
Prepositional Phrase Attachment in Shallow Parsing

Vincent Van Asch
CLiPS - Computational Linguistics

University of Antwerp
Prinsstraat 13

B-2000 Antwerpen, Belgium
Vincent.VanAsch@ua.ac.be

Walter Daelemans
CLiPS - Computational Linguistics

University of Antwerp
Prinsstraat 13

B-2000 Antwerpen, Belgium
Walter.Daelemans@ua.ac.be

Abstract
In this paper we extend a shallow parser [6] with
prepositional phrase attachment. Although the
PP attachment task is a well-studied task in a
discriminative learning context, it is mostly ad-
dressed in the context of artificial situations like
the quadruple classification task [18] in which
only two possible attachment sites, each time
a noun or a verb, are possible. In this pa-
per we provide a method to evaluate the task
in a more natural situation, making it possible
to compare the approach to full statistical pars-
ing approaches. First, we show how to extract
anchor-pp pairs from parse trees in the GENIA
and WSJ treebanks. Next, we discuss the exten-
sion of the shallow parser with a PP-attacher.
We compare the PP attachment module with
a statistical full parsing approach [4] and ana-
lyze the results. More specifically, we investi-
gate the domain adaptation properties of both
approaches (in this case domain shifts between
journalistic and medical language).

Keywords

prepositional phrase attachment, shallow parsing, machine

learning of language

1 Introduction

Shallow parsing (also called partial parsing) is an ap-
proach to language processing that computes a basic
analysis of sentence structure rather than attempting
full syntactic analysis.

Originally defined by Abney [1] as a task to be
solved with handcrafted regular expressions (finite
state methods) and limited to finding basic (non-
recursive) phrases in text, the label shallow parsing
has meanwhile broadened its scope to machine learn-
ing methods and to a set of related tasks including
part of speech tagging, finding phrases (chunking),
clause identification, grammatical role labeling, etc.
Especially the machine learning approach to shallow
parsing, pioneered by Ramshaw and Marcus [17] has
been investigated intensively, in part because of the
availability of benchmark datasets and competitions
(CoNLL shared tasks 1999 to 2001)1.

1 See http://ifarm.nl/signll/conll/

It has been argued in [10] and by others that full
parsing often provides too much (or not enough) infor-
mation for some frequent natural language processing
tasks. For example, for information retrieval, find-
ing basic NPs and VPs is arguably sufficient, and for
information extraction and other text mining tasks,
finding syntactic-semantic relations between verbs and
base NPs (who did what when and where) is more im-
portant than having an elaborate configurational syn-
tactic analysis, provided this shallow analysis can be
computed in a deterministic, efficient, robust, and ac-
curate way. Another advantage is that the modules
in a machine learning based shallow parser can be
trained independently, and allow the inclusion of more
information sources (input features) than is possible in
statistical parsing (because of sparse data problems).
This flexibility in feature engineering, inherent in dis-
criminative, supervised learning approaches to shallow
parsing should make the approach more flexible, e.g.
when engineering features robust for domain shifts.

However, a shallow approach also has its short-
comings, an important one being that prepositional
phrases, which contain important semantic informa-
tion for interpreting events, are left unattached. Fur-
thermore, while statistical full parsing used to be more
noise-sensitive and less efficient than shallow parsing,
that is no longer necessarily the case with recent de-
velopments in parse ranking.

In this paper, we extend an existing memory based
shallow parser, MBSP [5, 6], with a machine learning
based prepositional phrase attachment module, and
compare it to PP attachment in a state of the art sta-
tistical parser. The machine learning method chosen is
memory-based learning. We also investigate the abil-
ity of this Memory-based PP attachment (MBPA) to
cope with the problem of domain adaptation, i.e. the
often dramatic decrease in accuracy when testing a
trained system on data from a domain different from
the domain of the data on which it was trained.

The remainder of this paper starts with an explana-
tion of how the corpus is prepared in order to use it for
PP attachment, Section 2. In Section 3 we explain the
architecture of the memory-based PP-attacher. Sec-
tion 4 discusses the experiments and shows the results.
In this section we also compare our system to a statis-
tical parser, the Collins parser [3, 4]. An overview of
related work can be found in Section 5. Finally, Sec-
tion 6 concludes this paper and discusses options for
further research.



