
data, so as to obtain a more balanced distribution of negative and non-negative
instances.

Canisius et al. (2006) describe the effect of systematically removing an in-
creasingly larger part of the negative instances from the training data. They report
that downsampling helps to improve recall, at the cost of precision, but indeed im-
proving the dependency parser, with a maximal performance at downsampling rate
1 : 2 (i.e. twice as many negative examples as positive ones). Note that downsam-
pling is naturally restricted to the training data; the testdata is not downsampled
as the labeling is not known yet.

As training material for our parser we used all manually annotated data
available in the Alpino Treebank3 (Van der Beek, Bouma, Malouf and Van
Noord 2001), amounting to 262,452 words, converted to 2,959,456 pairwise exam-
ples, and subsequently downsampled to 726,440 examples. Wealso collected data
that is automatically parsed by the Alpino parser (Malouf and Van Noord 2004),
available in significantly larger quantities than manuallyannotated data. We added
several millions words of automatically parsed text from Wikipedia pages, news-
paper articles, and the full Eindhoven corpus except a portion taken out as test set

3Alpino Treebank:http://www.let.rug.nl/˜ vannoord/trees/ .
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Figure 2: Dependency parsing learning curves in terms of correctly labeled dependencies,
unlabeled dependencies, and label accuracy.

(see below). We converted this Alpino output to the column format used in the
CoNLL-X Shared Task (Buchholz and Marsi 2006), replacing the part-of-speech
information generated by Alpino by the output ofTADPOLE’s tagger described in
Subsection 3.1. Also in this process, in special cases (particularly with multi-word
units and coordinations without a conjunction) multiple heads in the original tree-
bank are discarded, keeping only the leftmost head.

Figure 2 displays the learning curves of three commonly usedevaluation met-
rics (Buchholz and Marsi 2006), viz. labeled and unlabeled dependency relation
accuracy, and the accuracy on the label per word. The test setconsists of 2,530
sentences (47,471 words) taken from the manually parsed section of the Eind-
hoven corpus (thecdbl part); this is newspaper text with relatively long sentences
with many subclauses and quotations. The vertical line at 726,400 downsampled
pairwise examples marks the transition of manually labeledmaterial to automat-
ically parsed data. Despite a dip in performance in all threeevaluation metrics,
the curves suprisingly return to their trajectories, and continue to rise – albeit at
a sub-loglinear rate with increasing amounts of training data. The exact scores of
the parser, trained on a current maximum of 29,778,197 examples, and tested on
the aforementioned manually parsed test set, are displayedin Table 3. At best, the
parser identifies and labels dependency relations between words at an accuracy of
74.3.

4 Speed and memory usage analysis

Thus far we have not reported on speeds and memory usage, except in passing
when comparing the morphological analyzer toIB1-IG. Three design goals of
TADPOLE relate to speed and memory: we want the system to be fast, as linear
as possible in the length of the input, and costing as little memory as possible.
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% Correct assignment
Aspect Only manual data Automatic data added
Labeled dependencies 67.3 74.3
Unlabeled dependencies 70.6 77.1
Label accuracy 76.3 81.5

Table 3: Percentages of correctly assigned dependencies, with and without labeling, and
the accuracy on labels only, trained on the maximal amount oftraining data, tested on
newspaper texts, before and after the addition of automatically parsed training data.

Module Memory (Mb) 1000 words/s
Part-of-speech tagging 23.3 10.1
Morphological analyzer 2.9 6.7
Dependency parser 68.9 7.6
Tokenizer (rule-based) Perl 81.9
MWU chunker (rule-based) Perl 120.3
Total 95.1+ Perl 2.5

Table 4: Amount of memory used, and numbers of words processed by the five modules at
maximal training set sizes. Bottom line sums the amount of memory, and aggregates the
speeds.

We measured the speed of our classifiers in terms of the numberof words they
processed per second, and the bytesize of the IGTREEs4. Table 4 summarizes the
measurements taken at the maximal sizes of the training setsused in the previous
section to estimate the generalization accuracies of each module. The table also
lists the speed of the rule-based tokenizer and multi-word chunker for complete-
ness, as these modules do cost some memory5 and time. As can be seen in the
table, the parser consumes most memory, being trained also on the largest amount
of training examples (nearly 30 million). The part-of-speech tagger consumes a
fair bit of memory as well, due to theTRIBL-basedunknown wordstagger.

Disregarding the fast rule-based preprocessing modules, the tagger is the fastest
module with about 10,160 words per second, while the morphological analyzer is
the slowest, processing about 6,715 words per second. Givena single processor,
the aggregated speed with whichTADPOLE can process text with all three modules
is about 2,488 words per second. This number assumes single-CPU, full streaming
performance.

One remaining design goal is to include a parser with preferably linear perfor-
mance. We measured the speed and accuracy of the parser on different sentence

4The hardware used for testing is equipped with Dual Core AMD Opteron 880 2,412 Mhz processors.
5They are implemented as Perl scripts and require the Perl executable at runtime.
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Figure 3: Generalization accuracies (left) and seconds persentence (right) of the depen-
dency parser trained on maximal amounts of data, measured per sentence length from 2 to
50.

lengths found in our test set. Figure 3 shows both, measured separately for all
sentence lengths from 2 to 50. As the left graph of Figure 3 shows, sentences
shorter than length 20 are parsed at above-average performance levels. The right
graph of Figure 3 shows a perhaps more unexpected linear relation between the
length of a sentence and the average time it takes to parse it.Earlier we noted
that for each sentence pairwise examples are generated (n(n − 1), to be exact),
but we also constrained this (also with test sentences) to pairs of words within a
range of eight words from each other, as 95% of all relations in the training cor-
pus occur within that range. This fixed constraint bounds thenumber of examples
per sentence, making the relation between the sentence length and the number of
examples effectively linear.

