
On the Limits of
Sentence Compression by Deletion

Erwin Marsi1, Emiel Krahmer1, Iris Hendrickx2, and Walter Daelemans2

1 Tilburg University
Tilburg, The Netherlands

{emarsi,ekrahmer}@uvt.nl
http://daeso.uvt.nl
2 Antwerp University
Antwerpen, Belgium

{iris.hendrickx,walter.daelemans}@ua.ac.be

Abstract. Data-driven approaches to sentence compression define the
task as dropping any subset of words from the input sentence while
retaining important information and grammaticality. We show that only
16% of the observed compressed sentences in the domain of subtitling
can be accounted for in this way. We argue that this is partly due to
the lack of appropriate evaluation material and estimate that a deletion
model is in fact compatible with approximately 55% of the observed data.
We analyse the remaining cases in which deletion only failed to provide
the required level of compression. We conclude that in those cases word
order changes and paraphrasing are crucial. We therefore argue for more
elaborate sentence compression models which include paraphrasing and
word reordering. We report preliminary results of applying a recently
proposed more powerful compression model in the context of subtitling
for Dutch.

1 Introduction

The task of sentence compression (or sentence reduction) can be defined as sum-
marizing a single sentence by removing information from it [17]. The compressed
sentence should retain the most important information and remain grammatical.
One of the applications is in automatic summarization in order to compress sen-
tences extracted for the summary [17,20]. Other applications include automatic
subtitling [9,27,28] and displaying text on devices with very small screens [8].

A more restricted version of the task defines sentence compression as drop-
ping any subset of words from the input sentence while retaining important
information and grammaticality [18]. This formulation of the task provided
the basis for the noisy-channel and decision-tree based algorithms presented
in [18], and for virtually all follow-up work on data-driven sentence compression
[4,5,12,19,24,26,27,30] It makes two important assumptions: (1) only word dele-
tions are allowed – no substitutions or insertions – and therefore no paraphrases;
(2) the word order is fixed. In other words, the compressed sentence must be a
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subsequence of the source sentence. We will call this the subsequence constraint,
and refer to the corresponding compression models as word deletion models. An-
other implicit assumption in most work is that the scope of sentence compression
is limited to isolated sentences and that the textual context is irrelevant.

Under this definition, sentence compression is reduced to a word deletion
task. Although one may argue that even this counts as a form of text-to-text
generation, and consequently an NLG task, the generation component is virtually
non-existent. One can thus seriously doubt whether it really is an NLG task.

Things would become more interesting from an NLG perspective if we could
show that sentence compression necessarily involves transformations beyond
mere deletion of words, and that this requires linguistic knowledge and resources
typical to NLG. The aim of this chapter is therefore to challenge the deletion
model and the underlying subsequence constraint. To use an analogy, our aim is
to show that sentence compression is less like carving something out of wood -
where material can only be removed - and more like molding something out of
clay - where the material can be thoroughly reshaped. In support of this claim
we provide evidence that the coverage of deletion models is in fact rather limited
and that word reordering and paraphrasing play an important role.

The remainder of this chapter is structured as follows. In Section 2, we intro-
duce our text material which comes from the domain of subtitling in Dutch. We
explain why not all material is equally well suited for studying sentence compres-
sion and motivate why we disregard certain parts of the data. We also describe
the manual alignment procedure and the derivation of edit operations from it. In
Section 3, an analysis of the number of deletions, insertions, substitutions, and
reorderings in our data is presented. We determine how many of the compressed
sentences actually satisfy the subsequence constraint, and how many of them
could in principle be accounted for. That is, we consider alternatives with the
same compression ratio which do not violate the subsequence constraint. Next
is an analysis of the remaining problematic cases in which violation of the sub-
sequence constraint is crucial to accomplish the observed compression ratio. We
single out (1) word reordering after deletion and (2) paraphrasing as important
factors. Given the importance of paraphrases, Section 4 discusses the perspec-
tives for automatic extraction of paraphrase pairs from large text corpora, and
tries to estimate how much text is required to obtain a reasonable coverage.
Section 5 reports on a pilot experiment in which we apply a recently proposed
and more expressive model for sentence compression [7] to the same Dutch data
set. We identify a number of problems with the model, both when applied to
Dutch and in general. We finish with a summary and discussion in Section 6.