2 Data preparation

In this section, we explain the extraction of the train-
ing and test data and the algorithm used to create
instances from treebanks.

2.1 Training and test data

The memory-based PP-attacher is trained on sections
2 through 21 of the Penn Treebank 2 Wall Street Jour-
nal corpus (WSJ) [14]. The development of the sys-
tem is done using the first 2000 PPs of sections 0-1 of
WSJ. Evaluation of the system is done on the next set
of 2000 PPs and additional evaluation is done using
the first 2000 PPs of the GENIA corpus [20].

The corpora used for training and testing consist of
tree structures representing the syntactic structure of
sentences, as shown in Figures 1a and 1b. We trans-
form the trees into a flat representation in order to be
able to define one unique attachment site (anchor) for
every prepositional phrase (PP). A flat representation
of an anchor-PP pair consists of a pair of indices. The
first element of the pair is the index in the sentence
of the anchor; the second element is the index of the
preposition. Word count starts at zero. For the sen-
tence in Figure 1a the representation is (3, 4). For the
sentence in Figure 1b the representation is (1, 4).

(a) I eat a pizza with olives.

(b) I eat a pizza with a fork.

Fig. 1: Example tree structures

The example tree structures in Figure 1 are rela-
tively straightforward to rewrite into a flat represen-
tation.

The basic setup had to be extended by rules for
specific cases. A good example is conjunction. In the
sentence:

I see cats on the roof and behind the windows.

the parent node of the PP-nodes is a node that also
holds the conjunction. Therefore, in this case the al-
gorithm does not take the sibling of the PP-node but
it takes a sibling of the parent node of the PP-node.

The extraction algorithm yields 8933 prepositions
from sections 0-1 of the WSJ corpus. For 1.95% of
the PP-nodes in those two sections no anchor is found.
For sections 2-21 1.99% of the 95,955 PP-nodes remain
without an anchor. Some anchor-PP pairs are removed
in a post-processing step because we limit the task to
preposition-NP PPs and disregard preposition-ADJP
sequences.

Table 1 shows the chunk type distribution of the an-
chors. A fairly equal amount of the anchors are nouns
and verbs. A minor part has an adjective, comparative
adjective or something else as the anchor point.

NP 50.5%
VP 45.8%

Other 3.7%

Table 1: The distribution of the anchors among the
chunk types

2.2 Extracting chunks and preposi-
tional phrases

The memory-based PP-attacher (MBPA) is defined as
a module within a shallow parser [6]. The MBPA is
trained on the WSJ, and it needs chunk and pos tag
information from other modules in that shallow parser.
In order to prevent indirect contamination of the train-
ing data with test data, we retrained the modules of
the shallow parser delivering input to the PP attach-
ment module on Wall Street Journal sections 2-21, us-
ing the script of the 2000 CoNLL shared task to extract
IOB-style chunks from WSJ trees.

Fig. 2: A tree structure with undetermined cut-off

Converting syntactic trees into a flat representation
introduces approximation errors. Figure 2 is an illus-
tration of the problems encountered when looking for
syntactic phrases. It is unclear which node should be
used as the break point. Since the evaluation is based
on chunks, the decisions made in the flattening step
may have an influence on the final results. To mini-
mize the bias we use the algorithm that was used to
prepare the training data for the memory-based chun-
ker to extract chunks from the syntactic trees output
by Collins.

