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1. INTRODUCTION

The paper investigates the memory-based learning (MBL) paradigm as a model
of productive linguistic behavior in the domain of Dutch noun plural inflection.
We first sketch the origin and background of the MBL approach, to then pro-
vide a short overview of Dutch noun plural inflection along with a detailed
description of the use of MBL models for inflectional morphology. Results
of a large number of MBL simulations on three related tasks of noun plural
inflection are analyzed in considerable detail. In particular, we discuss the
differential effects of varying core parameter configurations of the MBL algo-
rithm, issues of representation of source exemplars, and different definitions of
inflection as a classification task. Finally, we consider these results in relation
to current practices in the optimization of model parameters and in the analysis
and evaluation of simulation results.

2. BACKGROUND

The central claim of the MBL paradigm is that decisions about new facts
are based on re-use of stored past experiences. In this approach, learning is
storage of exemplars in memory, and processing is analogical reasoning on
stored exemplars. The idea has a long history in cognitive science, with a
few pioneering insights going back to pre-Chomskyan linguistics (De Saussure
1916, Bloomfield 1933). Related ideas can also be found in current research
in both exemplar-based (Skousen 2002) and cognitive linguistics (Croft and
Cruse 2003). In psychology, exemplar-based approaches have been proposed
to model human categorization behavior (e.g. Estes 1994). An algorithmic op-
erationalization of the approach was developed in the statistical pattern recog-
nition literature from the 1950s onwards (Fix and Hodges 1951) with the “near-
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est neighbor rule” modeling generalization as either extrapolation from one
nearest neighbor (1-NN) or from more than one (k-NN). The algorithm found
considerable favor in artificial intelligence where it was rubricated under the
headings of “case-based reasoning”, “memory-based reasoning”, “instance-
based learning” etc. (see Daelemans and van den Bosch 2005, for an overview
and for the application of MBL in computational linguistics).

In modeling inflectional morphology, a memory-based approach assumes
morphological generation to be a function of either lexical retrieval or similarity-
based reasoning on lexical representations of word forms, where computation
of similarity is defined on the basis of phonological, orthographical, or even
semantic representation features.

At least three components are necessary to describe an MBL model: a
knowledge base containing exemplars (also called “instances”, “examples” or
“experiences”) with an associated class; a function that describes how similar
two exemplars are; and a decision function that determines the class of a new
exemplar as a function of the classes associated with its k nearest neighbors.
Exemplars can be thought of as bundles of feature values and the similarity be-
tween exemplars as a function of the similarity between values. The simplest
possible such model is the 1-NN model, where the class of the most similar
exemplar determines the target class. Originally, nearest-neighbor algorithms
were defined only for numerical features, but today MBL has been extended
to encompass a wide variety of methods for assessing similarity for both nu-
merical and nominal features. In this paper, our simulations make use of the
TiMBL 6.0 system (Daelemans et al. 2007), a software package that collects a
number of variants of MBL.

It is important to bear in mind that the goals of implementing an MBL-
model are not the same in different domains. In most computational linguis-
tics tasks, the goal is to maximize performance accuracy, that is, to be able
to classify both new and existing exemplars correctly. In computational psy-
cholinguistics, the goal is to characterize human generalization behavior, that
is, to classify new exemplars the way humans do. We will examine the impli-
cations of this distinction in more detail later on.

In describing MBL as a model of inflectional morphology, three points
are worth emphasizing. First, MBL takes the view that each inflected form is
valuable. There is no need for developing representations that abstract away
from experience. Second, word inflection is considered to be a fully context-
dependent process. Finally, MBL makes a principled distinction between re-
trieval and generalization.

2.1 Exhaustive Storage

In MBL, all exemplars in a domain are stored on a par, and each classification
step is governed by the same similarity and decision functions. Each response
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or classification step is the result of an analogical process, consisting in the
comparison of the target exemplar to previously stored exemplars and the con-
sequent generalization of the class of the most similar known exemplars to the
target. Whereas most cognitive models presuppose the explicit representation
of generalizations as abstractions from sets of exemplars, and the explicit stor-
age of irregular exemplars as exceptions to these generalizations, MBL does
not make this distinction and keeps all exemplars available to potential extra-
polation in analogy-based processing.

2.2 Context Dependence

Because there is no representational difference in MBL between regular and
irregular exemplars, it can be seen as a one-route context-dependent model. In
that respect, it keeps company with other one-route approaches, such as ana-
logical modeling (Skousen 2002), connectionist pattern associators, the gen-
eral context model (Nosofsky 1988), or context-dependent rule-based models
(Albright and Hayes 2003). It thus contrasts with dual-route models (Pinker
1999, Clahsen 1999), where a context-dependent component is complemented
with a default mechanism that is context-independent.

2.3 Generalization Is Not Retrieval

In MBL models, production of known inflected forms is carried out through
simple retrieval; the analogical route is resorted to only for the production of
inflected forms of unknown exemplars. This contrasts with models that use
the same mechanism to produce target forms for known as well as for novel
exemplars, e.g. the Rumelhart and McClelland (1986) model of English past
tense inflection. The distinction between generalization and retrieval follows
from a difference in the learning process. While a connectionist model has a
learning phase in which weights are adjusted for most known inflected forms
to be correctly produced, MBL models do not have such a learning phase.
Because MBL models base the inflection of new forms directly on analogy to
stored exemplars, they are also known as lazy learning models.