2 Material

We study sentence compression in the context of subtitling. The basic problem of
subtitling is that on average reading takes more time than listening, so subtitles
can not be a verbatim transcription of the speech without increasingly lagging
behind. Subtitles can be presented at a rate of 690 to 780 characters per minute,
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Table 1. Degree of sentence alignment: shows the distribution of the number of other
sentences (ranging from zero to four) that a given sentence is aligned to, for both
autocue and subtitle sentences

Degree: Autocue: (%) Subtitle: (%)

0 3607 (20.74) 12542 (46.75)
1 12382 (71.19) 13340 (49.72)
2 1313 (7.55) 901 (3.36)
3 83 (0.48) 41 (0.15)
4 8 (0.05) 6 (0.02)

while the average speech rate is considerably higher [28]. Subtitles are therefore
often a compressed representation of the original spoken text.

Our text material stems from the NOS Journaal, the daily news broadcast of
the Dutch public television. It is parallel text with on source side the autocue
sentences (aut), i.e. the text the news reader is reading, and on the target side the
corresponding subtitle sentences (sub). It was originally collected and processed
in two earlier research projects – ATRANOS and MUSA – on automatic subti-
tling [9,27,28]. All text was automatically tokenized and aligned at the sentence
level, after which alignments were manually checked.

The same material was further annotated in a project called DAESO1 (Detect-
ing And Exploiting Semantic Overlap), in which the general goal is automatic de-
tection of semantic overlap. All aligned sentences were first syntactically parsed
using the Alpino parser for Dutch [3], after which their parse trees were man-
ually aligned in more detail. Pairs of similar syntactic nodes – either words or
phrases – were aligned and labeled according to a set of five semantic similarity
relations [22,23]. For current purposes, only the alignment at the word level is
used, ignoring phrasal alignments and relation labels.

Not all material in this corpus is equally well suited for studying sentence
compression as defined in the introduction. As we will discuss in more detail
below, this prompted us to disregard certain parts of the data.

Sentence deletion, splitting and merging. For a start, autocue and subtitle sen-
tences are often not in a one-to-one alignment relation. Table 1 specifies the
alignment degree (i.e. the number of other sentences that a sentence is aligned
to) for autocue and subtitle sentences. The first thing to notice is that there is a
large number of unaligned subtitles. These correspond to non-anchor text from,
e.g., interviews or reporters abroad. More interesting is that about one in five
autocue sentences is completely dropped. A small number of about 4 to 8 percent
of the sentence pairs are not one-to-one aligned. A long autocue sentence may
be split into several simpler subtitle sentences, each containing only a part of
the semantic content of the autocue sentence. Conversely, one or more - usually
short - autocue sentences may be merged into a single subtitle sentence.
1 http://daeso.uvt.nl
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These decisions of sentence deletion, splitting and merging are worthy research
topics in the context of automatic subtitling, but they should not be confused
with sentence compression, the scope of which is by definition limited to single
sentences. Accordingly we disregarded all sentence pairs in which autocue and
subtitle are not in a one-to-one relation with each other. This reduced the data
set from 17393 to 12382 sentence pairs.

Word compression. A significant part of the reduction in subtitle characters is
actually not obtained by deleting words but by lexical substitution of a shorter
token. Examples of this include substitution by digits (“7” for “seven”), ab-
breviations or acronyms (“US” for “United States”), symbols (euro symbol for
“Euro”), or reductions of compound words (“elections” for “state-elections”).
We will call this word compression. Although an important part of subtitling,
we prefer to abstract from word compression and focus here on sentence com-
pression proper. Removing all sentence pairs containing a word compression has
the disadvantage of further reducing the data set. Instead we choose to measure
compression ratio (CR) in terms of tokens2 rather than characters.

CR =
#toksub

#tokaut
(1)

This means that the majority of the word compressions do not affect the sentence
CR.

Variability in compression ratio. The CR of subtitles is not constant, but varies
depending (mainly) on the amount of provided autocue material in a given time
frame. The histogram in Figure 1 shows the distribution of the CR (measured
in tokens) over all sentence pairs (i.e. one-to-one aligned sentences). In fact,
autocue sentences are most likely not to be compressed at all (thus belonging
to the largest bin, from 1.00 to 1.09 in the histogram).3 In order to obtain a
proper set of compression examples, we retained only those sentence pairs with
a compression ratio less than one.