Table 2 shows the results of the comparison between
the shallow parser and the Collins parser. The table
shows the scores at chunk level. A chunk is correctly
identified if it has the same label and it spans the same
words as the gold standard chunk. When either the
label or the span is not correct, the chunk is a false



Our system Collins
prec recall f-score prec recall f-score share

- 0.97 0.97 0.97 0.96 0.88 0.92 20.76%
ADJP 0.79 0.74 0.76 0.76 0.77 0.76 1.41%
ADVP 0.84 0.83 0.83 0.86 0.81 0.83 2.75%
CONJP 0.56 0.80 0.66 0.60 0.60 0.60 0.04%
INTJ 0.67 0.20 0.31 0.40 0.20 0.27 0.02%
LST 1.00 0.53 0.70 0.88 0.47 0.61 0.03%
NP 0.94 0.95 0.94 0.93 0.92 0.93 41.21%

PreP 0.97 0.98 0.97 0.97 0.97 0.97 15.57%
PRT 0.77 0.79 0.78 0.79 0.87 0.83 0.37%

SBAR 0.88 0.88 0.88 0.89 0.91 0.90 1.83%
UCP 0.00 0.00 0.00 0.00 0.00 0.00 0.00%
VP 0.94 0.93 0.93 0.83 0.88 0.85 16.01%

weighted mean 0.94 0.95 0.94 0.92 0.91 0.91 100%

Table 2: Results of chunking with our system and Collins

positive, when a chunk in the gold standard is not
present in the system’s output it is considered a false
negative. The shallow parser chunking module and
Collins perform comparably well although the former
has slightly better results. This implies that there is
no reason not to use the memory-based chunker as the
basis for the PP-attacher. The PreP chunk in Table 2
is not equal to a PP. In this paper, the label PP is
used for the combination of a preposition and a noun
phrase, the PreP chunk is a chunk that consists of one
or more prepositions only.

The logical first step in finding anchors for prepo-
sitional noun phrases is finding the PPs. When ex-
tracting the anchor-PP pairs (see Section 2.1) PPs are
recognized by the label of the nodes. Since there are no
nodes in the input of the MBPA a different strategy is
used. PPs are retrieved by a regular expression-like al-
gorithm. All preposition NP sequences are considered
to be PPs. There are two exceptions to this regular
expression rule. Sequences like preposition “ NP (‘in
“very modest amounts”’) and preposition VBG NP
(‘in making paper’) are also considered PPs.

2.3 Creating the instances

The core of the PP-attacher is a memory-based ma-
chine learner (supervised, classification-based learn-
ing). Every PP found by the algorithm discussed in
the previous subsection is a trigger for creating sev-
eral instances. One instance is created for every com-
bination of the PP in focus and a candidate-anchor.
Candidate-anchors are the NPs and VPs of the sen-
tence that are not part of the PP itself. For example,

I eat a pizza with olives.

will induce the creation of 3 instances. One instance
for the combination I–with, one for the combination
eat–with and one for the combination pizza–with. In
the classification task, the machine learner will have
to decide whether an instance suggests a true anchor
or not. The advantage of this approach is that the
machine learner can investigate every possible anchor
for its validity and not only the VP and NP in front
of the PP. The drawback of this approach is that we
have skewed data. There will be many more negative
instances in the instance base as can be seen in Table 3.

The features of the instances were chosen on the
basis of previous work in machine learning based PP

count percentage
NP 43,049 6.0%
VP 42,285 5.9%

NONE 630,720 88.1%
TOTAL 716,054 100%

Table 3: Distribution of classes in sections 2-21 of WSJ

attachment and related tasks: the number of commas
between the PP and the candidate anchor, the num-
ber of other punctuation marks between the PP and
the candidate anchor, the token-distance between the
PP and the candidate anchor, the preposition if the
candidate anchor is an NP that is part of a PP, the
lemma and POS-tag of the last token of the candidate
anchor, the lemma and POS tag of the token just in
front of the preposition of the PP, the lemma of the
preposition, the lemma and POS-tag of the last to-
ken of the NP of the PP, the number of NPs between
the candidate anchor and the PP, the number of PPs
between the candidate anchor and the PP, and NP
anchor tendency. If a preposition is for 10% of the
cases in the training corpus attached to an NP, the
NP anchor tendency will be 10.

3 The memory-based PP-
attacher

The input of the MBPA module consists of sentences
tagged with Part-of-Speech tags, IOB-chunk tags and
the lemmata for every word by other modules of the
shallow parser. The output of the system is a set of
pairs, where each pair represents a PP with its corre-
sponding attachment point.