Over the last several years, MBL has been used to model lexical produc-
tivity in different domains. A number of studies successfully applied MBL
to the modeling of experimental evidence. Hahn and Nakisa (2000) used a
simple k-NN model to predict plural forms for novel German nouns, Krott,
Schreuder and Baayen (2002) and Krott et al. (2007) investigated the choice
of linking morphemes in novel Dutch and German compounds, Keuleers et al.
(2007) studied Dutch noun plural inflection, and Eddington (2000) focused on
English past tense formation. Substantial work was also devoted to lexical
reconstruction tasks in the domains of Dutch word stress (Daelemans, Gillis
and Durieux 1994) and German plural formation (Daelemans 2002). In lexi-
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cal reconstruction, predictions are not validated against experimental data, but
rather against a wide range of attested lexical evidence. Part of the vocabulary
data is used as a knowledge base for constructing a model which is eventually
tested on the remaining vocabulary used as a test material. Finally, some MBL
work was aimed to model child language acquisition data (Gillis, Durieux and
Daelemans 2000).

3. MODELING DUTCH NOUN PLURAL INFLECTION

Dutch has two frequent and productive inflectional affixes for plural formation,
-s and -en, the latter of which is phonologically realized as /@/. The two suffixes
are almost, but not completely, in complementary phonological distribution, so
that the plural suffix for a Dutch noun is to a relatively high degree predictable
given the noun phonology. For instance, voet (‘foot’) – like most other nouns
ending in an obstruent – takes the -en suffix in its plural voeten, and bakker
(‘baker’) – like most other nouns ending in a sonorant consonant preceded by
/@/ – takes the -s suffix in bakkers. Phonological rules like these (De Haas
and Trommelen 1993) can account for the plurals of about three quarters of
Dutch monomorphemic nouns.1 While rule-based descriptions of the Dutch
noun plural system offer a clear and concise view of the domain, our goal here
is to understand Dutch noun plural inflection (and inflectional morphology in
general) in a memory-based learning framework.

3.1 Tasks

Each model will be run on three tasks: one lexical reconstruction task, and two
pseudo-word plural production tasks. The lexical reconstruction task consists
in predicting the plural forms of 5% of the nouns in the lexicon on the basis of
all remaining ones. In the pseudo-word tasks, the model is expected to match
the plural forms produced by the majority of participants in two controlled
experiments. In the first experiment (Baayen et al. 2002), subjects produced
plurals for a set of 80 pseudo-words with up to four syllables. In the second ex-
periment (Keuleers et al. 2007), subjects produced plural forms for 180 mono-
and disyllabic pseudo-words.2 In both experiments, pseudo-words covered a
wide range of phonological conditions thought to affect plural formation.

1 A second factor determining a Dutch noun’s plural suffix is the perception of whether a word
is a borrowing, in which case the -s suffix is often preferred. This factor will not be considered
in the present study, but see Keuleers et al. (2007) for a memory-based learning approach that
takes borrowings into account.

2 The experiment elicited productions in three spelling conditions. Only plural productions
for pseudo-words in the no spelling and Dutch spelling conditions are considered here. Plural
productions for pseudo-words in the English spelling condition were ignored.
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3.2 Memory

In implementing an MBL model, the first step is choosing the exemplars that
will make up the stored knowledge base. In the case of inflectional morphol-
ogy, a corpus-derived lexical database such as CELEX (Baayen, Piepenbrock
and Gulikers 1995) is often used as the source for exemplars. While the basic
assumption in MBL is that every single item is stored, the set of exemplars
stored in the model’s knowledge base is in fact subject to several practical lim-
itations. The task being modeled is the most obvious constraining factor. It
is assumed that only exemplars for which a relevant target class can be deter-
mined are relevant. In noun plural formation, the relevant target class is a label
from which it is possible to determine the plural inflection of a noun from its
corresponding singular form. In practice, this means that only nouns for which
both singular and plural forms are attested are relevant exemplars. CELEX
lists 19,351 such nouns.

In building the knowledge base, it is common practice to leave out ex-
emplars that occur below a given frequency threshold, based on the intuition
that exemplars that are more frequent are more salient. There are two reasons
why this is, in our opinion, unjustified. First, one of the core assumptions of
the MBL paradigm is that each exemplar is relevant to generalization behavior.
Second, low frequency exemplars play an important role in generalization. For
instance, Baayen (2001) demonstrated that the productivity of an inflectional
pattern rises with the number of hapax legomena showing that pattern. There
is considerable evidence that type frequency and not token frequency is a de-
termining factor for generalization (Bybee 1995). This is also supported by
the observation that irregular instances (for example, of English verb inflec-
tion) often present disproportionally high frequencies. The practice of leaving
out exemplars that occur below a particular token frequency is difficult to jus-
tify. In our opinion, the proper course of action is to include all exemplars that
are expected to be already known in the learning condition being modeled. In
the current study, we tried to model the adult learning state, and so we assume
that even very low frequency forms were present as stored exemplars in the
model’s knowledge base.

Another practical reason to limit the number of exemplars in memory is
that a large number of stored exemplars may increase the computational cost
of a simulation. However, the MBL implementation in TiMBL takes advantage
of very efficient data compression. Typically, a TiMBL simulation using one
combination of model parameters and a full set of several thousands of exem-
plars takes a few seconds to run on a standard personal computer. Nonetheless,
whenever computation time is a real concern, we suggest reducing the number
of exemplars by random selection rather than by frequency.
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3.3 Class

In the experimental tasks we aim to model, participants are asked to produce
inflected forms for pseudo-words. The traditional approach in MBL is to con-
sider this as a simple classification problem, where the model’s task is to pre-
dict the relevant inflection class of each input form. In this case the choice is
between the productive suffixes -en and -s. As the plural suffix will be extrap-
olated from exemplars stored in the model’s memory, each exemplar is labeled
with the suffix it selects for plural formation. For exemplars that do not form
their plural with either suffix, a third class label is used.