Parsing failures. As mentioned earlier detailed alignment of autocue and subtitle
sentences was carried out on their syntactic trees. However, for various reasons
a small number of sentences (0.2%) failed to pass the Alpino parser and received
no parse tree. As a consequence, their trees could not be aligned and there is
no alignment at the word level available either. Variability in CR and parsing
failures are together responsible for a further reduction down to 5233 sentence
pairs, the final size of our data set, with an overall CR of 0.69. Other properties
of this data set are summarized in Table 2.4

2 Throughout this study we ignore punctuation and letter case.
3 Some instances even show a CR larger than one, because occasionally there is suf-

ficient time/space to provide a clarification, disambiguation, update, or stylistic
enhancement.

4 Notice that Sum is not meaningful for CR.



On the Limits of Sentence Compression by Deletion 49

Fig. 1. Histogram of compression ratio: shows the distribution of the compression ratio
(cf. equation 1) over all one-to-one aligned sentence pairs

Word deletions, insertions and substitutions Having a manual alignment of sim-
ilar words in both sentences allows us to simply deduce word deletions, substi-
tutions and insertions, as well as word order changes, in the following way:

– if an autocue word is not aligned to a subtitle word, then it is was deleted
– if a subtitle word is not aligned to an autocue word, then it was inserted
– if different autocue and subtitle words are aligned, then the former was

substituted by the latter
– if alignments cross each other, then the word order was changed

The remaining option is that the aligned words are identical (ignoring differences
in case).

Table 2. Properties of the final data set of 5233 pairs of autocue-subtitle sentences:
minimum value, maximum value, total sum, mean and standard deviation for number
of tokens per autocue/subtitle sentence and Compression Ratio

Min: Max: Sum: Mean: SD:

aut-tokens 2 43 80651 15.41 5.48
sub-tokens 1 29 53691 10.26 3.72
CR 0.07 0.96 0.69 0.17
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Without the word alignment, we would have to resort to automatically deriv-
ing the edit distance, i.e. the sum of the minimal number of insertions, deletions
and substitutions required to transform one sentence into the other. However,
this would result in different and often counter-intuitive sequences of edit op-
erations. Our approach clearly distinguishes word order changes from the edit
operations; the conventional edit distance, by contrast, can only account for
changes in word order by sequences of the edit operations. Another problem
with conventional edit distance is that substitution can also be accomplished
by deletion and subsequent insertion, so we would either have to resort to as-
signing appropriate costs to the different operations or to abandon substitution
altogether.

3 Analysis

3.1 Edit Operations

The observed deletions, insertions, substitutions and edit distances are shown
in Table 3. For example, the minimum number of deletions observed in a single
sentence pair (Min) is 15, whereas the maximum number of deletions observed
in single sentence pair (Max) is 34. The total number of deletions over all sen-
tence pairs is 34728, which amounts to a mean of 6.64 deletions per sentence pair
and a standard deviation (SD) of 4.57. The rows for substitutions and insertions
should be interpreted in a similar way. The edit distance is defined as the sum of
all deletions, insertions and substitutions. On average, there are about 9 edit op-
erations per sentence pair. As expected, deletion is the most frequent operation,
with on average seven deletions per sentence. Insertion and substitutions are far
less frequent. Note also that – even though the task is compression – insertions
are somewhat more frequent than substitutions. Word order changes – which are
not shown in the table – occur in 1688 cases, or 32.26% of all sentence pairs.

Another point of view is to look at the number of sentence pairs containing
a certain edit operation. Here we find 5233 pairs (100.00%) with deletion, 2738
(52.32%) with substitution, 3263 (62.35%) with insertion, and 1688 (32.26%)
with reordering.

Recall from the introduction that a subtitle is a subsequence of the autocue if
there are no insertions, no substitutions, and no word order changes. In contrast,
if any of these do occur, the subtitle is not a subsequence. The average CR for
subsequences is 0.68 (SD = 0.20) versus 0.69 (SD = 0.17) for non-subsequences.
A detailed inspection of the relation between the subsequence/non-subsequence
ratio and CR revealed no clear correlation, so we did not find indications that
non-subsequences occur more frequently at higher compression ratios.

