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Abstract

We describerADPOLE, a modular memory-based morphosyntactic tagger and depeynd

parser for Dutch. Though primarily aimed at being accurtite,design of the system is
also driven by optimizing speed and memory usage, using#dased approximation of
k-nearest neighbor classification as the basis of each modeperform an evaluation

of its three main modules: a part-of-speech tagger, a méwglal analyzer, and a depen-
dency parser, trained on manually annotated materialablailfor Dutch — the parser is
additionally trained on automatically parsed data. A glabalysis of the system shows
that it is able to process text in linear time close to an estieh 2,500 words per second,
while maintaining sufficient accuracy.

1 Introduction

In this paper we introducerADPOLE (TAgger, bDependencyparser, and
morphaLogical analyer), a modular morpho-syntactic tagger, analyzer and parser
for Dutch. In designingraDPOLE we aim for three partially competing goals:
(1) high accuracy, (2) high and preferably linear processipeed, and (3) low
memory usage. ADPOLE is particularly targeted at the increasing need for fast,
automatic NLP systems applicable to very large (multidmllto billion word)
document collections that are becoming available due t@tbgressive digitiza-
tion of both new and old textual data. This scale does not fitwith systems that
perform exponentially in terms of the length of their inmpgending perhaps min-
utes on single sentences, and neither with linear-timelbut grocessing system
that would take, e.g., a second per word — which would implyerban ten days
to process just one million words of text.

Rather than a mix of methods, we opt for a single processimggneno be
used in all modules to simplify the software engineeringeatp As the core
engine we chose memory-based learning, in particular arfiasbased approxi-
mation ofk-nearest neighbor classification, I&EE (Daelemans, Van den Bosch
and Weijters 1997a). Memory-based learning has been showrotluce com-
petitive, state-of-the-art performance in part-of-spetgging (Daelemans, Za-
vrel, Berck and Gillis 1996) and morphological analysis r{\den Bosch and
Daelemans 1999), and has recently also been employed ineadiepcy parser
(Canisius, Bogers, Van den Bosch, Geertzen and Tjong Kirg 3@66) with some
initial success. IGREE has been shown to speed up norrhalearest neighbor
classification several orders of magnitude, while retgmruch of its generaliza-
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Figure 1: Schematic architecture oAiDPOLE. The grey boxes represent non-machine-
learning-based modules.

tion accuracy. With IGREE we aim to reach high processing speed (an aspect
of goal 2) and low memory usage (goal 3); the accuracy legal(1) are ex-
pected to be lower than those lohearest neighbor classification; empirical tests
are needed to ascertain the gap.

Linear processing speed (another aspect of goal 2) is btfargvardly
achieved with memory-based part-of-speech tagging angmotwgical analy-
sis; both approaches are fully linear in their default segeeprocessing method
(Daelemans et al. 1996, Van den Bosch and Daelemans 1998).défiendency
parsing, however, linearity is an issue. The approach megdy Canisius et
al. (2006) involves a processing step that is quadratic incgie, but linearly
bounded, and a deterministic search through the predietpéraiency relations.

In this paper we first lay out the architecture of the systerSagtion 2. We
then provide evaluations of the three modules in Sectiom8,vee evaluate the
system globally in Section 4. Related work is discussed oti&e 5. We close the
paper with a discussion of future work in Section 6.

2 Architecture

The intended function ofADPOLE is to automatically annotate Dutch text with
morpho-syntactic information at the word level, and sytitadependency rela-
tions between words at the sentence level. To enable a ptazment of in-
coming text, a tokenizer is used for preprocessing. We adbpt rule-based
tokenizer that splits punctuation markers from words, giseed lists of com-
mon Dutch abbreviations, and that splits sentences acgptdia set of heuristic
rules (Reynaert 2007). Tokenized text is then fed to the plaspeech tagger and
the morphological analyzer. Subsequently, predicted@iaspeech tags are for-
warded to the morphological analyzer, which uses the tagbdose among the
analyses it has generated for ambiguous words. The tagdsareised as input
to the dependency parser, which in turn demands that a figsedflimulti-word
phrases and all multi-word proper nouns are collated byaég$ttforward lookup-
based multi-word chunker.