The main advantage of this approach is that it is fairly straightforward to
compare the model’s predictions to experimental results, as participants’ re-
sponses are categorized using the same labels. However, there are also po-
tential drawbacks. Class labels abstract away from relevant features of actu-
ally produced inflections. For instance, phenomena of consonant alternation,
which occur for some nouns but not for others, are ignored. The label -en
is used for both hand (plural handen) and kant (plural kanten). However, the
final consonant in hand is unvoiced in the singular /hant/ and voiced in the plu-
ral /hand@/, while the final consonant of kant is unvoiced both in the singular
/kant/ and the plural /kant@/. This does not mean that the labeling of experi-
mental results is erroneous. Since our focus is on whether -en or -s is used,
phonological realization details can be seen as further refinement steps of this
analysis. Participants had the freedom to produce alternations, and therefore
did not perform the same task as the model. Likewise, the a priori partition of
productive plural formation processes into two classes, with all other processes
being grouped under a single label, may be too much of a simplification. For
instance, in Dutch, many nouns borrowed from Latin, Italian, and Greek keep
their etymological plural form (e.g., museum-musea), and these processes are
productive at least to a certain extent. Borrowing terminology from data com-
pression, we may say that the class labeling approach to Dutch plural noun
inflection is lossy, in the sense that it does not allow us to perfectly recover the
plural form from the singular form.

Another relevant observation is that the way in which classes are defined
may affect the MBL algorithm quite extensively, hence leading to important
differences in the output. We will come back to this point in the sections on
feature weighting and decision. Suffice it to emphasize now that, while class
labels may be increasingly refined to include processes such as consonant alter-
nation or extended to account for irregular processes, the algorithm needed to
assign the correct class labels to each exemplar becomes more and more com-
plex with each such refinement. In turn, this increases the possibility of errors.

A radical alternative to such a class-based conceptualization of the inflec-
tion task is the use of a generic mapping algorithm yielding a description of
how a form in memory is transformed into a target form. Such a complex
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description – essentially a transformation function – can then effectively be
used as class label. In this approach there is no need to define the possible
class labels beforehand. As a result, the class detection algorithm does not be-
come more complex when more class labels are introduced. Furthermore, the
approach has two important properties. First, since the target inflected form
can always be recovered from its input form and the corresponding transfor-
mation function, we can consider each transformation function as a lossless
class label. Second, the classification task becomes equivalent to a production
task, since the transformation function applied to target forms produces fully
specified forms.

For this purpose, we used the Ratcliff/Obershelp pattern recognition al-
gorithm (Ratcliff and Metzener 1988). When applied to a pair of symbol se-
quences, the algorithm operationalizes the steps through which one sequence
can be transformed into the other one. Unlike the Levenshtein distance, the
algorithm does not yield the minimal number of editing operations needed,
but rather aims at attaining a maximally psychologically plausible string trans-
formation. In van den Bosch and Daelemans (1999), a similar transformation
function approach is successfully used in an MBL engineering approach to
morphological analysis.

A consequence of using a transformation function is that the number of
classes becomes very large. One of the goals of this study is to compare the
traditional method of assigning pre-defined class labels based on linguistic cat-
egories to the alternative approach of using a transformation function. Compar-
ative results will be assessed over different data sets and different combinations
of other parameters.

3.4 Features and Similarity

As the main goal of an MBL model is to extrapolate the class of new exemplars
based on their similarity to stored exemplars, here we will discuss different as-
pects of similarity in some detail. There are four main issues to be addressed in
this respect: what information domains define the similarity space where ex-
emplars are compared; which domains are especially relevant to the task being
modeled; how can we make exemplars comparable for the relevant informa-
tion; how is similarity computed on the basis of inter-exemplar comparison.

3.4.1 Choice of Information

In languages such as English and Dutch, the primary factor determining the
choice of a particular inflectional marker is phonology.3 As already noted

3 In theories such as Pinker (1999) and Clahsen (1999), it is proposed that a default process
that does not take into account lexical information explains a large part of inflection. Keuleers
et al. (2007) have argued that this account is very unlikely for Dutch plural inflection.
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above, for about three quarters of Dutch noun types, the plural form can be
predicted by applying deterministic rules to the phonological properties of sin-
gular forms. In an MBL approach to Dutch plural inflection, we will assume
that the inflectional pattern of a non-stored exemplar e is best predicted on the
basis of the inflectional pattern of the stored exemplars phonologically most
similar to e. While we will limit ourselves here to phonological information,
it is noteworthy that other possible factors could in principle be taken into
account. For example, Baayen and Moscoso del Prado Martín (2005) demon-
strated that in Dutch, German, and English regularly and irregularly inflected
verbs have different semantic densities: the inclusion of semantic informa-
tion in an MBL model would allow semantic similarity between exemplars
to contribute to the prediction of inflectional forms. Moreover, it has been
argued that pragmatic similarity between exemplars plays a role in inflection
(Keuleers et al. 2007).

Linguistic accounts of the Dutch noun plural system reach a very adequate
description by focusing on the rhyme of the final syllable and the noun’s stress
pattern. This means that while Dutch may contain words with more than two
syllables, a model in which exemplars are compared only on the basis of their
final syllable and stress pattern is likely to provide a satisfactory account. On
the other hand, it is interesting to know if inclusion of possibly irrelevant in-
formation can be detrimental. In this study, we will test models in which up to
four syllables are coded, both with and without stress information.

3.4.2 Comparability: Features and Alignment

In MBL models, inter-item comparability is based on features. Each exemplar
has a value assigned to each feature and the distance between two exemplars
is defined as the sum of the distances between corresponding feature values.