3.2 Percentage of Subsequences

It turns out that only 843 (16.11%) subtitles are a subsequence, which is rather
low. At first sight, this appears to be bad news for any deletion model, as it seems
5 Every sentence pair must have at least one deletion, because by definition the CR

must be less than one for all pairs in the data set.
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Table 3. Observed word deletions, insertions, substitutions and edit distances

Min: Max: Sum: Mean: SD:

del 1 34 34728 6.64 4.57
sub 0 6 4116 0.79 0.94
ins 0 17 7768 1.48 1.78
dist 1 46 46612 8.91 5.78

to imply that the model cannot account for close to 84% of the observed data.
However, the important thing to keep in mind is that compression of a given
sentence is a problem for which there are usually multiple solutions [2]. This is
exactly what makes it so hard to perform automatic evaluation of NLG systems.
There may very well exist semantically equivalent alternatives with the same CR
which do satisfy the subsequence constraint. For this reason, a substantial part
of the observed non-subsequences may have subsequence counterparts which can
be accounted for by a deletion model. The question is: how many?

In order to address this question, we took a random sample of 200 non-
subsequence sentence pairs. In each case we tried to come up with an alter-
native subsequence subtitle with the same meaning and the same CR (or when
opportune, even a lower CR), but without compromising grammaticality. The
task was carried out by one of the authors and subsequently checked by an-
other author (both native speakers of Dutch), resulting in only a few minor
improvements. Table 4 shows the distribution of the difference in tokens be-
tween the original non-subsequence subtitle and the manually-constructed
equivalent subsequence subtitle. It demonstrates that 95 out of 200 (47%)

Table 4. Distribution of difference in tokens between original non-subsequence subtitle
and equivalent subsequence subtitle

token-diff: count: (%:)

-2 4 2.00
-1 18 9.00
0 73 36.50
1 42 21.00
2 32 16.00
3 11 5.50
4 9 4.50
5 5 2.50
7 2 1.00
8 2 1.00
9 1 0.50

11 1 0.50
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subsequence subtitles have the same (or even fewer) tokens, and thus the same
(or an even lower) compression ratio. This suggests that the subsequence con-
straint is not as problematic as it seemed and that the coverage of a deletion
model is in fact far better than it appeared to be. Recall that 16% of the origi-
nal subtitles were already subsequences, so our analysis suggests that a deletion
model can provide adequate output for 55% (16% plus 47% of 84%) of the
data.

3.3 Problematic Non-subsequences

Another result of this exercise in rewriting subtitles is that it allows us to identify
those cases in which the attempt to create a proper subsequence fails. In (1),
we show one representative example of a problematic subtitle, for which the
best equivalent subsequence we could obtain still has nine more tokens than the
original non-subsequence.

(1) Aut de
the

bron
source

was
was

een
a

geriatrische
geriatric

patient
patient

die
who

zonder
without

het
it

zelf
self

te
to

merken
notice

uitzonderlijk
exceptionally

veel
many

larven
larvae

bij
with

zich
him

bleek
appeared

te
to

dragen
carry

en
and

een
a

grote
large

verspreiding
spreading

veroorzaakte
caused

“the source was a geriatric patient who unknowingly carried ex-
ceptionally many larvae and caused a wide spreading”

Sub een
a

geriatrische
geriatric

patient
patient

met
with

larven
larvae

heeft
has

de
the

verspreiding
spreading

veroorzaakt
caused

Seq de
the

bron
source

was
was

een
a

geriatrische
geriatric

patient
patient

die
who

veel
many

larven
larvae

bij
with

zich
him

bleek
appeared

te
to

dragen
carry

en
and

een
a

verspreiding
spreading

veroorzaakte
caused

These problematic non-subsequences reveal where insertion, substitution and/or
word reordering are essential to obtain a subtitle with a sufficient CR (i.e. the
CR observed in the real subtitles). At least three different types of phenomena
were observed.

Word order. In some cases deletion of a constituent necessitates a change in word
order to obtain a grammatical sentence. In example (2), the autocue sentence
has the PP modifier in verband met de lawineramp in galür in its topic position
(first sentence position).
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(2) Aut in
in

verband
relation

met
to

de
the

lawineramp
avalanche-disaster

in
in

galür
Galtür

hebben
have

de
the

politieke
political

partijen
parties

in
in

tirol
Tirol

gezamenlijk
together

besloten
decided

de
the

verkiezingscampagne
election-campaign

voor
for

het
the

regionale
regional

parlement
parliament

op
up

te
to

schorten
postpone
“Due to the avalanche disaster in Galür, political parties in Tirol
have decided to postpone the elections for the regional parlia-
ment.”