Figure 1 schematically illustrates the information flow loé fprocessing mod-
ules. Each memory-based module (the white boxes) uses sficiason engine
that converts its input to a partial output; each converstep is one classification
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of a windowed snapshot of the input sequence into an outpat.I&equences of
output labels are gathered until the end of the word or serteand subsequently
converted into a full output (per word for the morphologianhlyzer, and per sen-
tence for the part-of-speech tagger and dependency paiSection 3 provides

more detailed information on the functioning of each module

The classifier engine in the three memory-based processiodules is
IGTREE (Daelemans et al. 1997a), an algorithm for the top-downdtidn of
decision trees. It compresses a database of labeled examjptea lossless-
compression decision-tree structure that preserves tiadirig information of all
examples, and technically should be namedeaaccording to Knuth (1973). A
labeled example is a feature-value vector encoding inpubr case, windowed
subsequences of letters, words, or part-of-speech tagispatput (in our case,
labels encoding morphological information, part-of-sgetags, or syntactic de-
pendency relation types).

An IGTREE is a hierarchical tree composed of nodes that each reprasent
partition of the original example database, and are lablejethe most frequent
class of that partition. Besides a majority class labelnibees also hold complete
counts of all class labels in the database partition theyesgmt. The root node
of the trie thus (1) represents the entire example datafljsearries the most fre-
quent value as class label, and (3) holds the occurrencescotiall classes in the
full training set. In contrast, end nodes (leafs) represgmbmogeneous partition
of the database in which all examples have the same clads tlhd&ode merely
stores this label along with the size of the homogeneoudtipart Non-ending
nodes branch out to nodes at deeper levels of the trie. Eaattlbrepresents a
test on a feature value; branches fanning out of one nodenestlues of the same
feature.

To attain high compression levels, I@EE branches out from the root node by
testing on the most informative, or most class-discrinegfeature first, followed
at the next level by the second-most discriminative featl@&TREE uses infor-
mation gain (IG) to estimate discriminativeness. The |Geattfire; is measured
by computing the difference in uncertainty (i.e. entropgjvieen the situations
without and with knowledge of the value of that feature wigspect to predicting
the class labellG; = H(C) — ), oy, P(v) x H(Clv), whereC' is the set of class
labels,V; is the set of values for featuigand H (C) = — > . P(c)logy P(c)
is the entropy of the class labels. IGEE computes the IG of all features once
on the full database of training examples, makes a featulerioig once on these
computed IG values, and uses this ordering throughout tledentie.

IGTREE effectively performs a lossless compression of the labahiforma-
tion of the original example database. As long as the dagalass not contain
fully ambiguous examples (with the same features, but miffeclass labels), the
trie produced by IGREE is able to reproduce the classifications of all examples
in the original example database perfectly.
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3 Modules

We describe for each of the three |GHE-based modules how their tasks are en-
coded into classification tasks, and provide estimateseif tfeneralization per-
formance on unseen words and text.

3.1 Part-of-speech tagging

The approach to part-of-speech tagging takemAppPOLE was originally intro-
duced by Daelemans et al. (1996). The proposed tagger is hication of a
submodule that disambiguates the tags of words it has sderebgiven their
context, and a submodule that predicts tags to words it hasesm before. Both
taggers process from left to right, and use windowing togsent the local context
around the word to be tagged. The left part of the window alstudes the joint
tagger's previously predicted tags, while in the right perthe window the yet
ambiguous tags of the known right neighboring words arerpoated.

The second submodule, theknown wordsagger, cannot use the word in fo-
cus as a predictive feature since it has not seen it befotspoe surface features
of the word are represented. Furthermore, both taggersedpedhby converting
low-frequency words to more generic placeholder strings ttain some of their
surface features. Also, the unknown words tagger is natecaon the full training
set, but rather on a subset of low-frequency words in theitexd in the training
set, as they are the most representative of actual unseeis wanich will tend to
occur in the same frequency band. In detail, the featurebétwo subtaggers are
the following:

e For theknown wordstagger: the focus word and its immediate left and
right neigboring words, the three preceding predicted,tagd the two still
ambiguous tags to the right.

e For theunknown wordsagger: the first two letters and the last three letters
of the focus word; binary features marking whether the werckipitalized,
contains a hyphen, or one or more numbers; its immediateafaftright
neighboring words; the three preceding predicted tagsttentivo still am-
biguous tags at the right.