Clearly, any useful comparison of the phonology of exemplars has to in-
volve features that are coded below the level of syllables. Figure 1 illustrates
the feature representations that are compared in this study. The onset-nucleus-
coda representation divides a syllable in three elements: the phoneme with
maximal sonority (the nucleus), the phoneme(s) preceding it (the onset), and
the phoneme(s) following it (the coda). This alignment method is commonly
used in memory-based learning and is considered to produce a well-balanced
representation. While all syllables have a nucleus, it is possible to have sylla-
bles without onset or coda. However, these “empty” feature values do count in
the computation of similarity, so that two syllables with no value for the onset
feature are considered fully similar with regard to that feature. It is not clear
if empty feature values actually distort similarity, and this study does not try
to address this issue. On a more practical level, we will compare the onset-
nucleus-coda alignment method with a method that deals with empty feature
values in a consistent manner.
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For instance, the word /a:p/ (‘ape’), in which the first phoneme is also the
one with maximal sonority, is represented as /=/, /a:/, /p/ with onset-nucleus-
coda alignment (the ‘=’ symbol indicates that there is no value for a particular
feature, in this case the onset). In start-peak-end alignment, the value of the
nucleus feature is also used as a virtual value for onset and coda if no ‘real’
value is available. Hence, with start-peak-end alignment, the word /a:p/ is
represented as /a:/, /a:/, /p/. A third alignment method that will be added to
the comparison is an extension of start-peak-end alignment: peak and valley
alignment uses the element with minimal sonority to divide a syllable’s onset
and coda analogically to how start-peak-end divides the syllable by maximal
sonority. For instance, onset-nucleus-coda alignment of the monosyllabic form
/strant/ (‘beach’) would yield the features /str/, /a/, and /nt/. In peak and valley
alignment the onset /str/ is further decomposed into its start, sonority valley,
and end, giving the features /s/, /t/, and /r/. Likewise the coda is split further
into its start /n/, its sonority valley /t/, and its end /t/. The final peak and valley
representation of the syllable /strant/ consists of the 7 feature values /s/, /t/, /r/,
/a/, /n/, /t/, and /t/.
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FIGURE 1: Examples of feature representations for the words /hOnt/ (dog), /"zAnt-
stOrm/ (‘sandstorm’), and /ka-pi:-"tEin/ (‘captain’). All representations use only
the two final syllables of the words. The ‘=’ symbol indicates that there is no
value for a particular feature. The last three values in each example indicate the
presence of stress on the penultimate and final syllable, and the final grapheme
of the word. Gain ratios obtained in the simulation studies are shown for each

representation.
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On top of the above methods that align phonological information within
syllables, syllables must be aligned within words. Given a memory with ex-
emplars with varying numbers of syllables, two decisions must be made. First,
a choice must be made for word-final or word-initial alignment. Since the rel-
evant information for Dutch noun plural inflection is mainly concentrated at
the end of the word, a word-final alignment will be used. Secondly, exem-
plars consisting of fewer syllables than those required by the representation
template of the model must be padded up with values for the features of miss-
ing syllables (leftward, in the case of word-final alignment, or rightward, for
word-initial alignment). Two padding methods will be compared here. Empty
padding uses one arbitrary value for all missing features. For comparison, we
will use the delta padding method, which uses virtual values to refer to the
values of the preceding syllable (right to left). For instance, a disyllabic onset-
nucleus-coda representation would consist of 3 feature values for each of the
syllables. With empty padding, the monosyllabic word /strant/ would have the
feature values /=/, /=/, /=/, /str/, /a/, and /nt/. With delta padding, the empty
slots are filled up with pointers to the next syllable and the resulting feature
values are />str/, />a/, />nt/, /str/, /a/, and /nt/.

3.4.3 Similarity: Feature Weights and Distance Metrics

Feature Weights: In building an MBL model, we can, to a certain extent, ex-
clude what we think is irrelevant information. However, there may be degrees
of relevance for the information included in the model. For example, in Dutch
noun plural inflection, it is probable that the features of the final syllable are
more informative than the features of the preceding syllables. In memory-
based learning, it is common to weight features by their information-gain with
respect to the classification. H(C) (Equation 1) is the entropy of the set C of
class labels.

(1) H(C) =−∑ c∈C P(c) log 2 P(c)

The weight for a particular feature can then be defined as in Equation 2,
where V i is the set of values for feature i, and H(C|v) the entropy of a value
distribution over the different classes.

(2) wi = H(C)−∑ v∈V i P(v)×H(C|v)

In this study, we will use the gain ratio method, which normalizes informa-
tion gain for the number of values per feature. In Figure 1, gain ratio feature
weights are shown for some of the feature alignment methods compared in this
study.
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Distance metrics: We have defined the distance between two exemplars as the
weighted sum of their by-feature distances, but we have not yet defined how
feature value matching is computed.

In memory-based learning, the most straightforward method of assessing
similarity is by the overlap distance: identical feature values have an overlap
distance of 0, non-identical feature values have a distance of 1. Equation 3
gives the weighted overlap distance between two exemplars.

(3) ∆(X ,Y ) = wi

n

∑
i=1

δ (xi,yi)

For numeric feature values, the absolute value of the normalized difference
between the values is taken.

A consequence of using the overlap distance metric is that exemplars that
do not overlap on any feature are at the same, maximal, distance (which is
equal to the number of features in the case of unweighted features). Another
consequence is that an exemplar may have many neighbors at the same dis-
tance. As we will see later, this has important consequences for setting the
parameters of the decision function. A third characteristic of the overlap met-
ric is that it does not allow for gradient similarity between feature values. For
instance, given an onset-nucleus-coda coding of phonological information, the
word beak (/b/, /i:/, /k/) has the same overlap distance (1) from both peak (/p/,
/i:/, /k/) and weak (/w/, /i:/, /k/), although beak and peak are phonologically
more similar than beak and weak are. Therefore, MBL models are often im-
plemented using the Modified Value Difference Metric (MVDM) (Cost and
Salzberg 1993), which provides gradient similarity for feature values. MVDM
looks at co-occurrences between feature values and target classes. Feature val-
ues are considered similar if they have similar distributions over target classes.
This is shown in Equation 4, where the inter-value distance (to be used in
Equation 3) is a function of the conditional distribution of classes given the
feature values.