Sub de
the

politieke
political

partijen
parties

in
in

tirol
Tirol

hebben
have

besloten
decided

de
the

verkiezingen
elections

op
up

te
to

schorten
postpone

Deleting this modifier, as is done in the subtitle, results in a sentence that starts
with the verb hebben, which is interpreted as a yes-no question. For a declarative
interpretation, we have to move the subject de politieke partijen to the first posi-
tion, as in the subtitle. Incidentally, this indicates that it is instructive to apply
sentence compression models to multiple languages, as a word order problem
like this never arises in English.

Similar problems arise whenever an embedded clause is promoted to a main
clause, which requires a change in the position of the finite verb in Dutch. In
total, a word order problem occurred in 24 out 200 sentences.

Referring expressions. Referring expressions are on many occasions replaced by
shorter ones – usually a little less precise. For example, de belgische overheid ‘the
Belgian authorities’ is replaced by belgie ‘Belgium’. Extreme cases of this occur
where a long NP such as deze tweede impeachment-procedure in de amerikaanse
geschiedenis ‘this second impeachment-procedure in the American history’ is
replaced by an anaphor such as het ‘it’.

Since a referring expression or anaphor must be appropriate in the given
context, substitutions such as these transcend the domain of a single sentence
and require taking the preceding textual context into account. This is especially
clear in examples such as (3) in which ‘many of them’ is replaced by the ‘refugees’.

(3) Aut velen
many

van
of

hen
them

worden
are

door
by

de
the

serviërs
Serbs

in
in

volgeladen
crammed

treinen
trains

gedeporteerd
deported
“Many of them are deported by Serbs in overcrowded trains.”

Sub vluchtelingen
refugees

worden
are

per
by

trein
train

gedeporteerd
deported

It is questionable whether these types of substitutions belong to the task of
sentence compression. We prefer to regard rewriting of referring expressions as
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one of the additional tasks in automatic subtitling, apart from compression. As
expected the challenge of generating appropriate referring expressions is also
relevant for automatic subtitling.

Paraphrasing. Apart from the reduced referring expressions, there are nominal
paraphrases reducing noun phrases such as medewerkers van banken ‘employees
of banks’ to compound words such as bankmedewerkers ‘bank-employees’. Like-
wise, there are adverbial paraphrases such as sinds een paar jaar ‘since a few
years’ to tegenwoordig ‘nowadays’, and van de afgelopen tijd ‘of the past time’
to recent ‘recent’. However, the majority of the paraphrasing concerns verbs as
in the three examples below.

(4) Aut X
X

zijn
are

doorgegaan
continued

met
with

hun
their

stakingen
strikes

“X continued their strikes”
Sub X

X
staakten
striked

(5) Aut X
X

neemt
takes

het
the

initiatief
initiative

tot
to

oprichting
founding

van
of

Y
Y

Sub X
X

zet
sets

Y
Y

op
up

(6) Aut X
X

om
for

zijn
his

uitlevering
extradition

vroeg
asked

maar
but

Y
Y

die
that

weigerde
refused

Sub Y
Y

hem
him

niet
not

wilde
wanted

uitleveren
extradite

aan
to

X
Y

“Y refused to extradite him to Y”

Even though not all paraphrases are actually shorter, it seems that at least some
of them boost compression beyond what can be accomplished with only word
deletion. In the next section, we look at the possibilities of automatic extraction
of such paraphrases.

3.4 Semantic Relations between Aligned Phrases

The aligned phrases in our corpus were also manually labeled according to a
set of five different semantic similarity relations. By way of example, we use the
following pair of Dutch sentences:

(7) a. Dagelijks
Daily

koffie
coffee

vermindert
diminishes

risico
risk

op
on

Alzheimer
Alzheimer

en
and

Dementie.
Dementia

b. Drie
Three

koppen
cups

koffie
coffee

per
a

dag
day

reduceert
reduces

kans
chance

op
on

Parkinson
Parkinson

en
and

Dementie.
Dementia

The corresponding syntax trees and their (partial) alignment are shown in
Figure 2. It should be noted that for expository reasons the alignment shown in
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Fig. 2. Example of two (partially) aligned syntactic trees

the figure is not exhaustive. We distinguish the following five mutually exclusive
similarity relations:

1. v equals v′ iff str(v) and str(v′) are literally identical (abstracting from
case). Example: “Dementie” equals “Dementie”;

2. v restates v′ iff str(v) is a paraphrase of str(v′) (same information content
but different wording). Example: “risico” restates “kans”;