When trained on a substantial training corpus, often leas t0% (or even
less than 5%) of words in new text will not have occurred inttlaéning corpus.
Hence, the first submodule, th@own wordstagger, is responsible for a major
part of the work. Yet, the remaining work for the unknown weadger is harder.
For theTADPOLE part-of-speech tagger we opted to use K&E for the known
words tagger, but useriBL for the unknown words tagger. RIBL is a hybrid
between the fast approximation |I®EE and the slowens1-1G algorithm that
implements;-nearest neighbor in its unabridged form (Daelemans, VarBasch
and Zavrel 19978) it builds a trie structure for the most informative featsjrand

1IGTREE, TRIBL, andiB 1-1G are included in the TiIMBL software package, version 5.1jlalske from
http://ilk.uvt.nl/timbl.
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Task Fulltag Main tag
Known words 96.8 98.7
Unknownwords 76.4 84.3
All words 96.5 98.6

Table 1: Percentages of correctly tagged test words, du@attom line) and split into
known words and unknown words, on the full tag and on the negrotly.

performsk-nearest neighbor classification on the remaining featdesbuilding
the tagger, the Mbt wrapper was used

The data used for training tieADPOLE tagger consists of a broad selection
of available manually annotated part-of-speech taggepocarfor Dutch tagged
with the Spoken Dutch Corpus tagset (Van Eynde 2004): Theoappately nine-
million word of the transcribed Spoken Dutch Corpus its€lbétdijk, Goedertier,
Van Eynde, Boves, Martens, Moortgat and Baayen 2002), tKeclrpus with
approximately 46 thousand part-of-speech tagged worésDtCoi corpus with
approximately 330 thousand words, and the 754-thousandi Biadhoven corpus
(Uit den Boogaart 1975) which has been automatically rezedggth the Spoken
Dutch Corpus tagset. Together this accounts for 10,97 %8@7ually-checked
part-of-speech tagged words, all using the same rich ta§Sdt6 tags.

We split this 10 million-word corpus randomly (at the semehevel) into a
90% training set and a 10% test set. The performance of theetaan known
words and unknown words in the test set, as well as on all testlsy is listed
in Table 1. Not surprisingly, the tagger has significantlyrentrouble tagging
unknown words. The Spoken Dutch Corpus tagset makes adfistirbetween the
main tag (a traditional 12-tag distinction) and the morpimdactic subtags, which
are not always used in higher-level applications; the gadization accuracy on the
main tag reaches a respectable 98.6%.

In the overall tagging accuracy, the influence of the unknewand tagger is
of course related to the amount of unknown words in the texXtetdagged. In
the 10% test set, about 98.8% of all tokens is also presertterd®% training
set, but this test is a sentence-level partition of the saxis s the training set
is drawn from. Typically, coverage of tokens in a randomliestd text from
outside the (genres of the) training set will be somewhaklpwas illustrated by
the following two examples. A first random text, offering geal instructions on
Unix, containing many foreign words and command line fragtegis covered
by 89.8%. The second text, the full text of the not#dt boetekleeda Dutch
translation of lan McEwen'éitonementis covered by 97.9%.

2Mbt, version 2.0.1http://ilk.uvt.nl/mbt
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instance left focus right

number context letter context TASK
1 _ _ _ _ _ a b n o r m A
2 _ _ _ _ a b n o r m a 0
3 _ _ _ a b n 0 r m a | 0
4 _ _ a b n 0 r m a | i 0
5 _a b n o r m a I i t 0
6 a b n o] r m a | i t e 0
7 b n o] r m a | i t e i 0
8 n o] r m a | i t e i t | O+Da
9 o] r m a | i t e i t e | N_Ax
10 r m a | i t e i t e n 0
11 m a | i t e i t e n _ 0
12 a | i t e i t e n _ _ 0
13 | i t e i t e n _ _ _ 0
14 i t e i t e n _ _ _ _ m
15 t e i t e n _ _ _ _ _ 0

Table 2: Instances with morphological analysis classificat derived fromabnor-
maliteiten, analyzed afgabnormaal] 4[iteit] xy_a«[€N] ..