(4) δ (v1,v2) =
n

∑
i=1
|P(Ci|v1)−P(Ci|v2)|

Because the MVDM metric implements gradient similarity, the number of
neighbors that are at the same distance from any given exemplar decreases
dramatically relative to the overlap metric. This is an important factor when
choosing the parameters of the decision function, which is the topic of the next
section.

3.5 Decision

Once we have established which exemplars are in the model’s knowledge base,
how they are represented and how similarity between them is computed, a final
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and equally crucial question concerns the nature of the decision function, i.e.,
how a class is assigned to novel exemplars given its similarity to each exemplar
in memory.

3.5.1 Neighbors and Distance

A problem with the nearest neighbor approach is that several exemplars may be
equally similar to a target exemplar. In that case, there may be several neigh-
bors at a given distance. Rather than choosing k of these neighbors randomly,
we use all neighbors at the same distance. Therefore, the parameter k should
be interpreted as the number of nearest distances rather than as the number
of nearest neighbors, and, even at k=1, several neighbors may be selected for
extrapolation.

The most straightforward decision method is to base the class of a new ex-
emplar on the class of the exemplar(s) at the nearest distance. Although quite
successful for some problems, the 1-NN approach is mostly suitable for dis-
crete classification tasks: if there is only one exemplar at the nearest distance,
the method cannot provide a probabilistic output for different target classes.
Furthermore, the 1-NN approach assumes that more distant exemplars are all
equally irrelevant. For models dealing with linguistic productivity, such an as-
sumption may be inappropriate because it fails to account for class size (type
frequency) effects.

Another relevant consideration when setting a value for k is that the number
of exemplars at a given distance is highly dependent on the distance metric.
Compared to the overlap metric, the MVDM metric, which computes graded
similarity between feature values, lowers the probability of finding equally
distant exemplars.

3.5.2 Distance Weighting

Distance weighting reflects the intuition that the more distant a neighbor is
from the target exemplar, the lower its influence is on the classification of that
exemplar. In practice, distance weighting becomes more important with higher
values of k, as more distant exemplars may jointly influence classification.
We will compare zero decay distance weighting, in which each exemplar is
equally weighted, with inverse distance decay weighting, where support of
each neighbor is inversely proportional to its distance from the target exemplar.

3.5.3 Type Merging

When the memory of an MBL model contains identical forms with the same
inflectional pattern, these forms are normally counted as distinct exemplars by
the decision function. Because exemplar representations do not always corre-
spond to the full word (e.g., due to the limit on the number of coded syllables),
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the probability of having two identical forms is higher than in normal language.
In some cases, especially with low values for k, this leads to a neighborhood
largely composed of identical exemplars. For this reason, we compared the
effect of counting all identical forms separately to that of “merging” them and
counting only once.

3.5.4 Output

Instead of a classification, an MBL model can also give probabilities for dif-
ferent classes. As classification (except in the case of 1 neighbor) involves
a probability distribution for each class, a model can be read-out at the pre-
decision level. This probability distribution is local, however. MBL is a non-
parametric approach that does not make assumptions about the global distribu-
tion of classes.

4. RESULTS AND DISCUSSION

For each of the three tasks, we ran 23,040 different simulations. Each simula-
tion had a unique combination of values for the parameters listed in Table 1.
Simulations with the overlap metric were run with k = 1,3,5, and 7. Simula-
tions with the MVDM were run with k = 1,3,5,7. . . up to 51.

For the two pseudo-word tasks, a prediction was considered accurate if the
simulation assigned a probability ≥ 0.5 to the answer given by the majority of
human subjects. In the lexical reconstruction task, a prediction was considered
correct if the simulation assigned a probability ≥ 0.5 to the lexically attested
form.

In general, surprisingly good accuracy scores were observed. For com-
parison, the baseline accuracy (choosing the majority form, -en) was about
63 % in the lexical reconstruction task, and 68.75% and 62% in the first and
second pseudo-word tasks respectively. In the lexical reconstruction task, the
best simulation had an accuracy of 97.8%. For the first pseudo-word task,
the best simulation was 100% accurate. The best simulation for the second
pseudo-word task scored a fairly high 89% accuracy. For all tasks, a surpris-
ing number of outliers were observed towards the lower end of the scale, with
some simulations achieving no more than 50% accuracy. Figure 2 shows that
these outliers correspond to simulations where only one syllable was used in
the exemplar representation.

Disregarding one-syllable simulations, minimal accuracy was 83.9% for
the lexical reconstruction task, and 77.5% and 73.9% for the first and second
pseudo-word tasks respectively. Table 1 gives accuracy scores on each task,
with the exclusion of one-syllable simulations. Due to the large number of
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FIGURE 2: Box and whisker plots comparing the accuracy distribution of one-
syllable simulations with two-, three-, and four-syllable simulations. Filled black
dots indicate the median; box height shows the interquartile range Q3-Q1; the
whiskers extend to the most extreme data point within 1.5 times the interquar-
tile range. Points beyond the whiskers can be considered outliers in a normal

distribution and are plotted separately.

data points analyzed, even very small differences between tested parameter
values proved to be significant.4

4.1 Information and Representation

4.1.1 Number of Syllables, Stress, and Final Grapheme

As stated above, accuracy is clearly affected by the number of syllables used
to represent exemplars. Even when one-syllable simulations are disregarded,
some differences remain. In the lexical reconstruction task and in the second
pseudo-word task there is a slight decrease in accuracy with increasing number
of syllables. In the first pseudo-word task, on the other hand, an increase in the
number of coded syllables is accompanied by a marked increase in accuracy. A
possible explanation for this is that the first pseudo-word task included some
stimuli that specifically benefit from analogies with three and four syllable
words. Whereas no stimuli in the second pseudo-word task have more than
two syllables, about 1 in 3 stimuli in the first pseudo-word task have three
or more syllables. However, this does not fully explain why, in the lexical
reconstruction task, the same proportion of items with more than two syllables
are best predicted with a two-syllable representation of exemplars.