3. v generalizes v′ iff str(v) is more general than str(v′). Example: “dagelijks
koffie” generalizes “drie koppen koffie per dag”;

4. v specifies v′ iff str(v) is more specific than str(v′). Example: “drie koppen
koffie per dag” specifies “dagelijks koffie”;

5. v intersects v′ iff str(v) and str(v′) share some informational content,
but also each express some piece of information not expressed in the other.
Example: “Alzheimer en Dementie” intersects “Parkinson en Dementie”

The distribution of the semantic relations in our autocue-subtitle corpus is
shown in Table 5. The bulk of the alignments concerns Equals (67%). As is to be
expected, the next most frequent class is Specifies (14%), where the information
in the autocue is more specific than that in the compressed subtitle, followed
by Restates (11%), where information is paraphrased. Only a small percentage

Table 5. Distribution of semantic relations between aligned phrases

#Alignments: %Alignment:

Equals 91609 67.46
Restates 15583 11.48
Generalizes 3506 2.58
Specifies 19171 14.12
Intersects 5929 4.37
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of Generalizes (3%) and Intersects (4%) relations are present. These numbers
confirm our intuition that paraphrasing and generalization are the most frequent
operations in sentence compression.

4 Perspectives for Automatic Paraphrase Extraction

There is a growing amount of work on automatic extraction of paraphrases
from text corpora [1,10,15,21]. One general prerequisite for learning a particular
paraphrase pattern is that it must occur in the text corpus with a sufficiently high
frequency, otherwise the chances of learning the pattern are proportionally small.
In this section, we investigate to what extent the paraphrases encountered in our
random sample of 200 pairs (cf. Section 3.2) can be retrieved from a reasonably
large text corpus.

In a first step, we manually extracted all 106 paraphrase patterns observed
in out data set. We filtered these patterns and excluded anaphoric expressions,
general verb alternation patterns such as active/passive and continuous/non-
continuous, as well as verbal patterns involving more than two arguments. After
this filtering step, 59 pairs of paraphrases remained, including the examples
shown in the preceding section.

The aim was to estimate how big our corpus has to be to cover the majority of
these paraphrase pairs. We started with counting for each of the paraphrase pairs
in our sample how often they occur in a corpus of Dutch news texts, the Twente

Fig. 3. Percentage of covered paraphrases as a function of the corpus size
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News Corpus6, which contains approximately 325M tokens and 20M sentences.
We employed regular expressions to count the number of paraphrase pattern
matches. The corpus turned out to contain 70% percent of all paraphrase pairs
(i.e. both patterns in the pair occur at least once). We also counted how many
pairs have frequencies of at least 10 or 100. To study the effect of corpus size
on the percentage of covered paraphrases, we performed these counts on 1, 2,
5, 10, 25, 50 and 100% of the corpus. Figure 3 shows the percentage of covered
paraphrases dependent on the corpus size. The most strict threshold that only
counts pairs that occur at least 100 times in our corpus, does not retrieve any
counts on 1% of the corpus (3M words). At 10% of the corpus size only 4% of
the paraphrases is found, and on the full data set 25% of the pairs is found.

For 51% percent of the patterns we find substantial evidence (a frequency of at
least 10) in our corpus of 325M tokens. We fitted a curve through our data points,
and found a logarithmic line fit with adjusted R2 value of .943 (which provides a
measure between one and zero of how well future outcomes are likely to be pre-
dicted by the model). This suggests that in order to get 75% of the patterns, we
would need a corpus that is 18 times bigger than our current one, which amounts
to roughly 6 billion words. Although this seems like a lot of text, using the WWW
as our corpus would easily give us these numbers. Today’s estimate of the Index
Dutch World Wide Web is 439 million pages7. If we assume that each page con-
tains at least 100 tokens on average, this implies a corpus size of 43 billion tokens.

We are aware of the fact that these are very rough estimates and that the es-
timation method is to some extent questionable. For example, the extrapolation
assumes that the relative distribution of words remains the same for a certain
corpus and a superset of that corpus. Nevertheless we think that these estimates
support the intuition that significantly more data is needed in order to extract
the required paraphrases.

Not also that the patterns used here are word-based and in many cases express
a particular verb tense or verb form (e.g. 3rd person singular) and word order.
This implies that our estimations are the minimum number of matches one can
find. For more abstract matching, we would need syntactically parsed data [21].
We expect that this would also positively affect the coverage.