3.2  Morphological analysis

We take the task of analyzing the morphology of Dutch wordsttude (1) seg-
menting a wordform into its morphemes; (2) labeling eachpheme with its
function (e.g. a stem with a certain part-of-speech tageimda derivational af-
fix, or aninflection), and (3) identifying all spelling chaembetween the wordform
and its underlying morphemes (Van den Bosch and Daelemg@%).19Ve draw
our examples from the CELEX lexical database (Baayen, Rlapek and van
Rijn 1993), which features a full morphological analysis 363,690 of them. We
took each wordform and its associated analysis, and créskexamples using a
windowing approach, which transforms each wordform intmasiy examples as
it has letters. Each example focuses on one letter, anddesla fixed number of
left and right neighbor letters, chosen here to be five. Cqunsetly, each example
spans eleven letters, which is also the average word lengiie ICELEX database.
To illustrate the construction of examples, Table 2 displdne 15 examples
derived from the Dutch example woathnormaliteiten (abnormalities) and their
associated classes. The class of the first example is “A’clwhieans that the
morpheme starting ia is an adjective (“A’). This morpheme continues up to the
eighth example, which is labeled with “0+Da”, meaning thiathet position, an
a is deleted from the underlying morpheme. The coding thus tkht the first
morpheme is the adjectiv@bnormaal. The second morpheméeit, has class
“N_Ax". This complex tag indicates that whéerit attaches right to an adjective
(encoded by “A™), the new combination becomes a noun ("N Finally, the third
morpheme i€n, which is a plural inflection (labeled “m” in CELEX).
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This way we generated a database of 3,209,064 examplesn\Widse exam-
ples, 3,806 different class labels occur. The most fredyecturring class label
is “0”, occurring in 69.3% of all instances. The three mostfient non-null labels
are “N” (6.9%), “V” (4.2%), and “A’ (1.3%).

When a wordform is listed in CELEX as having more than one ibptessnor-
phological labeling (e.g., a morpheme may be N or V, the ititlecen may be
plural for nouns or infinitive for verbs), these labels arigal into ambiguous
classes (“N/V"). Ambiguity in syntactic and inflectionabsoccurs in 3.6% of all
morphemes in our CELEX data. When the morphological analygeerates more
than one analysis based on these ambiguous classes, ibaske part-of-tagger
to break the tie — hence the arrow from the tagger to the aealyzFigure 1.
We created a translation table between combinations of GEirfain tags and
inflectional markers such as “m” on the one hand, and the C@8ldéthe part-of-
speech tagger on the other hand, to allow matching the CG\teethe ambiguous
analyses. We observed that when the tagger is correct arahttigzer generates
the appropriate analyses, the CGN tags predicted by thetagith their main
tag and the morpho-syntactic subtags, always provide mirffimatches to disam-
biguate between ambiguous analyses. If due to an errortaraitodule no match
is possible to break the tie, a random choice is made.

To evaluate the morphological analyzer, we split the CELE&tabase ran-
domly in a 90% training set (of 362,690 words, or 2,888,19@neples) and a
10% test set (of 36,369 words, or 320,867 examples). Whémettaon the full
90% training set, IGREE correctly segments 79.0% of test words; e.g., it would
segmentbnormaliteiten correctly into[abnormal][iteit][en]. Also taking into
account spelling changes and morpheme types (stems witofagpeech, affixes,
inflections, e.g[abnormaal] 4 [iteit]x_a.[en]), 56.3% of all test words are fully
correctly analyzed. These generalization accuracieajrodd on a random 10% of
CELEX words, can be seen as approximations of the analygerfermance on
unknown words in free text. Performing a coverage checkairto the one in the
previous section, we observe that CELEX covers about 98 f3#edokens in the
test material of the tagger, 83.9% of the Unix instructioouwlnent, and 98.1% of
the word tokens irHet boetekleedAs IGTREE performs a lossless compression
of the training set, the analysis or alternate analyses pfward that is also in
CELEX will be flawlessly retrieved; hence, the effective @@y of the analyzer
on a text such as the novel is at least 98.1%, and possiblyndr®8%, as we
estimated that about 56.3% of unknown words receives acanalysis.

