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1 Introduction

Most Natural Language Processing (NLP) tasks require the translation of one

level of representation to another. For example, in text to speech systems, it

is necessary to have a component that translates the spelling representation

of words to a corresponding phonetic representation; in part of speech (POS)

tagging, the words of a sentence are translated into their contextually appro-

priate POS tags. Some tasks in NLP involve segmentation: identifying the

syllable boundaries in a word or the syntactic phrases in a sentence are ex-

amples of such chunking tasks. Other tasks, such as document categorization

and word sense disambiguation require a choice between a limited number of

possibilities.

What all these types of NLP tasks have in common, is that they can be

formulated as a classification task, and are therefore appropriate problems

for discriminative supervised Machine Learning methods. With some effort,

even tasks like coreference resolution and machine translation can be cast as a

classification problem. In this Chapter, we will see an assortment of examples

of NLP problems formulated as classification-based learning.

Classification-based learning starts from a set of instances (examples) con-

sisting each of a set of input features (a feature vector) and an output class.

For example, for the NLP task of predicting the pronunciation of a word, given

a number of words with their phonetic transcription as training material, we

could create an instance for each letter, as in Table 1. One of the input fea-

tures is the letter to be transcribed (here indicated as the focus feature) and

other features would be the spelling symbols before and after the focus; in

this case a context of three such symbols to the left and to the right are used

to make a total of seven predictive features. The output class is the phoneme
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corresponding with the focus letter in that context. Data like this can be used

as training material to construct a classifier that is subsequently used to clas-

sify feature vectors belonging to new words, not part of the training data. In

this way, the classifier generalizes from the original training data, which is the

purpose of machine learning.

Instance Left Focus Right Classification
number context letter context

1 b o o k b
2 b o o k i –
3 b o o k i n u
4 b o o k i n g k
5 o o k i n g I
6 o k i n g –
7 k i n g N

Table 1. Examples generated for the letter-phoneme conversion task, from the
word-phonemization pair booking – [bukIN], aligned as [b-ukI-N].

Memory-Based Learning (MBL) is one of the techniques that has been

proposed to learn these NLP classification problems. Many other techniques

for supervised classification-based learning exist. See CHAPTER 6 MAXI-

MUM ENTROPY, CHAPTER 8 DECISION TREES, CHAPTER 9 INDUC-

TIVE LOGIC PROGRAMMING, CHAPTER 11 ARTIFICIAL NEURAL

NETWORKS. In this Chapter, we will show how MBL differs from these

approaches.

MBL has as its defining characteristic that it stores in memory all available

instances of a task, and that it extrapolates from the most similar instances

in memory to solve problems for which no solution is present in memory.

What the most similar instances (the nearest neighbours) are, is defined by

an adaptive similarity metric. The general principle is well-known in Artifi-

cial Intelligence and cognitive psychology, and can be found under different
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labels (case-based reasoning, exemplar-based models, k-NN, instance-based

learning, memory-based reasoning, etc.). The approach has been used in ap-

plication areas ranging from vision and speech via expert systems to robotics

and models of human categorization.

In the remainder of this Chapter, we introduce an operationalization of

MBL, implemented in the open source software package TiMBL in Section 2.

Applications in computational linguistics and computational psycholinguistics

are discussed in Sections 3 and 4, respectively. We then move to a discussion

of the strengths and limitations of the approach in Section 5, and show how

FAMBL, a variant of MBL based on careful abstraction, discussed in Section 6,

can strike a balance between abstraction and memory.
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2 Memory-Based Language Processing

MBL, and its application to NLP, which we will call Memory-Based Language

Processing (MBLP) here, is based on the idea that learning and processing

are two sides of the same coin. Learning is the storage of examples in memory,

and processing is similarity-based reasoning with these stored examples. The

approach is inspired by work in pre-Chomskyan linguistics, categorization psy-

chology, and statistical pattern recognition. The main claim is that, contrary

to majority belief since Chomsky, generalization (going beyond the data) can

also be achieved without formulating abstract representations such as rules.

Abstract representations such as rules, decision trees, statistical models, and

trained artificial neural networks forget about the data itself, and only keep

the abstraction. Such eager learning approaches are usually contrasted with

table lookup, a method that obviously cannot generalize. However, by adding

similarity-based reasoning to table lookup, lazy learning approaches such as

MBL are capable of going beyond the training data as well, and on top of that

keep all the data available. This is arguably a useful property for NLP tasks:

in such tasks, low-frequency or atypical examples are often not noise to be

abstracted from in models, but on the contrary an essential part of the model.

In the remainder of this Section, we will describe a particular instantiation

of memory-based approaches, MBLP, that we have found to work well for

language processing problems and for which we make available open source

software (TiMBL). The approach is a combination and extension of ideas from

Instance Based Learning (Aha et al., 1991)) and Memory-Based Reasoning

(Stanfill & Waltz, 1986)) and a direct descendent of the k-NN algorithm (Fix

& Hodges, 1951; Cover & Hart, 1967).
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2.1 MBLP: An operationalization of MBL

An MBLP system has two components: a learning component which is

memory-based, and a performance component which is similarity-based. The

learning component is memory-based as it involves storing examples in mem-

ory without abstraction, selection, or restructuring. In the performance com-

ponent of an MBLP system the stored examples are used as a basis for map-

ping input to output; input instances are classified by assigning them an out-

put label. During classification, a previously unseen test instance is presented

to the system. The class of this instance is determined on the basis of an ex-

trapolation from the most similar example(s) in memory. There are different

ways in which this approach can be operationalized. The goal of this section is

to provide a clear definition of the operationalizations we have found to work

well for NLP tasks. TiMBL is an open source software package implementing

all algorithms and metrics discussed here1.

First, a visual example serves to illustrate the basic concepts of memory-

based or k-nearest neighbor classification. The left part of Figure 1 displays

part of a two-dimensional Euclidean space with three examples labeled black

(i.e. they are examples of the class “black”), and three examples labeled white.

Each example’s two coordinates are its two numeric feature values. An exam-

ple occupies a piece of the space, a Voronoi tile, in which it is the closest

example. The so-called Voronoi tesselation depicted in the left part of Fig-

ure 1 is essentially a map of the decision boundaries of the 1-nearest neighbor

classification rule: the tile on which a new instance is positioned determines the

single nearest neighbor, and the subsequent classification step simply copies

1 The software, reference guide, and instructions on how to install it can be down-
loaded from http://ilk.uvt.nl/timbl
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Figure 1. An example 2D space with six examples labeled white or black. Left: the
Voronoi tesselation of the space. Right: around a new test item t, nearest neighbors
are found at four different distances; some examples are equidistant. The parameter
k can either regulate the number of nearest neighbors or distances. Alternatively, a
distance d can specify the circle (Parzen window) within which nearest neighbors
are sought.

the class label of that nearest neighbor (here, black or white) to the new

instance.