3.1 Machine Learning Approaches

The machine learning approach we chose is memory-
based learning, as implemented in the open source
software package TiMBL2. We used version 6.1 [7].
Memory-based learning (MBL) is a supervised induc-
tive algorithm for learning classification tasks based
on the k-nearest neighbor classification rule.

2 Available from http://ilk.uvt.nl.



However, the machine learner used to train the PP
attachment module can be any algorithm that as-
signs classes to instances. For comparison, we also
implemented a system using maxent, an eager learn-
ing method, as the machine learner. Maxent3 is an
implementation of maximum entropy modeling. It is
a general purpose machine learning framework that
constructs a model that captures the distribution of
outcomes for a given context in the training data [13].

3.2 Heuristic decision making

If the classifier would be able to predict the anchors
with 100% accuracy, no post-processing would be nec-
essary. Only one instance, the one with the correct
anchor, would carry a positive class label and all other
instances would have a negative classlabel. But due
to misclassifications, multiple or no anchors may be
identified by the machine learner. An extra step en-
sures that the system presents one unique anchor for
every PP. In case the PP in focus is classified posi-
tively with exactly one anchor, that anchor-PP pair is
returned as the solution. The other possible outcomes
of the classification step are:

1. No instance for the PP in focus got a positive class
⇒ There is no anchor identified yet.

2. More than one instance for the PP in focus got
a positive class ⇒ We have a decrease of possible
anchors but still no unique anchor.

To resolve these cases, we need an extra step. A
baseline algorithm is used if no anchor has been found
(case 1). If there are still several candidate anchors to
choose from, the entropy is used to reduce the set of
candidates to just one unique anchor (case 2).

Baseline

The baseline is computed using a simple rule-based
PP-attacher. If a rule fails, the next rule in the hi-
erarchy is checked. The hierarchy of the rules of the
baseline algorithm is:

1. Take the nearest NP or VP in front of the PP. We
take an NP if in the training corpus the preposi-
tion of the PP is associated more frequently with
NP anchors. Otherwise we take the VP anchor.

2. Take the nearest anchor in front of the PP.
3. Take the nearest VP anchor behind the PP.
4. Take the nearest anchor behind the PP.

Entropy

When the classification step results in a draw, the
candidate with the lowest entropy will be the anchor.
The entropy is calculated using the distribution of the
classes of the nearest neighbors. When processing an
instance with TiMBL we can obtain the (weighted)
distribution of the classes of instances in memory that
are in the neighborhood of the test instance. The en-
tropy of an instance is computed using this distribu-
tion. The formula is:
3 Available from http://homepages.inf.ed.ac.uk/
s0450736/maxent toolkit.html.

−
n∑

i=1

P (ci)log2(P (ci)) (1)

with
- n: the total number of different classes in the distri-

bution
- P (ci): the number of instances in the neighborhood with class i

the total number of instances in the neighborhood

The memory-based learner has an optional weighing
parameter. If weighing is applied, P (ci) is calculated
using the weighted counts instead of the plain counts.

The candidate anchor with the lowest entropy is re-
garded as the correct and unique anchor for a given
PP. The rationale behind this decision is that choosing
the candidate anchor with the lowest entropy means
choosing the anchor for which the classifier was the
most certain of its class.

Post-processing rules

For completeness, we also mention two post-processing
rules that are applied because of some idiosyncrasies in
the treebank data and common errors of the attacher-
system. These rules are:

- If there are 2 consecutive prepositions the second
preposition will always be attached to the first.

- If a PP is attached to a noun phrase anchor between
parentheses, and the PP is not inside the parenthe-
ses, then the noun phrase before the parentheses be-
comes the anchor. This is done because the NP be-
tween the parentheses is most of the time an elabo-
ration/abbreviation of the noun phrase in front.

4 Experiments and results

We train 4 systems (baseline, MBL, maxent and a sta-
tistical parser) on sections 2-21 of WSJ. In the first set
of experiments, Section 4.1, we used the trained sys-
tems to attach the second set of 2000 PPs of WSJ
sections 0-1 to their anchors. In the second set of ex-
periments, Section 4.2, we reuse the trained systems
to attach 2000 PPs extracted from the GENIA corpus
to their anchors.