5 Related research

Most if not all related work on morpho-syntactic analysis, tagging, and parsing on
Dutch has focused on these tasks in isolation. Schone and Jurafsky (2000) describe
an unsupervised approach to computational morphological analysis, using CELEX
as a gold standard. Their knowledge-free method analyzes words in a large corpus
above a frequency threshold of 10. Matching these analyses to the ones in CELEX,
they report F-scores on correctly identified morphemes of around 79.6. Without a
direct comparison, we can safely say that our supervised system vastly outperforms
this system, even if we would only look up analyses from CELEX(which their
system is obviously not allowed to).

Van Halteren, Zavrel and Daelemans (2001) provide generalization accuracies
of various tagging systems trained on Dutch data annotated using the Wotan tagset,
a predecessor of, and comparable to, the CGN tagset. Using additional learning
methods (hidden markov models, transformation-based learning, and maximum-
entropy tagging) and combinations of these taggers in ensemble architectures, but
using only the 754-thousand-words Eindhoven corpus, the best cross-validated ac-
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curacy reported is 93.3%, and 96.4% using a reduced version of the tagset, “Wotan-
Lite”; this is the performance of a stacked ensemble of classifiers. In contrast, with
about 10 million words of training data we attain about the same accuracy (96.5%)
in a similar experiment with a tagset that is at least as rich as Wotan, but using a
single classifier.

Buchholz and Marsi (2006) provide an overview of systems whocompeted
in the CoNLL-X Shared Task, which also used a part of the manually annotated
Alpino treebank, split in training data (195,069 words, 13,349 sentences) and test
data (5,463 words, 386 sentences). For the best system (McDonald, Lerman and
Pereira 2006) a labeled dependency score of 79.2 is reported, clearly superior to
our 74.3 (obtained with more training data, tested on a different test set). Yet, this
best performing system is a more complicated two-stage discriminative parser that
first performs unlabeled parsing, and then assigns labels, and runs in cubic time as
opposed to our linear parser.

An obvious competitor to our parser is the original Alpino parser (Malouf and
Van Noord 2004) which it hopes to emulate. Probably the best parser for Dutch,
Alpino is a typical modern example of a rule-based approach that has hybridized
with a stochastic, data-driven approach. After a rule-based core generates possible
parses for a given sentence (possibly hundreds or thousands), a stochastic com-
ponent searches in this space of possibilities for the most likely parse, where the
statistics are derived from the Alpino treebank.

Alpino has been evaluated with various metrics; Malouf and Van Noord (2004)
argue for using an adapted form ofconcept accuracyto estimate the correctness
of the dependency labeling. The labeled dependencies accuracy metric of the
CoNLL-X shared task (Buchholz and Marsi 2006), used in this paper, has the same
aim; both metrics essentially compute#correct/#total, i.e., the number of cor-
rectly assigned relations divided by the total number of relations. The difference
between the two metrics is that Alpino generates a limited amount of non-terminal
nodes in its trees, which necessitates their metric, where in our case the number
of generated relations will never be larger than the number of tokens, hence the
simple labeled dependency accuracy metric suffices. Given this, we cannot cur-
rently compare our parsers to Alpino. Still, it is interesting to contrast some results
obtained on the same or similar test sets. On a similar test set to ours, composed
of news articles, Alpino is reported to attain a concept accuracy of 87.9%, which
is markedly higher than our 74.3% accuracy on labeled dependencies. On a small
corpus of quesions, Alpino attains a concept accuracy of 88.7%; a test of our parser
on this corpus yields a labeled dependency accuracy of 78.7%. Clearly, our parser
lags behind Alpino in terms of accuracy.

6 Discussion

We have described theTADPOLE system, a robust modular morphological ana-
lyzer, part-of-speech tagger, and dependency parser for Dutch. Including the clas-
sification engine, the complete system costs about 95 Mb of memory, and has an
estimated processing speed of close to 2,500 words per second, assuming a com-
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mon processor type and full streaming performance. The tagger is estimated to be
about 96.5% correct on unseen text (98.6% in terms of main tags). The morpho-
logical analyzer can segment about 79.0% of unseen words correctly, and can pro-
duce a completely correct analysis with part-of-speech tags and spelling changes
for 56.3% of unseen words. The coverage of the tagger and the morphological
analyzer is quite high; a random novel text is covered at about 98% of all tokens.
In the case of the morphological analyzer this means that it is able to losslessly
reproduce correct analyses for at least these 98% tokens. The dependency parser,
feeding on tags generated by the part-of-speech tagger, generates dependency re-
lations between pairs of words at an accuracy rate of about 74.3%. The parser is
observed to parse in linear time in function of the length of the input; although it
has a quadratic component in the example generation process, this process is con-
strained by a threshold that makes the number of examples linear in the length of
the sentence.

In future work we aim to prolong the learning curve of the dependency parser,
as much more training data is still available. If the learning curve does not flatten
too much it may be possible in the long run to develop a linear-time memory-
based emulation of the Alpino parser. We may introduce some extra internal flow
of information, such as from the morphological analyzer to the unknown-words
module of the part-of-speech tagger. Other future work involves the incorporation
of other modules intoTADPOLE such as a named-entity recognizer, a semantic role
labeler, and a co-reference module, so that the abbreviation will stand forTAgger,
DependencyParser, andOtherLanguageEngines.
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