Rather than pre-computing the Voronoi tesselation, which is restricted to

be used for single nearest-neighbor classification, the common mode of oper-

ation of the more generic k-nearest neighbor classifier is to perform a search

for the nearest examples around each new instance t to base a classification

on. The key parameter k determines the number of examples within an ex-

panding circle (or hyperball) around the new instance. This can either be the

actual number of examples found while extending outwards, or the number

of distance rings on which equi-distant examples are found. In Figure 1, the

six visible examples are found at four different distances. Alternatively, a dis-

tance d can be specified as the fixed size of the hyperball or Parzen window

(Parzen, 1962) in which nearest neighbors are sought. Using Parzen windows

implies ignoring the local example density; a Parzen window may contain no

examples or all examples. In contrast, the k-nearest neighbor approach in its
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most basic form ignores the actual distance at which the k nearest neighbors

are found, and adapts the hyperball to the local example density around the

new instance. In the remainder of this chapter we adopt the k-nearest neigh-

bor approach, and show how the distance of the target to different neighbors

can be factored into the classification.

As a sidenote, the k-nearest neighbor classifier has some strong formal

consistency results. With k = 1, the classification rule is guaranteed to yield an

error rate no worse than twice the Bayes error rate (the minimum achievable

error rate given the distribution of the data) as the amount of data approaches

infinity (Cover & Hart, 1967). Another useful property of the classifier is

its insensitivity to the number of classes; this number is neither a factor in

learning (storage) nor in classification.

Abstracting over the particular type of feature spaces (such as Euclidean

space in the example of Figure 1), the similarity between a new instance X

and all examples Y in memory is computed using a similarity metric (that

actually measures distance) ∆(X, Y ). Classification works by assigning the

most frequent class within the k most similar example(s) as the class of a new

test instance.

The most basic metric that works for instances with symbolic features

such as many datasets in language and speech processing is the overlap metric

given in Equations 1 and 2; where ∆(X, Y ) is the distance between instances

X and Y , represented by n features, and δ is the distance per feature. The

distance between two patterns is simply the sum of the differences between

the features. In the case of symbolic feature values, the distance is 0 with an

exact match, and 1 with a mismatch. The k-NN algorithm with this metric is

called IB1 in Aha et al. (1991).
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∆(X, Y ) =
n∑

i=1

δ(xi, yi) (1)

where:

δ(xi, yi) =






| xi−yi

maxi−mini
| if numeric, otherwise

0 if xi = yi

1 if xi != yi

(2)

Our definition of this basic algorithm is slightly different from the IB1

algorithm originally proposed by Aha et al. (1991). The main difference is

that in our version the value of k refers to k-nearest distances rather than

k-nearest examples. As illustrated in the right-hand side of Figure 1, Several

examples in memory can be equally similar to a new instance. Instead of

choosing one at random, all examples at the same distance are added to the

nearest-neighbour set.

The distance metric in Equation 2 simply counts the number of (mis)matching

feature-values in two instances being compared. In the absence of information

about feature relevance, this is a reasonable choice. Otherwise, we can use

domain knowledge to weight or select different feature. We can also compute

statistics about the relevance of features by looking at which features are

good predictors of the class labels, using feature weighting methods such as

Information Gain.

Information gain (IG) weighting looks at each feature in isolation, and

estimates how much information it contributes to our knowledge of the cor-

rect class label. The information gain estimate of feature i is measured by

computing the difference in uncertainty (i.e., entropy) between the situations

without and with knowledge of the value of that feature (the formula is given

in Equation 3), where C is the set of class labels, Vi is the set of values for
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feature i, and H(C) = −
∑

c∈C P (c) log2 P (c) is the entropy of the class la-

bels. IG is used in decision tree learning (CHAPTER 8 DECISION TREES)

as a splitting criterion.

wi = H(C) −
∑

v∈Vi

P (v) × H(C|v) (3)

The probabilities are estimated from relative frequencies in the training

set. For numeric features, an intermediate step needs to be taken to apply the

symbol-based computation of IG. All real values of a numeric feature are tem-

porarily discretized into a number of intervals. Instances are ranked on their

real value, and then spread evenly over the intervals; each interval contains

the same number of instances (this is necessary to avoid empty intervals in the

case of skewed distributions of values). Instances in each of these intervals are

then used in the IG computation as all having the same unordered, symbolic

value per group. Note that this discretization is only temporary; it is not used

in the computation of the distance metric.

The IG weight of a feature is a probability-weighted average of the infor-

mativeness of the different values of the feature. This makes the values with

low frequency but high informativity invisible. Such values disappear in the

average. At the same time, this also makes the IG weight robust to estimation

problems in sparse data. Each parameter (weight) is estimated on the whole

data set.

A well-known problem with IG is that it tends to overestimate the rele-

vance of features with large numbers of values, MBLP therefore also includes

the gain ratio normalization and several alternative feature relevance weight-

ing methods (chi-squared, shared variance, special metrics for binary features

etc.).
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The choice of representation for instances in MBLP is the key factor deter-

mining the accuracy of the approach. The feature values and classes in NLP

tasks are often represented by symbolic labels. The metrics that have been

described so far, i.e., (weighted) overlap, are limited to either a match or a

mismatch between feature values. This means that all values of a feature are

seen as equally dissimilar to each other. However, we would like to express

that some feature value pairs are more or less similar than other pairs. E.g.,

we would like vowels to be more similar to each other than to consonants in

problems where features are letters or phonemes, nouns more similar to other

nouns than to verbs in problems where features are words, etc. As with feature

weights, domain knowledge can be used to create a feature system express-

ing these similarities, e.g., by splitting or collapsing features. But again, an

automatic technique might be better in modeling these statistical relations.

For such a purpose a metric was defined by Stanfill & Waltz (1986) and

further refined by Cost & Salzberg (1993). It is called the (modified) (MVDM;

equation 4), a method to determine the similarity of the values of a feature by

looking at co-occurrence of values with target classes. For the distance between

two values v1, v2 of a feature, we compute the difference of the conditional

distribution of the classes C1...n for these values.

δ(v1, v2) =
n∑

i=1

|P (Ci|v1) − P (Ci|v2)| (4)

MVDM differs considerably from overlap-based metrics in its composition

of the nearest-neighbor sets. Overlap causes an abundance of ties in nearest-

neighbor position. For example, if the nearest neighbor is at a distance of

one mismatch from the test instance, then the nearest-neighbor set will con-

tain the entire partition of the training set that contains any value for the
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mismatching feature. With the MVDM metric, however, the nearest-neighbor

set will either contain patterns which have the value with the lowest δ(v1, v2)

in the mismatching position, or MVDM will select a totally different nearest

neighbor which has less exactly matching features, but a smaller distance in

the mismatching features (Zavrel & Daelemans, 1997).

MBLP also contains different metrics for extrapolation from nearest neigh-

bors (linear or exponential distance-based decay) and for computing exemplar

similarity with weighted examples. Such weights could be based on frequency

of instances, or on their goodness or typicality according to some criterion.

MBLP is not a new algorithm, rather, it is a set of algorithm parameter-

izations selected and optimised for use with language processing data. We

will not go into further details of MBLP here. However, we will return to

the crucial discussion about generalization and abstraction in lazy and eager

learning methods in Section 6. First we provide an overview of application

areas of MBLP.
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3 NLP Applications

As explained in Section 1, MBL shares its generic applicability to classification

tasks with any other machine learning classifier. Hence, when an NLP task is

framed as a classification task, memory-based learning can be applied to it.