4 The data used in this study (lexicon, pseudo-word stimuli), complete results, and analysis
are available at http://www.cpl.ua.ac.be/data.
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MEAN ACCURACY (STANDARD DEVIATION)
Lexical Recon-
struction

Pseudoword
Task1 (Baayen
et al. 2002)

Pseudoword
Task2 (Keuleers
et al. 2007)

Number of Syllables
2 .914 (.020) .878 (.033) .841 (.031)
3 .914 (.019) .917 (.043) *** .840 (.032)
4 .912 (.019) *** .922 (.042) *** .838 (.033) ***

Stress
No .915 (.019) .898 (.041) .837 (.032)
Yes .912 (.020) *** .913 (.046) *** .842 (.032) ***

Final Grapheme
No .907 (.021) .884 (.036) .838 (.037)
Yes .920 (.015) *** .927 (.041) *** .842 (.026) ***

Features
Onset-Nucleus-Coda .913 (.020) .909 (.046) .843 (.031)
Start-Peak-End .913 (.019) .903 (.044) *** .836 (.037) ***
Peak and Valley .915 (.018) *** .905 (.042) *** .840 (.027) ***

Padding
Empty .914 (.019) .908 (.045) .841 (.032)
Delta .913 (.019) *** .904 (.043) *** .838 (.032) ***

Distance Metric
Overlap .927 (.018) .873 (.037) .844 (.028)
MVDM .911 (.019) *** .911 (.043) *** .839 (.033) ***

Distance Weighting
Zero Decay .908 (.020) .907 (.042) .839 (.033)
Inv. Distance Decay .919 (.016) *** .905 (.046) *** .840 (.031) ***

Class Labels
Categorical .927 (.010) .900 (.044) .821 (.030)
Transformation .900 (.017) *** .910 (.043) *** .858 (.021) ***

Type Merging
No .913 (.019) .906 (.044) .839 (.032)
Yes .914 (.019) *** .906 (.044) .840 (.032) *

TABLE 1: Mean accuracy and standard deviation for 17,280 simulations on three
tasks. Values correspond to the average accuracy of all simulations with the
parameter value specified in the left column. Asterisks indicate a significant dif-
ference with the first specified value of the parameter (*** = p<.001, ** = p<.01,

* = p<.05)
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There is a positive effect of including word stress in the two pseudo-word
tasks, whereas the effect is slightly negative for lexical reconstruction. Inclu-
sion of the final grapheme in the representation yields a significant increase
in performance and robustness on all tasks. Since Dutch spelling is morpho-
logical, the final grapheme can hold information about the realization of the
inflected form. For example, the form /hOnt/ (‘dog’) is spelled hond, with its
final grapheme indicating that the final phoneme is voiced in the plural /hOnd@/
(spelled honden). Another advantage is that the final grapheme may result
in disambiguation of some phonological transcriptions in CELEX – which is
based on a written corpus. For instance, as most Dutch speakers do not pro-
nounce the final n in words such as wagen (‘car’), the phonological render-
ing /wa:G@/ rhymes with words such as sage (‘saga’), pronounced as /sa:G@/.
While words of the wagen type almost invariantly take the -s suffix in the plu-
ral, words of the sage class do not show a clear preference for either plural
suffix. Although phonological transcription in CELEX does not encode a pro-
nunciation difference in the two word classes, there may still be a significant
difference in their phonetic realization (Ernestus and Baayen 2004), which
could justify including the final grapheme as a relevant disambiguating cue.

4.1.2 Feature Representation and Padding

In the lexical reconstruction task, simulations with peak and valley representa-
tion present a slightly higher accuracy than simulations with the baseline onset-
nucleus-coda representation. In both pseudo-word tasks, the onset-nucleus-
coda representation has a higher accuracy than the other two representations.
For all tasks, the empty padding strategy obtains a slightly higher score than
the delta padding method. In practice, the average differences between simu-
lations on differently aligned and padded-up representations were so small that
we can conclude that the more sophisticated methods do not give an additional
advantage in these tasks. All in all, MBL appears to be fairly robust in the face
of small differences in exemplar representation.

4.2 Distance Metric, k, and Distance Weighting

4.2.1 Results with the MVDM Metric

Figure 3 illustrates the interaction of the k parameter and the distance weight-
ing function in the three tasks. The figure shows that the relation between k
and accuracy is clearly non-linear. For the lexical reconstruction task maximal
accuracy is reached with k = 3 and decreases thereafter. Decrease is less steep
with the inverse distance decay weighting method than with the zero decay
method. For both pseudo-word tasks, there is a steady increase in accuracy as
k rises to a ± 5 value, followed by a plateau and a slow decrease for higher
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values of k. Accuracy is maintained when the inverse distance decay method
is used.