3.3  Dependency parsing

In the TADPOLE approach to dependency parsing, IREE is trained to predict
(directed) labeled dependency relations between a heaa @apendent. For each
token in a sentence, examples are generated where this i®kepotential de-
pendent of each of the other tokens in the sentence. To grexplosion of the
number of classification cases to be considered for a semtemarestrict the max-
imum distance between a token and its potential head. Wetsdl¢his distance
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so that 95% of the dependency relations in the training data@vered, which is
at a maximum distance of eight words. The label that is pteditor each classi-
fication case serves two different purposes at once: 1)ndsgvhether the token
is a dependent of the designated head token, and 2) if thenicestdoes in fact
correspond to a dependency relation in the resulting pdidednput sentence, it
specifies the type of this relation as well.

The features we used for encoding instances for this cleatdn task corre-
spond to a rather simple description of the head-dependanogbe classified. For
both the potential head and dependent, there are featwediag a 1-1-1 window
of words and part-of-speech tags predicted by our taggeaddition, there are
two spatial features: a relative position feature, enogdihether the dependent is
located to the left or to the right of its potential head, ardisdance feature that
expresses the number of tokens between the dependent aieddts

Thus, dependency parsing is first broken down into clastifica at the level
of word-to-word dependency relations. In a second stepethaations need to be
gathered per sentence to form a dependency tree. A depgrdeads regarded as
a set of dependency relations connecting a head and a depieRdea set of such
relations to form a valid dependency tree, some constraimisild be satisfied:
1) each token can only be linked as a dependent to maximadlyhead token
(though a token may be a head to more than one dependent)) degpéndency
relations should not form a cycle. As long as these two caimgs are satisfied, a
dependency tree can be treated as a set of dependencynelatibout losing any
information.

Naively applying this approach results in a number of pcatissues however,
which may also negatively affect the performance. First, ¢hassification task
as formulated gives rise to a highly skewed class distripuith which examples
that correspond to a dependency relation are largely outevsd by “negative”
examples. Second, there is a quadratic increase of instdadee classified as
sentence length increases, that is, a sentencetokens translates to(n — 1)
classification cases.

One issue that may arise when considering each potentiahdepcy relation
as a separate classification case is that inconsistentaregsoduced. For exam-
ple, a token may be predicted to be a dependent of more thameawke To recover
a valid dependency tree from the separate dependency fioedica simple infer-
ence procedure is performed. Consider a token for which épemnidency relation
is to be predicted. For this token, a number of classificatases have been pro-
cessed, each of them indicating whether and if so how thentiskeelated to one
of the other tokens in the sentence. Some of these prediatiay be negative, i.e.
the token is not a dependent of a certain other token in theses, others may be
positive, suggesting the token is a dependent of some atkent

If all classifications are negative, the token is assumedat@ mo head, and
consequently no dependency relation is added to the trabifotoken. If one of
the classifications is non-negative, suggesting a depegdetation between this
token as a dependent and some other token as a head, thididapgmelation
is added to the tree. Finally, there is the case in which nmuaa bne prediction
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is non-negative. By definition, at most one of these preaiidtican be correct;
therefore, only one dependency relation should be addeldetdrée. To select
the most-likely candidate from the predicted dependenafioas, the candidates
are ranked according to the classification confidence ofise blassifier that pre-
dicted them, and the highest-ranked candidate is selemt@uskrtion into the tree.
For example, if in the sentendiehoor haar zingen, | hear her singingthe word
haar is classified as relating thoor in the “OBJ1” relation (direct object) with
confidence 8, and toingen in the “DET” relation (determiner) with confidence 5,
the first prediction is selected, and the second discarded.