In the past decade, memory-based learning has indeed been applied across a

wide range of NLP tasks. Before we turn to the limitations of memory-based

learning in Section 5, we provide an overview of types of NLP tasks in which

memory-based learning has been successful in this and the next Section.

Morpho-phonology

Tasks at the phonological and morphological levels are often framed as sliding-

window tasks over sequences of letters or phonemes, where the task is framed

as a mapping of one symbol set to another (letters to phonemes), or a map-

ping from an unsegmented string to a segmented string (words to morpho-

logical analyses). In case of segmentation tasks such as syllabification, the

output symbol set typically consist of a “null” value that signifies that no

boundary occurs at the focus input symbol, and one or more positive values

marking that some type of boundary does occur at the focus letter. Exam-

ple morpho-phonological tasks to which memory-based learning has been ap-

plied are hyphenation and syllabification (Daelemans & Van den Bosch, 1992);

grapheme-to-phoneme conversion (Van den Bosch & Daelemans, 1993; Daele-

mans & Van den Bosch, 1996); and morphological analysis (Van den Bosch &

Daelemans, 1999; De Pauw et al., 2004). Although these examples are applied

mostly to Germanic languages (English, Dutch, and German), applications to

other languages with more complicated writing systems or morphologies, or

with limited resources, have also been presented: for example, letter-phoneme
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conversion in Scottish Gaelic (Wolters & Van den Bosch, 1997), morphological

analysis of Arabic (Marsi et al., 2006), or diacritic restoration in languages

with a diacritic-rich writing system (Mihalcea, 2002; De Pauw et al., 2007).

Most of these studies report the important advantage of the memory-based

approach to faithfully reproduce all training data; essentially, the method can

be seen as a compressed lexicon that also generalizes to unseen words if needed.

As an average training lexicon typically covers unseen text at about 95% (i.e.

5% of the words in a new text are not in the lexicon), the key goal of the

memory-based learner is to process the 5% unknown words as accurately as

possible. In the reported studies, most attention is indeed paid to evaluating

the classifiers’ generalization performance on unseen words, often at the word

level. Actual percentages are intrinsically linked to the task, the language,

and the amount of training data, and can typically only be assessed properly

in the context of a higher-level task, such as comparative human judgements

of the understandability of a speech synthesizer with and without the module

under evaluation.

Syntacto-semantics

In the mid-1990s, memory-based learning was among the early set of machine-

learning classifiers to be applied to tasks in shallow parsing and lexical se-

mantics: part-of-speech tagging (Daelemans et al., 1996; Zavrel & Daelemans,

1999; Van Halteren et al., 2001) and PP-attachment (Zavrel et al., 1997),

mostly on English benchmark tasks. Also, early developments of shallow pars-

ing modules using memory-based learning contributed to the development of

the field of shallow parsing: subcategorization (Buchholz, 1998); phrase chunk-

ing (Veenstra, 1998; Tjong Kim Sang & Veenstra, 1999); and the integration

of memory-based modules for shallow parsing (Daelemans et al., 1999a; Buch-
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holz et al., 1999; Yeh, 2000). More recently, memory-based learning has been

integrated as a classifier engine in more complicated dependency parsing sys-

tems (Nivre et al., 2004; Sagae & Lavie, 2005; Canisius et al., 2006).

Memory-based learning has been applied succesfully to lexical semantics,

in particular to word sense disambiguation (Veenstra et al., 2000; Stevenson

& Wilks, 1999; Kokkinakis, 2000; Mihalcea, 2002; Hoste et al., 2002; Decadt

et al., 2004), but also in other lexical semantic tasks such as determining noun

countability (Baldwin & Bond, 2003), animacy (Orăsan & Evans, 2001), and

semantic relations within noun compounds (Kim & Baldwin, 2006; Nastase

et al., 2006).

Text analysis

Extending the simple sliding-window approach that also proved to be useful

in phrase chunking, memory-based learning has also been used for named-

entity recognition (Buchholz & Van den Bosch, 2000; Hendrickx & Van den

Bosch, 2003; De Meulder & Daelemans, 2003; Sporleder et al., 2006; Leveling

& Hartrumpf, 2007), and domain-dependent information extraction (Zavrel

et al., 2000; Zavrel & Daelemans, 2003; Ahn, 2006).

Many NLP tasks beyond the sentence level tend not to be phrased (or

phrasable) in simple sliding-window representations. Some tasks require more

complicated structures, such as pairs of phrases in their context bearing some

relation to be classified, as in anaphora and coreference resolution (Preiss,

2002; Mitkov et al., 2002; Hoste, 2005), while other tasks appear to be best

solved using vector space or bag-of-words representations, to which memory-

based learning is also amenable, such as text classification (Spitters, 2000),

question classification (Cumbreras et al., 2006; Dridan & Baldwin, 2007), or

spam filtering (Androutsopoulos et al., 2000).
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Dialogue and discourse

In the field of discourse and dialogue modeling, memory-based learning

has been used for shallow semantic analysis of speech-recognised utterances

(Gustafson et al., 1999; Van den Bosch et al., 2001; Lendvai et al., 2002, 2003a;

Lendvai & Geertzen, 2007), in disfluency detection in transcribed spontaneous

speech (Lendvai et al., 2003b), and in classifying ellipsis in dialogue (Fernández

et al., 2004). In most of these studies, the task is framed as a classification task

into a limited number of labels (usually, some dialogue act labeling scheme),

while the input can be a mix of bag-of-word features, dialogue history features

(e.g. previous dialogue acts), and acoustic features of recognized speech in the

context of spoken dialogue systems. As memory-based learning handles nu-

meric features as easily as symbolic features, it is unproblematic to mix these

heterogeneous feature sets in a single classifier.

Generation, language modeling, and translation

While the general scope of natural language generation, language modeling,

and translation comprises full sequences, memory-based learning has been

applied to word or phrase-level subtasks within these more general problem

fields. For instance, in natural language generation, memory-based learning

has been applied particularly to morpho-syntactic generation subtasks: in-

flection generation, such as diminutive formation (Daelemans et al., 1998),

article generation (Minnen et al., 2000), or determining the order of multiple

prenominal adjectives (Malouf, 2000).

Language modeling has mostly been the domain of stochastic n-gram mod-

els, but as (Zavrel & Daelemans, 1997) already showed, there is an equivalence

relation between back-off smoothing in n-gram models and memory-based
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classification. Essentially, language modeling in n-gram models can be phrased

as the classification task of predicting the next word given a context of previous

words. Indeed, memory-based language models can be developed that perform

this task (Van den Bosch, 2006a). As a specialization of these generic language

models, memory-based confusable-specific disambiguators can be trained to

determine which of a confusible set of words (e.g. to, too, and two) is appropri-

ate in a certain context. An accurate confusable disambiguator can be useful

as a spelling correcting module in a proofing environment.

In machine translation, memory-based learning bears a close relation with

example-based machine translation (EBMT). A first EBMT-implementation

using memory-based learning is described in (Van den Bosch et al., 2007).