4.2.2 Results with the Overlap Metric

Simulations using the overlap metric yield a similar interaction with k. Maxi-
mal accuracy in lexical reconstruction is reached immediately at k=1 and de-
creases thereafter. In the first pseudo-word task, maximal accuracy is reached
a bit later, at k = 3. In the second pseudo-word task, accuracy is still rising
at k = 7, our final tested value. For all three tasks, the inverse distance decay
method yields higher accuracies than the zero decay method.

Although we know from experience that the MVDM metric is particularly
suitable for linguistic tasks, use of the overlap metric does not seem to badly
affect accuracy. The magnitude of the lexicon may have played an important
role here (see below).

Varying the k parameter has different repercussions on accuracy in lexi-
cal reconstruction vs the two pseudo-word tasks. For lexical reconstruction,
the optimal value for k is near to one, while for the pseudo-word tasks k=1 is
clearly aberrant, while values from 5 to 15 give better results. A possible ex-
planation of this difference is that what needs to be modeled in a pseudo-word
task is the true generalization capacity of the model. In the lexical reconstruc-
tion task, on the other hand, the goal is to make correct predictions for exem-
plars that may be produced differently through pure generalization. While we
should be very careful about drawing general conclusions on the basis of this
experimental evidence only, a possible consequence of this result is that lexical
reconstruction does not provide a firm ground for stating generalizations about
the nature of psycholinguistic processes.

The optimal values for k in the pure generalization tasks may also tell us
something about inflectional morphology in general: The fact that a simula-
tion with one or three nearest neighbors badly fits experimental data, may also
be an indication that there is a lower bound on the class size of a productive
inflectional process.

Use of the inverse distance decay weighting method alleviates the prob-
lem of diminishing accuracy for high levels of k observed with zero decay
weighting. On the one hand, the inverse distance decay method is consistent
with the view that even distant exemplars can influence the decision process.
On the other hand, zero decay weighting makes the problem more tractable
and allows us to see more easily when additional exemplars begin to have a
damaging effect.
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FIGURE 3: Mean accuracies for simulations by k, distance weighting method,
and distance metric.

168



MEMORY-BASED LEARNING MODELS OF INFLECTIONAL MORPHOLOGY

4.3 Class Labels and Type Merging

In the lexical reconstruction task, simulations with categorical labels perform
better than simulations with transformation labels. In the pseudo-word tasks,
on the other hand, simulations with transformation labels perform better than
simulations with categorical labels.

There is a very small positive effect of type merging in the lexical recon-
struction task and in the second pseudo-word task. In the first pseudo-work
task, type merging does not have any effect. A possible explanation is that this
is due again to the stimulus types used by Baayen et al. (2002). As type merg-
ing can only occur when a target exemplar has homophonic neighbors with the
same inflectional pattern, this phenomenon is less likely to occur with a set of
relatively complex stimuli.

Nature of the task is central to any classification problem. The use of cate-
gorical class labels (such as en/s/other) is only partially related to the inflected
forms generated by human subjects. For instance, -en can occur with or with-
out voicing of the final consonant, while the other label does not correspond to
any specific transformation. Although high accuracy scores in class labeling
are far from trivial, the results obtained by using more than 60 transformation
labels are certainly more impressive. They show that memory-based learning
models are able to deal with more complex issues in morpho-phonology. An
interesting observation is that a transformation label only contains relevant in-
formation about the target form of the pair it was derived from. For instance,
the transformation label derived from the singular-plural pair /hOnt/-/hOnd@/
will specify one operation: ‘substitute the final element of the source form by
/d@/’. This tells us that the original plural ended in /d@/ but says nothing about
the original singular. In theory, the transformation may apply to any form re-
gardless of the phoneme it ends with. However, the only forms for which the
transformation makes sense are source forms that end in a sonorant consonant
+ /t/. Applied to other source forms, the result is nonsensical in the context of
Dutch plural inflection (e.g., /hOnk/-/hOnk@/, /kast-kasd@/). When we inspected
the results of simulations, even average scoring ones, we found that errors in
classification were the result of one sensible transformation being selected over
another sensible transformation (e.g., -s instead of -en), but not of inappropri-
ate transformations. With a set of over 60 transformation labels and a lexicon
containing nearly 20,000 exemplars, this result is remarkable. It means that
similarity appropriately constrains the exemplars selected for analogy and that
no further restrictions are needed. For any target, close neighbors will always
have transformation labels resulting in a sensible inflected form of the target.

Another noteworthy point is that categorical labels give better accuracy in
the lexical reconstruction task while transformation labels fare better in the
pseudo-word tasks. Because the definition of class labels interacts with other
parts of the model, such as feature weighting and the distances obtained in
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the modified value metric, the source of this disjunction is hard to pinpoint.
Nonetheless, the results shown here suggest that transformation classes offer
an effective alternative to labels based on a priori linguistic knowledge.

5. CONCLUSIONS

The simulations reported in this paper allowed us to take a closer look at Dutch
noun inflection from different perspectives.