As a measure of confidence for the predictions made byRE&Twe divide
the tree-node counts assigned to the majority class by thédounts assigned
to all classes. Though this confidence measure is ratheecarl should not
be confused with any kind of probability, it tends to work tguivell in practice
(Canisius et al. 2006).

The base classifier in our parser is faced with a classificagisk with a highly
skewed class distribution, i.e. instances that correspm@ddependency relation
are largely outnumbered by those that do not. In practiceh suhuge number
of negative instances usually results in classifiers thad te predict fairly con-
servatively, resulting in high precision, but low recah.the approach introduced
above, however, it is better to have high recall, even at ts of precision. A
missed relation by the base classifier can never be recobgrite inference pro-
cedure. Also, due to the constraint that each token can @éydependent of one
head, excessive prediction of dependency relations ctrbsttorrected by the
inference procedure. An effective method for increasirggrécall of a classifier
is downsampling of the training data. In downsampling,dnses belonging to
the majority class (in this case the negative class) are vethfsom the training
data, so as to obtain a more balanced distribution of negatid non-negative
instances.

Canisius et al. (2006) describe the effect of systemagiga@inoving an in-
creasingly larger part of the negative instances from thieitrg data. They report
that downsampling helps to improve recall, at the cost ofigien, but indeed im-
proving the dependency parser, with a maximal performangdevansampling rate
1: 2 (i.e. twice as many negative examples as positive onesg that downsam-
pling is naturally restricted to the training data; the ®sta is not downsampled
as the labeling is not known yet.

As training material for our parser we used all manually datesl data
available in the Alpino Treebadk(Van der Beek, Bouma, Malouf and Van
Noord 2001), amounting to 262,452 words, converted to 248®pairwise exam-
ples, and subsequently downsampled to 726,440 examplealsd/eollected data
that is automatically parsed by the Alpino parser (Malou &an Noord 2004),
available in significantly larger quantities than manualiyotated data. We added
several millions words of automatically parsed text fronkipedia pages, news-
paper articles, and the full Eindhoven corpus except aqottiken out as test set

3Alpino Treebank:http://www.let.rug.nl/~ vannoord/trees/
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Figure 2: Dependency parsing learning curves in terms o&cty labeled dependencies,
unlabeled dependencies, and label accuracy.

(see below). We converted this Alpino output to the colummfat used in the
CoNLL-X Shared Task (Buchholz and Marsi 2006), replacire plart-of-speech
information generated by Alpino by the outputfDPOLE's tagger described in
Subsection 3.1. Also in this process, in special cases¢péatly with multi-word
units and coordinations without a conjunction) multipletie in the original tree-
bank are discarded, keeping only the leftmost head.

Figure 2 displays the learning curves of three commonly esetliation met-
rics (Buchholz and Marsi 2006), viz. labeled and unlabelegethdency relation
accuracy, and the accuracy on the label per word. The tesbsststs of 2,530
sentences (47,471 words) taken from the manually parsdtsexf the Eind-
hoven corpus (thedbl part); this is newspaper text with relatively long sentence
with many subclauses and quotations. The vertical line 61400 downsampled
pairwise examples marks the transition of manually labetaderial to automat-
ically parsed data. Despite a dip in performance in all tleesduation metrics,
the curves suprisingly return to their trajectories, andticme to rise — albeit at
a sub-loglinear rate with increasing amounts of trainingad@he exact scores of
the parser, trained on a current maximum of 29,778,197 elemnand tested on
the aforementioned manually parsed test set, are displaykble 3. At best, the
parser identifies and labels dependency relations betwegatswat an accuracy of
74.3.

4 Speed and memory usage analysis

Thus far we have not reported on speeds and memory usaget éxqessing

when comparing the morphological analyzergd-iG. Three design goals of
TADPOLE relate to speed and memory: we want the system to be fashesy li
as possible in the length of the input, and costing as littamory as possible.
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% Correct assignment
Aspect Only manual data Automatic data added
Labeled dependencies 67.3 74.3
Unlabeled dependencies 70.6 77.1
Label accuracy 76.3 81.5

Table 3: Percentages of correctly assigned dependencigsamd without labeling, and
the accuracy on labels only, trained on the maximal amourtawfing data, tested on
newspaper texts, before and after the addition of autoalbtiparsed training data.