Analogous to memory-based language modeling, memory-based translation

maps a local context of words (a part of a source-language sentence) to target

word or n-gram of words (part of the corresponding target sentence), where

the target word or centre of the target n-gram is aligned to the source word

according to an externally computed word alignment.

We have not tried to be exhaustive in this Section. There are other imple-

mentations of k-nearest neighbor classification apart from TiMBL that have

been used in NLP, and alternative memory-based algorithms have been pro-

posed for specific tasks. As a good example, Bob Damper and colleagues have

developed a psycholinguistic proposal for modeling pronunciation (Pronunci-

ation by Analogy) into a state of the art grapheme-to-phoneme conversion

approach (Damper & Eastmond, 1997). Other researchers have argued for

richer analogy processes in memory-based approaches than the basic overlap

metric and its extensions that is used in the research described in this Section

(Pirrelli & Yvon, 1999; Yvon & Stroppa, 2007; Lepage & Denoual, 2005). This
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work is also relevant when memory-based approaches are intended as models

of human language acquisition and processing as in the work we turn to next.
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4 Exemplar-Based Computational Psycholinguistics

From the time Chomsky substituted the vague notions of analogy and induc-

tion existing in linguistics in his time (in work of e.g., de Saussure, Bloom-

field and Harris) by a better formalised notion of rule-based grammars, most

mainstream linguistic theories, even the functionally and cognitively inspired

ones, have assumed rules to be the only or main means to describe any as-

pect of language. Also in computational modeling of human language process-

ing and human language acquisition, mental rule application and acquisition

has been the standard approach. See CHAPTER COMPUTATIONAL PSY-

CHOLINGUISTICS. A good example is the dual mechanism model advocated

by (Pinker, 1999) and others for inflectional morphology. In such a model, a

mental rule governing the regular cases in inflectional morphology is comple-

mented by an associative memory explaining subregularities and exceptions.

In contrast, single mechanism models (mostly based on neural network ap-

proaches following (Rumelhart & McClelland, 1986)) model regular and ex-

ceptional language behaviour in a single model. See CHAPTER ARTIFICIAL

NEURAL NETWORKS.

MBLP can be considered an operationalisation of the pre-Chomskyan ana-

logical approach to language, and as a predictive model for human language

acquisition and processing that is an alternative to both rule-based and neu-

ral network approaches. The main advantage from a theoretical point of view

is that no ontological distinction has to be made between regular and excep-

tional cases, and that the gradedness of language learning and processing is an

emergent phenomenon of the way the model works. The approach is also incre-

mental, in that the addition of new experience immediately affects processing

without any need of recomputation of knowledge structures. Conceptually, to
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model language acquisition and processing, memorized experiences of previ-

ous language use are searched looking for instances similar to a new item, and

a decision is extrapolated for the new item from these nearest neighbours.

Language acquisition is simply the incremental storage of experience.

The Analogical Modeling (AM) approach of Skousen (1989, 1992, 2002) is

an early alternative example of a computational operationalization of analogy

in a memory-based context and its application in modeling language. It is

memory-based in that all available training data (experience) is used in ex-

trapolating to the solution for a new input. As it searches combinatorial com-

binatons of input features, it is exponential in the number of features, which

makes the approach impractical for problems with many features. The ap-

proach has been applied to different problems in language processing, mainly

in the phonology and morphology domains. Although algorithmically very

different from and more costly than MBLP (which is linear in the number

of features), empirical comparisons have never shown important accuracy or

output differences between AM and MBLP (Eddington, 2002a; Daelemans,

2002; Krott et al., 2002).

Inflectional morphology has proven a useful and interesting testing ground

for models of language acquisition and processing because of the relative

simplicity of the processes (compared to syntax), the availability of lexical

databases, and the ample psycholinguistic experimental data in the form of ac-

counts of acquisition, adult processing experiments, production tasks on pseu-

dowords etc. This makes possible controlled comparisons between different

computational models. Problems like English past tense formation, German

and Dutch plural formation etc. have therefore become important benchmark

problems. Memory-based psycholinguistic models of inflectional morphology
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have been provided for the English past tense by Keuleers (2008), for Dutch

plural formation by Keuleers et al. (2007); Keuleers & Daelemans (2007), for

Spanish diminutive formation by Eddington (2002c), and for Dutch and Ger-

man linking phenomena in compounds by Krott et al. (2001); A. et al. (2007).

See (Hay & Baayen, 2005) for an overview of the state of the art in modeling

morphology and the role of memory-based models in current theory forma-

tion. In phonology, memory-based models have been proposed and matched

to psycholinguistic empirical data for such tasks as final devoicing in Dutch

(Ernestus, 2006), Italian conjugation (Eddington, 2002b), stress assignment

in Dutch (Daelemans et al., 1994), Spanish (Eddington, 2004), and in English

compounds (Plag et al., 2007), etc.

Much less work has attempted to develop memory-based models of syntac-

tic processing. Data-Oriented Parsing (DOP) (Scha et al., 1999; Bod, 2006) is

one influential algorithm where parsing is seen as similarity-based lookup and

reconstruction of memorized fragments of previously analyzed sentences, kept

in memory. It has led to experiments modeling priming effects in syntactic

processing (Snider, 2007). See Hay & Bresnan (2006) for additional empirical

work in exemplar-based syntax. In addition to work based on traditional pars-

ing approaches rooted in phrase-based or dependency-based grammar theory,

the memory-based shallow parsing research described in the previous Section

also makes possible psycholinguistic studies (e.g. on attachment preferences).

As for our overview of memory-based approaches in computational linguis-

tics, we have not tried to be exhaustive here, but rather to point to interesting

studies and starting points in the literature illustrating the power of memory-

based models as models of language acquisition and use.
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5 Generalization and Abstraction

As discussed in Section 3, the memory-based learning approach is functionally

similar to other supervised discriminative machine-learning methods capable

of learning classification tasks. It is hard, if not fundamentally impossible

to say in general that one discriminative machine-learning algorithm is bet-

ter than the other (Wolpert, 2002). Yet, certain advantages of memory-based

learning in learning NLP tasks have been noted in the literature. First, we

expand in some detail the tenet that “forgetting exceptions is harmful in lan-

guage learning” (Daelemans et al., 1999b); then, we review a few algorithmic

advantages of memory-based learning.

“Forgetting” training examples is a common trait of many machine learn-

ing algorithms; the identity of training examples is lost, while in exchange,

each training example influences to a small extent the construction of an ab-

stract model composed of probabilities or rules. In machine learning, learning

is often equated with abstraction; in turn, abstraction is often equated with

the capacity to generalize to new cases. A key realization is that memory-

based learning is able to generalize, yet does not abstract from the data. In

two studies, memory-based learning was contrasted against abstracting learn-

ers, namely decision-tree learners and rule learners (Daelemans et al., 1999b;

Daelemans & Van den Bosch, 2005), resulting in the consistent observation

that the abstracting learners do not outperform the memory-based learners

on any of a wide selection of NLP tasks. In a second series of experiments,

Daelemans and Van den Bosch show that selected removal of training exam-

ples from the memory of a memory-based classifier, guided by criteria that

supposedly express the utility of an individual example in classification, does

not produce better generalization performance, although with some tasks, up
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to 40% of the examples can be removed from memory without damaging per-

formance significantly (Daelemans & Van den Bosch, 2005). A safe conclusion

from these studies is that when high accuracy is more important than optimal

memory usage or speed, it is best to never forget training examples.