While classification accuracy was surprisingly high overall, detailed anal-
ysis of simulation results highlighted important differences among the three
tasks. First, the two pseudo-word tasks and the lexical reconstruction task ap-
pear to require considerably different configurations of model parameters to
yield optimal performance. The evidence, although non-conclusive, seems to
suggest that observations concerning the psycholinguistic processes involved
in lexical reconstruction tasks should be considered with great care. Second,
the mean accuracy in the first pseudo-word task was about 10% higher than
in the second pseudo-word task. A possible explanation for this difference is
that the experimental results for the second set of pseudo-words were obtained
through an experiment that deliberately aimed to skew the distribution of plu-
ral suffixes through the manipulation of word spelling. Pseudo-words were
presented auditorily but were simultaneously visually presented in a typically
Dutch spelling or a typically English spelling. A third condition did not show
any spelling at all. Participants used the -s suffix more often in the English
spelling condition than in the two other conditions, most likely through the as-
sociation of the English spelling with loanwords, which have a preference for
the -s plural in Dutch. Although the results from the English spelling condi-
tion itself are not included here, there may have been some crossover effects
between conditions. If we accept that the distribution of responses may have
been slightly skewed, it is a good sign that no simulation on this task resulted
in very high accuracy by chance. Third, the mean accuracy reported here for
the lexical reconstruction task was about 5% higher than the accuracy in a
leave-one-out lexical reconstruction task on Dutch noun plural inflection also
reported by Keuleers et al. (2007). This is surprising, because the leave-one-
out test protocol, which uses the whole lexicon minus one exemplar to predict
the class of that exemplar (repeated as many times as there are exemplars),
is expected to give better results because a larger proportion of exemplar evi-
dence is tapped for the task. However, it should be noted that Keuleers et al.
(2007) used a smaller lexicon of monomorphemic nouns (3,135 exemplars)
while in the simulations reported here the lexicon contained more than 19,000
word forms of arbitrary morphemic complexity.

The simulations also provided us with important insights into the robust-
ness of MBL. With the only exception of one-syllable models, changing pa-
rameter values did not cause dramatic fluctuations in accuracy. A factor that
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may have contributed to this robustness is lexicon size. In the machine lan-
guage learning literature, the impact of different parameter values and even
different machine learning methods is shown to decrease with an increasing
size of training data (Banko and Brill 2001). The lexicon we used was very
large (more than 19,000 items) compared to lexica used for other tasks in sim-
ilar domains. If we adopted the same sampling criteria to create a lexicon for
English past tense inflection, for instance, we would get a collection of about
2,000 items. Were a smaller lexicon used in our task, some of the minor dif-
ferences we observed in this study could have been substantially larger.

In the computational modeling of psycholinguistic processes, it is impor-
tant to know what the results of a simulation tell us about the process we are
trying to model. This is crucially connected with how the parameters of that
simulation were chosen and how well the simulation generalizes to other data.
The standard practice in statistical or machine learning approaches to language
processing is to carry out a lexical reconstruction task by systematically trying
out different parameter settings. The best settings are then used on the target
task and only results of that simulation are reported. As we argued above, the
best performing simulations on the lexical reconstruction task turn out to have
suboptimal accuracy for the pseudo-word tasks. It looks like optimal accu-
racy in lexical reconstruction is due to factors that are somewhat orthogonal to
human generalization behavior.

It is not uncommon, in computational psycholinguistics, to run simula-
tions with a wide range of parameter settings and report the results of the best
performing simulation as the performance of the theoretical model under con-
sideration. When a new task is addressed, a new set of simulations is run and,
again, the best performing one, which may have been obtained with completely
different parameter settings, is reported. In isolation, however, this optimal re-
sult may be quite misleading. Reporting the best outcome only tells us that
the theory under consideration might be right, but not how hard it is to falsify
it. There is no way of knowing what other outcomes have been predicted by
simulations with different parameter settings, nor if the results of the best per-
forming simulation are exceptional considering the results of the unreported
simulations.

A first alternative is to consider only simulations within a limited range
of parameter settings that are sensible based on expert knowledge of the task
domain. Reducing the number of outcomes, this approach increases the signif-
icance of the best performing simulation. A drawback, of course, is that this
precludes discovery of better performing simulations with parameter settings
that were considered insensible beforehand.

A second alternative is to summarize the results of all simulations instead
of reporting only the best performing one. If the performance range is known,
then we also know how hard falsification is, and this gives an indication of
the strength of the theory under consideration. Box and whiskers plots, such
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as those in Figure 2, convey a great deal of information on the distribution of
results (although it should be noted that the distribution of accuracies does not
necessarily reflect the distribution of outcomes). In the case presented here,
we see that, with the exception of one-syllable models, the distribution of clas-
sification accuracies indicates that a large number of simulations in fact cover
a small portion of the solution space. With knowledge of this distribution the
relevance of the best score can be more easily understood. Back to the box
and whiskers plots, we see that, for all tasks, the best performing simulations
would not be considered outliers in a normal distribution: Although many sim-
ulations with different parameter settings give worse results, the best perform-
ing simulations are unexceptional instances of MBL as a theory of inflectional
morphology.

To conclude, we argue that a good methodology for computational psy-
cholinguistics is to explore as many simulations as possible with different in-
formation sources (features), instance representations, class representations,
and algorithm parameter settings, and to show transfer of good parameter set-
tings for different psycholinguistic tasks. By using Dutch plural inflection as
an example, we have shown that this approach is feasible and provides more
insights both into the task and into the potential psychological relevance of
MBL models.
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SUMMARY: Il presente lavoro indaga il paradigma del “memory-based learning” (MBL)
inteso come un modello capace di riprodurre il comportamento linguistico della fles-
sione plurale del nome in olandese. Dapprima delineeremo l’origine e i riferimenti
teorici dell’approccio MBL per fornire, in seguito, una breve panoramica della fles-
sione plurale dei nomi in olandese e una descrizione dettagliata dell’uso dei modelli
MBL per la morfologia flessiva. I risultati di un’ampia serie di simulazioni su tre
compiti di flessione del nome plurale verranno analizzati in dettaglio. In partico-
lare, illustreremo gli effetti differenti legati al variare delle configurazioni di parametri
dell’algoritmo del MBL, ai problemi di rappresentazione degli esempi e alle differ-
enti definizioni della flessione intesa come compito di classificazione. Nella parte fi-
nale, tali risultati saranno considerati in relazione alle correnti procedure per l’ottimiz-
zazione dei parametri del modello e per l’analisi e la valutazione dei risultati delle
simulazioni.
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