For comparison, we parse every sentence fed to the
MBPA with a state-of-the-art statistical parser, viz.
Bikel’s implementation of the Collins parser. Applying
the PP extraction algorithm from Section 2.1 on the
syntactic trees output by Collins will yield all anchor-
PP pairs needed for evaluation.

4.1 Training and testing on WSJ cor-
pus

Table 4 shows the accuracies of systems trained and
tested on the WSJ corpus. We performed a χ2 statis-
tical test and found that maxent, MBL and Collins all
significantly (p < 5%) differ from the baseline system.
The variation between the accuracies of the machine
learning systems is not found to be significant. The
‘not retrieved’ column is due to POS, chunking and/or
syntactic tree errors in the pre-processing step. Look-
ing at the first 200 errors MBPA and Collins made,



shows that MBPA tends to misattach PPs at the start
of the sentence. E.g. ‘At the meeting, etc.’ Collins
has a higher number of ‘not retrieved’ PPs because it
often inserts adverbs and quotes into the PP. E.g. ‘by
commenting [PP publicly on the case]’.

Table 5 shows the accuracies of the steps involved
in the PP-attacher system. The 91.21% accuracy for
TiMBL means that for 79.05% of the PPs TiMBL
identified a unique anchor and that 91.21% of these
anchors were correct. For 11.7% of the PPs, TiMBL
could not find an anchor so baseline had to take over.
44.4% of the PPs baseline handled, were correctly as-
signed to their head. For 6.35% of the PPs, TiMBL
found multiple anchors. Entropy handled these cases
and found the correct anchor for 67% of them. Af-
ter finding a unique anchor for every PP, the system
made sure that for a sequence of PPs the last PP got
attached to the previous. This happened for 1.2% of
the PPs.

Correct Incorrect Not retrieved
Baseline 69.85% 25.45% 1.70%
Collins 83.85% 13.30% 2.85%
MBL 82.65% 15.65% 1.70%
Maxent 81.40% 16.90% 1.70%

Table 4: The accuracies on 2000 anchor-PP pairs from
WSJ

Accuracy (%) proportion (%)
TiMBL 91.21 79.05
Baseline 44.44 11.70
Entropy 66.93 6.35
consecutive preps 91.67 1.20

Table 5: The accuracies split into the different steps
of MBPA

These results show that it is possible to develop a PP
attachment module using supervised machine learning
techniques, integrated as a module within a shallow
parser, and reach state of the art accuracy when com-
paring to one of the best statistical parsers available
today. This way the semantically important informa-
tion carried by relations between PPs and their an-
chors becomes available to shallow analysis approaches
with their advantages in terms of efficiency and flexi-
bility. We were not able to find significant differences
between lazy (TiMBL) and eager (Maxent) learning
approaches for this problem.

4.2 Domain Adaptation

Adaptation of NLP systems to domains different from
the one on which they were developed, is a crucial
functionality to make the technology useful. Accuracy
of systems deteriorates enormously when moving be-
tween different domains. Accuracy drops of 20 to 40
percent are not uncommon for tasks such as parsing,
named-entity recognition, word sense disambiguation,
and machine translation when moving from the source
domain to the new target domain. Usually, no or lim-
ited labeled data exists for the target domain. We eval-
uated the PP attachment systems trained on the WSJ

using 2000 anchor-PP pairs from the GENIA corpus.
The WSJ corpus consists of news articles on mainly
financial issues in contrast to the medical abstracts
of the GENIA corpus. Although one cannot always
clearly say where the boundaries between domains are,
we assume that medical and financial texts are suffi-
ciently different. Table 6 shows the accuracies for the
different systems. We performed these experiments to
gain more insight into the relative robustness of dif-
ferent approaches to PP attachment to domain shifts.
The χ2 test gave the same results as in the previous
section: all systems perform significantly better than
baseline but do not differ significantly from each other.
As expected, the accuracy significantly decreases com-
pared to the same-domain experiments.