In practical terms, the k-nearest neighbour classifier has a number of

advantages that make memory-based learning the method of choice in cer-

tain particular situations, compared to other rival discriminative supervised

machine-learning algorithms:

(1) The basic version of the k-NN classifier that uses the overlap metric, is

insensitive to the number of class labels, both in terms of efficiency in

training and in classification. This makes memory-based learning suited

for classification tasks with very large numbers of classes, such as word

prediction or machine translation;

(2) Memory-based learning is able to reproduce the classification of training

data flawlessly, as long as there are no identical training instances in mem-

ory with different class labels. This advantage, an important component

of the “forgetting exceptions is harmful” tenet, is especially useful in NLP

tasks in which much of the training data can be expected to recur in

new data, such as in word pronunciation, where a typical lexicon used for

training will already contain the pronunciation of approximately 95% of

all words in a new text;

(3) Memory-based learning allows for incremental learning at no cost, or with

little cost if the similarity function uses weighting functions; this is prac-

tical in situations in which training examples become available over time,

and the classifier needs to be retrained preferably with the availability

of each new training example, e.g. in active learning (Thompson et al.,
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1999). Also, the algorithm is equally easily decremental, allowing for fast

leave-one-out testing, a powerful evaluation scheme (Weiss & Kulikowski,

1991).

(4) As mentioned earlier, it has been shown that the 1-nearest neighbor clas-

sifier has an attractive error upper bound: as the amount of data ap-

proaches infinity, it is guaranteed to yield an error rate no worse than

twice the Bayes error rate (the minimum achievable error rate given the

distribution of the data) (Cover & Hart, 1967).

The main disadvantage of memory-based learning, compared to most rival

approaches, is its slow classification speed. Its worst-case complexity of classi-

fication is O(nf), where n is the number of memorized examples, and f is the

number of features; each new example needs to be compared against all of the

memorized examples, each time involving a comparison of all f features. Im-

plementing k-nearest neighbor classification in a trie (Knuth, 1973) can under

the proper conditions, viz. highly differing feature weights, or by dropping the

guarantee of finding the exact nearest neighbors (Daelemans et al., 1997b),

reduce classification time to O(f).

Another disadvantage of the memory-based learning approach that it

shares with other discriminative classifiers is that its strength is in classi-

fication tasks with relatively low dimensionality in the class space. In the

larger context of NLP tasks with structured output specifications, such as

parsing or machine translation, it is widely recognized that discriminative

classification alone is not enough to perform these global tasks, as the class

spaces that would cover entire sequences, or large subsequences, would be too

high-dimensional, thus too sparse to allow for sufficient amounts of exam-

ples per class. Even memory-based learning, with its insensitivity towards the
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number of classes, suffers directly from such sparseness. Currently, the gener-

ally adopted solution is to combine discriminitive classifiers with an inference

method that searches for an optimal global solution.
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6 Generalizing examples

To alleviate the computational inefficiency of the classifiation process in

memory-based learning, part of the early work in k-NN classification focused

on editing methods, i.e., methods for the removal of certain examples in mem-

ory that are estimated to be useless or even harmful to classification. Yet, bad

estimates may lead to the removal of useful examples, thus to loss of gener-

alization performance. While keeping full memory may be a safe guideline to

avoid any eventual harmful effect of editing, in the interest of speed of classi-

fication, it is still interesting and tempting to explore other means to reduce

the need for memory, provided that performance is not harmed. In this sec-

tion we explore methods that attempt to abstract over memorized examples

in a different and more careful manner, namely by merging examples into

generalized examples, using various types of merging operations.

We start, in subsection 6.1, with an overview of existing methods for

generalizing examples in memory-based learning. Subsequently we present

Fambl, a memory-based learning algorithm variant that merges similar same-

class nearest-neighbor examples into “families”. In subsection 6.2 we compare

Fambl to pure memory-based learning on a range of NLP tasks.

6.1 Careful abstraction in memory-based learning

Paths in decision trees can be seen as generalized examples. In igtree (Daele-

mans et al., 1997b) and c4.5 (Quinlan, 1993) this generalization is performed

up to the point where no actual example is left in memory; all is converted to

nodes and arcs. Counter to this decision-tree compression, approaches exist

that start with storing individual examples in memory, and carefully merge

some of these examples to become a single, more general example, only when
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there is some evidence that this operation is not harmful to generalization

performance. Although overall memory is compressed, the memory still con-

tains individual items on which the same k-nearest neighbor classification

can be performed. The abstraction occurring in this approach is that after

a merge, the merged examples incorporated in the new generalized example

are deleted individually, and cannot be reconstructed. Example approaches

to merging examples are nge (Salzberg, 1991) and its batch variant bnge

(Wettschereck & Dietterich, 1995), and rise (Domingos, 1996). We provide

brief discussions of two of these algorithms: nge and rise.

nge (Salzberg, 1991), an acronym for Nested Generalized Exemplars, is an

incremental learning theory for merging instances (or exemplars, as Salzberg

prefers to refer to examples stored in memory) into hyperrectangles, a geomet-

rically motivated term for merged exemplars. nge adds examples to memory

in an incremental fashion (at the onset of learning, the memory is seeded with

a small number of randomly picked examples). Every time a new example is

presented, it is matched with all exemplars in memory, which can be individ-

ual or merged exemplars (hyperrectangles). When it is classified correctly by

its nearest neighbor (an individual exemplar or the smallest matching hyper-

rectangle), the new example is merged with it, yielding a new, more general

hyperrectangle.

Figure 2 illustrates two mergings of examples of a morphological task (Ger-

man plural) with exemplars. On the top of figure 2, the example -urSrIftF

(from the female-gender word Urschrift), labeled with class en (representing

the plural form Urschriften), is merged with the example t@rSrIftF (from the

female-gender word Unterschrift), also of class en, to form the generalized

exemplar displayed on the right-hand side. On the first two features, a dis-
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- ru Sr ftI F en

t r@ Sr ftI F en

f ro Sr ftI F en

ru
@ Sr ftI F en-

t

ru
@ Sr ftI F en-

t
r

u
@
o

Sr ftI F en
-
t
f

Figure 2. Two examples of the generation of a new hyperrectangle in nge: from
a new example and an individual exemplar (top) and from a new example and the
hyperrectangle from the top example (bottom).

junction is formed of, respectively, the values - and t, and u and @. This means

that the generalized example matches on any other example that has value - or

value t on the first feature, and any other example that has value u or value @

on the second feature. The lower part of Figure 2 displays a subsequent merge

of the newly generalized example with another same-class example, forSrIftF

(the female-gender word Forschrift), which leads to a further generalization

of the first two features.