Module Memory (Mb) 1000 words/s
Part-of-speech tagging 23.3 10.1
Morphological analyzer 2.9 6.7
Dependency parser 68.9 7.6
Tokenizer (rule-based) Perl 81.9
MWU chunker (rule-based) Perl 120.3
Total 95.1+ Perl 2.5

Table 4: Amount of memory used, and numbers of words proddsg¢he five modules at
maximal training set sizes. Bottom line sums the amount ahorg, and aggregates the
speeds.

We measured the speed of our classifiers in terms of the nuaflveords they
processed per second, and the bytesize of therlEES*. Table 4 summarizes the
measurements taken at the maximal sizes of the trainingusetkin the previous
section to estimate the generalization accuracies of eactulm. The table also
lists the speed of the rule-based tokenizer and multi-wbrthker for complete-
ness, as these modules do cost some methmg time. As can be seen in the
table, the parser consumes most memory, being trained alg@dargest amount
of training examples (nearly 30 million). The part-of-spe¢agger consumes a
fair bit of memory as well, due to theriBL-basedunknown wordsagger.

Disregarding the fast rule-based preprocessing modblesagger is the fastest
module with about 10,160 words per second, while the mongiical analyzer is
the slowest, processing about 6,715 words per second. @igérgle processor,
the aggregated speed with whithDPOLE can process text with all three modules
is about 2,488 words per second. This number assumes iRyl full streaming
performance.

One remaining design goal is to include a parser with prefgilaear perfor-
mance. We measured the speed and accuracy of the parsefayerditentence

4The hardware used for testing is equipped with Dual Core AMibe@n 880 2,412 Mhz processors.
5They are implemented as Perl scripts and require the Peruiatgle at runtime.
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Figure 3: Generalization accuracies (left) and secondsgetence (right) of the depen-
dency parser trained on maximal amounts of data, measureskptence length from 2 to
50.

lengths found in our test set. Figure 3 shows both, measwearately for all

sentence lengths from 2 to 50. As the left graph of Figure 3vsheentences
shorter than length 20 are parsed at above-average perfoentevels. The right
graph of Figure 3 shows a perhaps more unexpected lineaiorelzetween the
length of a sentence and the average time it takes to parg&itier we noted

that for each sentence pairwise examples are generated-( 1), to be exact),

but we also constrained this (also with test sentences)ite pawords within a

range of eight words from each other, as 95% of all relatiornthé training cor-

pus occur within that range. This fixed constraint boundswiraber of examples
per sentence, making the relation between the sentenctland the number of
examples effectively linear.

5 Related research

Most if not all related work on morpho-syntactic analységiding, and parsing on
Dutch has focused on these tasks in isolation. Schone aatsdy(2000) describe
an unsupervised approach to computational morphologiegyais, using CELEX
as a gold standard. Their knowledge-free method analyzedsiito a large corpus
above a frequency threshold of 10. Matching these analgses bnesin CELEX,
they report F-scores on correctly identified morphemesaiiad 79.6. Without a
direct comparison, we can safely say that our supervisedmsygastly outperforms
this system, even if we would only look up analyses from CELXich their
system is obviously not allowed to).

Van Halteren, Zavrel and Daelemans (2001) provide gerzetan accuracies
of various tagging systems trained on Dutch data annotaied the Wotan tagset,
a predecessor of, and comparable to, the CGN tagset. Usiitjoaal learning
methods (hidden markov models, transformation-basedilegrand maximum-
entropy tagging) and combinations of these taggers in episeanchitectures, but
using only the 754-thousand-words Eindhoven corpus, teedness-validated ac-
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curacy reported is 93.3%, and 96.4% using a reduced verkiba tagset, “Wotan-
Lite”; this is the performance of a stacked ensemble of fiass. In contrast, with

about 10 million words of training data we attain about thrsaccuracy (96.5%)
in a similar experiment with a tagset that is at least as rickVatan, but using a
single classifier.