Correct Incorrect Not retrieved
Baseline 69.20% 27.00% 3.80%
Collins 78.80% 19.35% 1.85%
MB-attacher 77.70% 19.10% 3.20%
Maxent-attacher 77.15% 19.65% 3.20%

Table 6: The accuracies on 2000 anchor-PP pairs from
GENIA

Table 7 shows the robustness of the systems to a do-
main shift from mainly financial to medical language.
The higher the ratio, the lower the drop of accuracy.
As can be seen, if no learning is involved (baseline)
the system is most robust. A shallow approach is at
an advantage here compared to full parsing because
it allows more flexible feature engineering to allevi-
ate the domain adaptation problem (e.g. by adding
or removing specific lexical, syntactic, and semantic
features to the classifiers. This is in general more dif-
ficult in a statistical parsing approach because of data
sparseness.

5 Related work

As Atterer and Schütze [2] state, the classic formula-
tion of the task of PP attachment, as defined in [19]
and [11], is a simplification. The classic formulation
uses quadruples (v, n1, p, n2) that were manually se-
lected from a corpus. This helps performance of PP
attachment systems but for a natural language appli-
cation these quadruples are not available. In their
experiments, the PP attachment systems they evalu-
ated did not significantly improve on a state-of-the-art
parser, Collins parser [3, 4]. The PP-attacher system
in this paper does not make use of this simplified rep-
resentation and therefore can be regarded as more fit
for the task of natural language PP attachment.

Foth and Menzel [9] implemented a PP attachment
predictor for German and incorporated it in a rule-
based dependency parser [8]. The PP attachment pre-

Ratio
Baseline 0.991
Collins 0.940
MB-attacher 0.940
Maxent-attacher 0.948

Table 7: The ratio of the accuracies GENIA/WSJ



dictor was based on a collocation measure and sig-
nificantly increased the accuracy on the PP attach-
ment subtask. Basically, the collocation measure is
a number indicating whether a word and a preposi-
tion co-occur more often than chance. In this paper,
we did not compute a collocation measure but for the
NP anchor tendency feature we draw upon the same
underlying idea.

As noticed in [21], the algorithm used to extract the
pairs from the corpus has an influence on the accura-
cies reported, and makes comparing of results among
systems for different corpora and languages difficult.
The noun attachment rate and the extraction proce-
dure are two important features when comparing re-
sults obtained using different corpora. As we tested
our system and Collins’ using the same training and
test data, the comparison is reliable.

Other memory-based approaches to the problem of
PP attachment can be found in [12] and [22]. [12]
uses a memory-based PP-attacher combined with the
MALTParser [16]. They showed that the dependency
parser could not fully benefit from the separate PP-
attacher although the PP-attacher module assigns PPs
to their heads with a reasonable accuracy. The fea-
tures they use for their PP-attacher system are lem-
mata, POS-tags and distances between words.

In their paper, [15] mainly focus on how to disam-
biguate between argument and adjunct PPs, but they
provide an alternative way of extracting PPs from the
WSJ treebank. Their final data contains quadruples
and sets of multiple PP sequences.

6 Conclusion

In this paper we compared a shallow parsing approach
to PP-attachment with a state of the art full parser.
We used a flat representation of prepositional phrases
and their associated attachment sites to train a ma-
chine learner for the PP attachment task. We showed
that a memory-based approach can obtain results for
the PP attachment task comparable to a state-of-the-
art full parser. The PP attachment system proposed
in this article is not limited to the classical quadruple
approximation of the PP attachment task and there-
fore the system can be combined with any (shallow)
parser that assigns part-of-speech tags, lemmata and
chunk tags to natural language sentences. Such a PP
attachment module can also be easily added to a full
parser as a reattacher.

The shallow memory-based PP attachment module
is fairly robust to a domain shift of the testing corpus
but further research should focus on how to improve
the robustness. Building a more robust PP attachment
system would legitimate the use of the PP-attacher
system as a reattachment module in any full parser.

Acknowledgements

This research was made possible through financial sup-
port from the University of Antwerp (BIOGRAPH
GOA-project).

References
[1] S. Abney. Parsing by chunks. In Principle-Based Parsing,

pages 257–278. Kluwer Academic Publishers, 1991.