In nested generalized examples, abstraction occurs because it is not pos-

sible to retrieve the individual examples nested in the generalized example;

new generalization occurs because the generalized example not only matches

fully with its nested examples, but would also match perfectly with potential

examples with feature-value combinations that were not present in the nested

examples; the generalized example in Figure 2 would also match torSrIft,

f@rSrIft, furSrIft, -orSrIft. These examples do not necessarily match existing

German words, but they might – and arguably they would be labeled with

the correct plural inflection class.

rise (Rule Induction from a Set of Exemplars) (Domingos, 1995, 1996)

is a multi-strategy learning method that combines memory-based learning
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with rule-induction (Michalski, 1983; Clark & Niblett, 1989; Clark & Boswell,

1991). As in nge, the basic method is that of a memory-based learner and clas-

sifier, only operating on a more general type of example. rise learns a memory

filled with rules which are all derived from individual examples. Some rules

are example-specific, and other rules are generalized over sets of examples.

rise inherits parts of the rule induction method of cn2 (Clark & Niblett,

1989; Clark & Boswell, 1991). cn2 is an incremental rule-induction algorithm

that attempts to find the “best” rule governing a certain amount of examples

in the example base that are not yet covered by a rule. “Goodness” of a

rule is estimated by computing its apparent accuracy, i.e. class prediction

strength (Cost & Salzberg, 1993) with Laplace correction (Niblett, 1987; Clark

& Boswell, 1991).

rise induces rules in a careful manner, operating in cycles. At the onset of

learning, all examples are converted to example-specific rules. During a cycle,

for each rule a search is made for the nearest example not already covered

by it that has the same class. If such an example is found, rule and example

are merged into a more general rule. Instead of disjunctions of values, rise

generalizes by inserting wild card symbols (that match with any other value)

on positions with differing values. At each cycle, the goodness of the rule set

on the original training material (the individual examples) is monitored. rise

halts when this accuracy measure does not improve (which may already be

the case in the first cycle, yielding a plain memory-based learning algorithm).

Figure 3 illustrates the merging of individual examples into a rule. The

rule contains seven normally valued conditions, and two wild cards, ‘*’. The

rule now matches on every female-gender example ending in SrIft (Schrift).
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When processing new examples, rise classifies them by searching for the best-

matching rule.

- ru Sr ftI F en

t r@ Sr ftI F en

f ro Sr ftI F en

b r@ Sr ftI F en

g tu Sr ftI F en

** Sr ftI F en*

Figure 3. An example of an induced rule in rise, displayed on the right, with the
set of examples that it covers (and from which it was generated) on the left.

Fambl: merging example families

Fambl, for FAMily-Based Learning, is a variant of MBL that constitutes an

alternative approach to careful abstraction over examples. The core idea of

Fambl, in the spirit of nge and rise, is to transform an example base into a

set of example family expressions. An example family expression is a hyper-

rectangle, but the procedure for merging examples differs from that in nge

or in rise. First, we outline the ideas and assumptions underlying Fambl. We

then give a procedural description of the learning algorithm.

Classification of an example in memory-based learning involves a search

for the nearest neighbors of that example. The value of k in k-NN determines

how many of these neighbors are used for extrapolating their (majority) clas-

sification to the new example. A fixed k ignores (smoothes) the fact that an

example is often surrounded in example space by a number of examples of

the same class that is actually larger or smaller than k. We refer to such a

variable-sized set of same-class nearest neighbors as an example’s family. The
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family

starting instance

Figure 4. An example of a family in a two-dimensional example space (left). The
family, at the inside of the circle, spans the focus example (marked with number
1) and the three nearest neighbors labeled with the same class (indicated by their
color). When ranked in the order of distance (right), the family boundary is put
immediately before the first example of a different class, the gray example with
number 5.

extreme cases are on the one hand examples that have a nearest neighbor of

a different class, i.e., they have no family members and are a family on their

own, and on the other hand examples that have as nearest neighbors all other

examples of the same class.

Thus, families represent same-class clusters in example space, and the

number and sizes of families in a data set reflect the disjunctivity of the

data set: the degree of scatteredness of classes into clusters. In real-world

data sets, the situation is generally somewhere between the extremes of total

disjunctivity (one example per cluster) and no disjunctivity (one cluster per

class). Many types of language data appear to be quite disjunct (Daelemans

et al., 1999b). In highly disjunct data, classes are scattered among many small

clusters, which means that examples have few nearest neighbors of the same

class on average.

Figure 4 illustrates how Fambl determines the family of an example in a

simple two-dimensional example space. All nearest neighbors of a randomly
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picked starting example (marked by the black dot) are searched and ranked

in the order of their distance to the starting example. Although there are five

examples of the same class in the example space, the family of the starting

example contains only three examples, since its fourth-nearest example is of

a different class.

- ru Sr ftI F en

t r@ Sr ftI F en

f ro Sr ftI F en

b r@ Sr ftI F en

g tu Sr ftI F en

r
t

u
@
o

Sr ftI F en

-
t
f
b
g

Figure 5. An example of family creation in Fambl. Five German plural examples
(left) are merged into a family expression (right).

Families are converted in Fambl to family expressions, which are hyper-

rectangles, by merging all examples belonging to that family simultaneously.

Figure 5 illustrates the creation of a family expression from an example family.

In contrast with nge,

• family expressions are created in one non-incremental operation on the

entire example base, rather than by step-wise nesting of each individual

family member;

• a family is abstracted only once and is not merged later on with other

examples or family expressions;

• families cannot contain “holes”, i.e., examples with different classes, since

the definition of family is such that family abstraction halts as soon as the

nearest neighbor with a different class is met in the local neighborhood.
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The general mode of operation of Fambl is that it randomly picks examples

from an example base one by one from the set of examples that are not already

part of a family. For each newly picked example, Fambl determines its family,

generates a family expression from this set of examples, and then marks all

involved examples as belonging to a family (so that they will not be picked as

a starting point or member of another family). Fambl continues determining

families until all examples are marked as belonging to a family.

Families essentially reflect the locally optimal k surrounding the example

around which the family is created. The locally optimal k is a notion that

is also used in locally weighted learning methods (Vapnik & Bottou, 1993;

Wettschereck & Dietterich, 1994; Wettschereck, 1994; Atkeson et al., 1997);

however, these methods do not abstract from the learning material. In this

sense, Fambl can be seen as a local abstractor.

Procedure fambl family-extraction:
Input: A training set TS of examples I1...n, each example being labeled with a

family-membership flag set to FALSE
Output: A family set FS of family expressions F1...m, m ≤ n
i = f = 0

(1) Randomize the ordering of examples in TS
(2) While not all family-membership flags are TRUE, Do

• While the family-membership flag of Ii is TRUE Do increase i
• Compute NS, a ranked set of nearest neighbors to Ii with the same

class as Ii, among all examples with family-membership flag FALSE.
Nearest-neighbor examples of a different class with family-membership
flag TRUE are still used for marking the boundaries of the family.

• Set the membership flags of Ii and all remaining examples in NS to
TRUE

• Merge Ii and all examples in NS into the family expression Ff and store
this expression along with a count of the number of example merged in
it

• f = f + 1

Figure 6. Pseudo-code of the family extraction procedure in fambl.
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The Fambl algorithm converts any training set of labeled examples to a set

of family expressions, following the procedure given in Figure 6. After learn-

ing, the original example base is discarded, and further classification is based

only on the set of family expressions yielded by the family-extraction phase.