Buchholz and Marsi (2006) provide an overview of systems wbmpeted
in the CoNLL-X Shared Task, which also used a part of the mignaanotated
Alpino treebank, split in training data (195,069 words,34® sentences) and test
data (5,463 words, 386 sentences). For the best system (Mdf)d_erman and
Pereira 2006) a labeled dependency score of 79.2 is repafesadly superior to
our 74.3 (obtained with more training data, tested on a wdiffetest set). Yet, this
best performing system is a more complicated two-stageidisa@tive parser that
first performs unlabeled parsing, and then assigns lab&ds,ums in cubic time as
opposed to our linear parser.

An obvious competitor to our parser is the original Alpinoge (Malouf and
Van Noord 2004) which it hopes to emulate. Probably the batgy for Dutch,
Alpino is a typical modern example of a rule-based approhahhtas hybridized
with a stochastic, data-driven approach. After a rule-basee generates possible
parses for a given sentence (possibly hundreds or thousandschastic com-
ponent searches in this space of possibilities for the nikelylparse, where the
statistics are derived from the Alpino treebank.

Alpino has been evaluated with various metrics; Malouf aad Moord (2004)
argue for using an adapted form adncept accuracyo estimate the correctness
of the dependency labeling. The labeled dependenciesamcunetric of the
CoNLL-X shared task (Buchholz and Marsi 2006), used in thjzgy, has the same
aim; both metrics essentially computeorrect/#total, i.e., the number of cor-
rectly assigned relations divided by the total number dadtrehs. The difference
between the two metrics is that Alpino generates a limitedwamof non-terminal
nodes in its trees, which necessitates their metric, wheoeii case the number
of generated relations will never be larger than the numbéol@ns, hence the
simple labeled dependency accuracy metric suffices. Ghvisnwe cannot cur-
rently compare our parsers to Alpino. Still, it is interagtio contrast some results
obtained on the same or similar test sets. On a similar té$b eirs, composed
of news articles, Alpino is reported to attain a concept eamcyiof 87.9%, which
is markedly higher than our 74.3% accuracy on labeled degreziels. On a small
corpus of quesions, Alpino attains a concept accuracy GP88a test of our parser
on this corpus yields a labeled dependency accuracy of 78 Téarly, our parser
lags behind Alpino in terms of accuracy.

6 Discussion

We have described theaDPOLE system, a robust modular morphological ana-
lyzer, part-of-speech tagger, and dependency parser fimhDincluding the clas-
sification engine, the complete system costs about 95 Mb afiong and has an
estimated processing speed of close to 2,500 words perdegssuming a com-
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mon processor type and full streaming performance. Thestdaggstimated to be
about 96.5% correct on unseen text (98.6% in terms of mas) taihe morpho-
logical analyzer can segment about 79.0% of unseen wordsatlyt and can pro-
duce a completely correct analysis with part-of-speech tagl spelling changes
for 56.3% of unseen words. The coverage of the tagger and trphalogical
analyzer is quite high; a random novel text is covered at 8®8% of all tokens.
In the case of the morphological analyzer this means thatabie to losslessly
reproduce correct analyses for at least these 98% tokemsddjendency parser,
feeding on tags generated by the part-of-speech taggesraies dependency re-
lations between pairs of words at an accuracy rate of aba@244The parser is
observed to parse in linear time in function of the lengthhef input; although it
has a quadratic component in the example generation prdbesprocess is con-
strained by a threshold that makes the number of examplesrlin the length of
the sentence.

In future work we aim to prolong the learning curve of the degency parser,
as much more training data is still available. If the leagntnirve does not flatten
too much it may be possible in the long run to develop a lirieae- memory-
based emulation of the Alpino parser. We may introduce sottra enternal flow
of information, such as from the morphological analyzertte tinknown-words
module of the part-of-speech tagger. Other future worklwe®the incorporation
of other modules intdADPOLE such as a named-entity recognizer, a semantic role
labeler, and a co-reference module, so that the abbrewiadlbstand fortagger,
Dependencyarser, andtherLanguageEngines.
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