[2] M. Atterer and H. Schütze. Prepositional phrase attachment
without oracles. Computational Linguistics, 33(4):469–476,
2007.

[3] D. Bikel. Intricacies of Collins’ parsing model. Computational
Linguistics, 30(4):479–512, 2004.

[4] M. Collins. Head-driven statistical models for natural language
parsing. Computational Linguistics, 29(4):589–637, 2003.

[5] W. Daelemans, S. Buchholz, and J. Veenstra. Memory-based
shallow parsing. In Proceedings of CoNLL-99, pages 53–60,
Bergen, Norway, 1999.

[6] W. Daelemans and A. van den Bosch. Memory-Based Lan-
guage Processing. Studies in Natural Language Processing.
Cambridge University Press, Cambridge, 2005.

[7] W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den
Bosch. Timbl: Tilburg memory-based learner, version 6.1.
Technical Report ILK 07-07, Tilburg University, 2007.

[8] K. Foth, M. Daum, and W. Menzel. Parsing unrestricted
german text with defeasible constraints. In Constraint
Solving and Language Processing, volume 3438 of Lec-
ture Notes in Computer Science, pages 140–157. Springer,
Berlin/Heidelberg, 2005.

[9] K. Foth and W. Menzel. The benefit of stochastic PP attach-
ment to a rule-based parser. In Proceedings of the COL-
ING/ACL 2006 Main Conference Poster Sessions, pages
223–230, 2006.

[10] J. Hammerton, M. Osborne, S. Armstrong, and W. Daelemans.
Introduction to special issue on machine learning approaches
to shallow parsing. Journal of Machine Learning Research,
2(Mar):551–558, 2002.

[11] D. Hindle and M. Rooth. Structural ambiguity and lexical
relations. Computational Linguistics, 19(1):103–120, 1993.

[12] S. Kübler, S. Ivanova, and E. Klett. Combining dependency
parsing with PP attachment. In Fourth Midwest Computa-
tional Linguistics Colloquium, 2007.

[13] Z. Le. Maximum Entropy Modeling Toolkit for Python and
C++, 2004. Version 20061005.

[14] M. Marcus, G. Kim, M. A. Marcinkiewicz, R. MacIntyre,
A. Bies, M. Ferguson, K. Katz, and B. Schasberger. The Penn
treebank: annotating predicate argument structure. In HLT
’94: Proceedings of the workshop on Human Language Tech-
nology, pages 114–119, Morristown, NJ, USA, 1994. Associa-
tion for Computational Linguistics.

[15] P. Merlo and E. E. Ferrer. The notion of argument in
prepositional phrase attachment. Computational Linguistics,
32(3):341–377, 2006.

[16] J. Nivre. Inductive Dependency Parsing, volume 34 of Text,
Speech and Language Technology. Springer, 2006.

[17] L. Ramshaw and M. Marcus. Text chunking using
transformation-based learning. In D. Yarovsky and K. Church,
editors, Proceedings of the Third Workshop on Very Large
Corpora, pages 82–94. Association for Computational Linguis-
tics, 1995.

[18] A. Ratnaparkhi. Maximum Entropy Models for Natural Lan-
guage Ambiguity Resolution. PhD thesis, Computer and In-
formation Science, University of Pennsylvania, 1998.

[19] A. Ratnaparkhi, J. Reynar, and S. Roukos. A maximum en-
tropy for prepositional phrase attachment. In Workshop on
Human Language Technology, pages 250–255, 1994.

[20] Y. Tateisi, A. Yakushiji, T. Ohta, and J. Tsujii. Syntax an-
notation for the genia corpus. In Proceedings of the IJCNLP
2005, Companion volume, pages 222–227, October 2005.

[21] M. Volk. How bad is the problem of PP-attachment? A com-
parison of English, German and Swedish. In Proceedings of the
Third ACL-SIGSEM Workshop on Prepositions, pages 81–88,
2006.

[22] J. Zavrel, W. Daelemans, and J. Veenstra. Resolving PP at-
tachment ambiguities with memory-based learning. In Pro-
ceedings CoNLL 1997, pages 136–144, 1997.