Classification in Fambl works analogously to classification in pure memory-

based learning (with the same similarity and weighting metrics as we used so

far with mbl): a match is made between a new test example and all stored

family expressions. When a family expression contains a disjunction of values

for a certain feature, a match is counted when one of the disjunctive values

matches the value at that feature in the new example. How the match is

counted exactly depends on the similarity metric. With the overlap metric,

the feature weight of the matching feature is counted, while with the MVDM

metric the smallest MVDM distance among the disjuncted feature values is

also incorporated in the count.

6.2 Experiments with Fambl

We performed experiments with Fambl on four language processing tasks. We

first introduce these four tasks, ranging from morpho-phonological tasks to

semanto-syntactic tasks, varying in scope (word level and sentence level) and

basic type of example encoding (non-windowing and windowing). We briefly

describe the four tasks here and provide some basic data set specifications in

Table 6.2. At the same time, we also provide results for standard mblp for

comparison.

(1) gplural, the formation of the plural form of German nouns. The task

is to classify a noun as mapping to one out of eight classes, representing

the noun’s plural formation. We collected 25,753 German nouns from the
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German part of the CELEX-2 lexical database2. We removed from this

data set cases without plurality marking, cases with Latin plural in -a,

and a miscellaneous class of foreign plurals. From the remaining 25,168

cases, we extracted or computed for each word the plural suffix, the gender

feature, and the syllable structure of the last two syllables of the word in

terms of onsets, nuclei, and codas expressed using a phonetic segmental

alphabet. We use a 50%–50% split in 12,584 training examples and 12,584

test instances. Generalization performance is measured in accuracy, viz.

the percentage of correctly classified test instances.

(2) dimin, Dutch diminutive formation, uses a similar scheme to the one used

in the gplural task to represent a word as a single example. The task and

data were introduced by Daelemans et al. (1997a). A noun, or more specif-

ically its phonemic transcription, is represented by its last three syllables,

which are each represented by four features: (1) whether the syllable is

stressed (binary), (2) the onset, (3) the nucleus, and (4) the coda. The

class label represents the identity of the diminutive inflection, which is one

out of five (-je, -tje, -etje, -pje, or -kje). For example, the diminutive form

of the Dutch noun beker (cup) is bekertje (little cup). Its phonemic repre-

sentation is [’bek@r]. The resulting example is + b e − k @ r tje.

The data are extracted from the CELEX-2 lexical database (Baayen et al.,

1993). The training set contains 2,999 labeled examples of nouns; the test

set contains 950 instances. Again, generalization performance is measured

in accuracy, viz. the percentage of correctly classified test instances.

(3) pp, prepositional-phrase attachment, is the classical benchmark data set

introduced by Ratnaparkhi et al. (1994). The data set is derived from the

Wall Street Journal Penn Treebank (Marcus et al., 1993). All sentences

2 Available from the Linguistic Data Consortium (http://www.ldc.upenn.edu/).
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containing the pattern “VP NP PP” with a single NP in the PP were

converted to four-feature examples, where each feature contains the head

word of one of the four constituents, yielding a “V N1 P N2” pattern such

as “each pizza with Eleni”, or “eat pizza with pineapple”. Each example

is labeled by a class denoting whether the PP is attached to the verb or

to the N1 noun in the treebank parse. We use the original training set

of 20,800 examples, and the test set of 3,097 instances. Noun attachment

occurs slightly more frequently than verb attachment; 52% of the training

examples and 59% of the test examples are noun attachment cases. Gen-

eralization performance is measured in terms of accuracy (the percentage

of correctly classified test instances).

(4) chunk is the task of splitting sentences into non-overlapping syntactic

phrases or constituents, e.g., to analyze the sentence “He reckons the cur-

rent account deficit will narrow to only $ 1.8 billion in September.” as

[He]NP [reckons]V P [the current account deficit]NP [will narrow]V P

[to]PP [only $ 1.8 billion]NP [in]PP [September]NP .

The data set, extracted from the WSJ Penn Treebank through a flat-

tened, intermediary representation of the trees (Tjong Kim Sang & Buch-

holz, 2000), contains 211,727 training examples and 47,377 test instances.

The examples represent seven-word windows of words and their respective

part-of-speech tags computed by the Brill tagger (Brill, 1992) (which is

trained on a disjoint part of the WSJ Penn Treebank), and each example

is labeled with a class using the IOB type of segmentation coding as in-

troduced by (Ramshaw & Marcus, 1995). Generalization performance is

measured by the F-score on correctly identified and labeled constituents in

test data, using the evaluation method originally used in the “shared task”
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sub-event of the CoNLL-2000 conference (Tjong Kim Sang & Buchholz,

2000) in which this particular training and test set were used.

As a first experiment, we varied both the normal k parameter (which sets

the number of equidistant neighbors in the nearest neighbor set used in k-

nn classification), and the Fambl-specific parameter that sets the maximum

k distances in the family extraction stage, which we will refer to as K (the

-K parameter in the command-line version of Fambl). The two parameters

are obviously related - the K can be seen as a preprocessing step that “pre-

compiles” the k for the k-nn classifier. The k-nearest neighbor classifier that

operates on the set of family expressions can be set to 1, hypothetically, since

the complete example space is pre-partitioned in many small regions of various

sizes (with maximally K different distances) that each represent a locally

appropriate k.

If the empirical results would indeed show that k can be set to 1 safely

when K is set at an appropriately large value, then fambl could be seen as a

means to factor the important k parameter away from MBL. We performed

comparative experiments with normal MBL and Fambl on the four benchmark

tasks, in which we varied both the k parameter in MBL, and the K parameter

in Fambl while keeping k = 1. Both k and K were varied in the pseudo-

exponential series [0, 1, . . . , 9, 10, 15, . . . , 45, 50, 60, . . . , 90, 100]. The results of

the experiments are visualized in Figure 7.

A very large value of K means that Fambl incorporates virtually any

same-class nearest neighbor at any furthest distance in creating a family, as

long as there are no different-class nearest neighbors in between. It would

be preferable to be able to fix K at a very high value without generaliza-

tion performance loss, since this would effectively factor out not only the k
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Figure 7. Generalization accuracies (in terms of % of correctly classified test in-
stances) and F-scores, where appropriate, of MBL with increasing k parameter, and
Fambl with k = 1 and increasing K parameter.

parameter, but also the K parameter. This situation is represented in the

graph displaying the results of gplural (top left corner of Figure 7). While

a larger k in IB1 leads to a steady decline in generalization accuracy on test

data of the gplural task, Fambl’s accuracy remains very much at the same

level regardless of the value of K. The results with the other three tasks also

show a remarkably steady generalization accuracy (or F-score, with chunk)

of Fambl, with increasing K, but in all three cases Fambl’s score is not higher

than ib1’s. Especially with the dimin and pp tasks, matching on families

rather than on examples leads to less accurate classifications at wide ranges

of K.

While it retains a similar performance to MBL, Fambl also attains a certain

level of compression. This can be measured in at least two ways. First, in
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Figure 8 the amount of compression (in terms of percentages) is displayed of

the number of families versus the original number of examples, with increasing

values of K, for four of our tasks. As Figure 8 shows, the compression rates

converge for all four tasks at similar and very high levels; between 77% for

gplural to 92% for dimin. Apparently, setting K at a large enough value

ensures that at that point even the largest families are identified; typically

there will be 100 or less different distances in any found family.
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Figure 8. Compression rates (percentages) of families as opposed to the original
number of examples, produced by Fambl at different maximal family sizes (repre-
sented by the x-axis, displayed at a log scale).

Some more detailed statistics on family extraction are listed in Table 2,

measured for four tasks at the K = 100 mark. The actual number of families

varies widely among the tasks, but this correlates with the number of train-

ing examples (cf. Table 6.2). The average number of members lies at about

the same order of magnitude for the four tasks – between six and thirteen.
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The table also shows the raw memory compression when compared with a

straightforward storage of the flat example base. In the straightforward im-

plementation of Fambl, storing a family with one example uses more memory

than storing one example because of the bookkeeping information associated

with storing possible disjunctions at each feature. The net gains of the high

compression rates displayed in Figure 8 are still positive: from 23% to 73%

compression. This is, however, dependent on the particular implementation.

Number of Av. number of Memory
Task families members compression (%)

gplural 1,749 7.2 62.0
dimin 233 12.9 73.4
pp 3,613 5.8 23.4
chunk 17,984 11.8 51.9

Table 2. Number of extracted families at a maximum family size of 100, the average
number of family members, and the raw memory compression, for four tasks.

Two example families, one for the pp and the other for the chunk task, are

displayed in Table 3. The first example family, labeled with the Verb attach-

ment class, represents the attributed . . . to . . . pattern, but also includes the

example bring focus to opportunities, which is apparently the closest neighbor

to the other four examples having the same class. The second family rep-

resents cases of the beginning of a noun phrase starting with most of. The

context left of most of deviates totally between the four examples making up

the family, while the right context represents a noun phrase beginning with

the or his. This family would also perfectly match sentence fragments inside

the family hyperrectangle, such as because computers do most of the top, or he

still makes most of the 50, and many more recombinations. Analogously, the
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pp family example displayed in Table 3 would also perfectly match attributed

decline to increases, bring focus to demand, etcetera.

Task Example family Class

pp attributed gains to demand Verb attachment
attributed improvement to demand
attributed performance to increases
attributed decline to demand
bring focus to opportunities

np because computers do most of the work B-NP
demand rights to most of the 50
he still makes most of his furs
screens , said most of the top

Table 3. Two example families (represented by their members) extracted from the
pp and chunk data sets, respectively. The part-of-speech tags in the chunk example
family are left out for legibility. The bold words in the chunk example are the focus
words in the windows.

Overall, the comparison between Fambl and MBL shows that Fambl does

not profit from the relatively large generalizing capacity of family expressions,

that in principle would allow some unseen examples attain a higher score in the

similarity function. Apart from the question whether this relative re-ranking

of examples would have any effect on classification, it is obvious that many

examples covered by family expressions are unlikely to occur — consider, for

example, because computers do most of his furs.

We conclude that Fambl has two main merits. First, Fambl can compress

an example base down to a smaller set of family expressions (or, a generalizing

hyperrectangle), attaining various compression rates in the same ballpark as

attained by editing methods, but with a very steady generalization accuracy

that is very close to IB1’s. Second, Fambl almost factors out the k parameter.

Fairly constant performance was observed while keeping k = 1 and varying
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K, the maximal number of family members, across a wide range of values. To

sum up, Fambl is a successful local k pre-compiler.

In this section, we discussed the fundamental eager-lazy dimension in Ma-

chine Learning from the point of view of lazy learning approaches such as

MBL. We argued that it makes sense to keep all training data available (in-

cluding “exceptional” cases) in learning language tasks because they may be

good models to extrapolate from. At the same time, while being the cheapest

possible learning approach, it is also an inherently expensive strategy during

classification. There are several ways in which this problem can be alleviated:

by using fast approximations of MBL such as IGTree (Daelemans et al., 1997b;

Daelemans & Van den Bosch, 2005), special optimized algorithms (Liu et al.,

2003) or even use of special hardware (Yeh et al., 2007). In this Section, we

showed that a alternative way to approach this problem is to develop algo-

rithms for weak, bottom up generalization from the original instance space,

making possible an efficiency increase while keeping generalization accuracy

at the same levels as with normal MBL.
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7 Further Reading

General introductions to memory-based learning (lazy learning, k-nearest

neighbor classification, instance-based learning) and its relation to other

strands of machine learning can be found in (Mitchell, 1997). Key historic pub-

lications on k-nearest neighbor classification are (Fix & Hodges, 1951; Cover

& Hart, 1967; Dudani, 1976; Dasarathy, 1991). The field of machine learn-

ing adopted and adapted the k-nearest neighbor algorithm under different

names, such as memory-based reasoning (Stanfill & Waltz, 1986), instance-

based learning (Aha et al., 1991), and locally weighted learning (Atkeson et al.,

1997). An important development in these latter publications has been the

introduction of similarity functions for non-numeric features (Aha et al., 1991;

Cost & Salzberg, 1993), which enabled the application to symbolic language

tasks. (Stanfill, 1987; Weijters, 1991) both showed that the neural-network

approach to grapheme-phoneme conversion of (Sejnowski & Rosenberg, 1987)

could be emulated and improved by using a k-nearest neighbor classifier. From

the beginning of the 1990s onwards, memory-based learning has been applied

to virtually all areas of natural language processing. (Daelemans & Van den

Bosch, 2005) is a book-length treatise on memory-based language processing.

Sections 3 and 4 already pointed to studies using MBL and alternative

memory-based approaches in various areas of computational linguistics and

computational psycholinguistics. More references can be found in the regularly

updated reference guide to the TiMBL software (Daelemans et al., 2007).

Relations to statistical language processing, in particular the interesting

equivalence relations with back-off smoothing in probabilistic classifiers, are

discussed in (Zavrel & Daelemans, 1997). Relations between classification-
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based word prediction and statistical language modeling are identified in (Van

den Bosch, 2005, 2006b).

In machine translation, k-nearest neighbor classification bears a close

relation with example-based machine translation (EBMT). A first EBMT-

implementation using TiMBL is described in (Van den Bosch et al., 2007).

The first dissertation-length study devoted to the approach is (Van den

Bosch, 1997), in which the approach is compared to alternative learning meth-

ods for NLP tasks related to English word pronunciation (stress assignment,

syllabification, morphological analysis, alignment, grapheme-to-phoneme con-

version). TiMBL is also central in the Ph.D. theses of Buchholz (2002), Lend-

vai (2004), Hendrickx (2005), and Hoste (2005). In 1999 a special issue of the

Journal for Experimental and Theoretical Artificial Intelligence (Vol. 11(3)),

was devoted to Memory-Based Language Processing. In this special issue, the

approach was related also to exemplar-based work in the Data Oriented Pars-

ing (DOP) framework (Scha et al., 1999) and analogy-based reasoning in NLP

research (Pirrelli & Yvon, 1999).
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