5 Exploring Sentence Compression for Dutch

The preceding analysis of sentence compression in the context of subtitling pro-
vides evidence that deletion models are not sufficient for sentence compression.
More elaborate models involving reordering and paraphrasing are therefore re-
quired. In recent work [7], Cohn & Lapata acknowledge the limitations of the
deletion model and propose an interesting alternative which goes beyond word
deletion. In this section, we describe a first attempt to apply this more powerful
model to our Dutch subtitle data.
6 http://www.vf.utwente.nl/~druid/TwNC/TwNC-main.html
7 http://www.worldwidewebsize.com/index.php?lang=NL, as measured December

2009.

http://www.worldwidewebsize.com/index.php?lang=NL
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5.1 Sentence Compression as Tree Transduction

Cohn & Lapata [7] regard sentence compression as a tree-to-tree transduction pro-
cess in which a source parse tree is transformed to a compressed parse tree. The
formalization is based on Synchronous Tree Substitution Grammars (STSG) as
proposed by [11], a formalism that allows local distortions of the tree structure
and can therefore accommodate for substitutions, insertions and reordering. We
refrain from a detailed formal description of their model, which can be found in [7],
and instead provide an informal description by means of an (artificial) example.

The grammar rules of a STSG define aligned pairs of source and target tree
fragments. For example, Rule 1 expresses the observation that the source NP
een nieuwe vakbond ‘a new union’ can be rewritten to the compressed NP een
vakbond ‘a union’ by deleting the adjective nieuwe.

Rule 1:

<NP, NP> ==> < (NP (Det een) (A nieuwe) (N vakbond)),
(NP (Det) (N vakbond)) >

The tree fragments can be of arbitrary depth, allowing for an extended specifica-
tion of syntactic context. Rule 2, for example, shows an example of substitution
in which the source tree medewerkers van banken ‘employees of banks’ has a
depth of four levels.

Rule 2:

<NP, NP> ==> < (NP (N medewerkers) (PP (P van) (NP (N banken)))),
(NP (N bankmedewerkers)) >

To allow generalization, rules can contain variables. For instance, rule (3) has
two NP slots, where the numeric indices define the alignment between the slots
in the source and target tree (cf. example (5) for a gloss).

Rule 3:

<S, S> ==> < (S (NP [1]) (V nemen) (VP (NP (Det het)
(N initiatief) (NP (P voor) (NP [2]))))),
(S (NP [1]) (VP (V zetten) (NP [2]) (V_part op))) >

The variables are also the points of recursion in the transductive process. As in a
normal context-free grammar, a source tree can be reproduced by top-down ap-
plication of the left part of the synchronous grammar rules. Thus the source tree
in the example below can be reproduced by first applying (the left part of) rule 3,
followed by application of rules 1 and 2 to expand the two NP variables. Be-
cause of the aligned right part in the synchronous grammar rules, synchronous
application of the aligned right parts produces the corresponding compressed
tree.
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Source tree:

(S (NP (N medewerkers) (PP (P van) (NP (N banken)))) (V nemen)
(VP (NP (Det het) (N initiatief) (NP (P voor) (NP (Det een)
(A nieuwe) (N vakbond)) ))))

Target tree:

(S (NP (N bankmedewerkers)) (VP (V zetten) (NP (Det een)
(N vakbond) (V_part op)))

In order to automatically obtain a grammar, Cohn & Lapata rely on a parallel
corpus of source and compressed sentences which are (automatically) aligned at
the word level. From these word alignments, compatible constituent alignments
are inferred. The resulting tree alignments are then input to an algorithm that
derives the synchronous grammar rules.

Given an input source tree and a synchronous grammar, sentence compres-
sion amounts to finding the optimal target tree licensed by the grammar. One of
the factors in scoring the output is an n-gram language model. Cohn & Lapata
describe algorithms for training and decoding in this setting based on discrimi-
native learning within a large margin framework.

5.2 Application to Dutch

Cohn & Lapata report state-of-the-art results for English, albeit on sentence com-
pression by deletion only rather than the more general case which includes reorder-
ing, substitutions and insertions [7].As theygenerouslymade their implementation
publicly available as theTreeTransducerToolkit 8 (T3), this paves theway to appli-
cation to other corpora and languages.We think it is interesting to test their model
in a different domain and for a new language. In the remainder of this section, we
describe our experiences with a first attempt to apply this approach to Dutch.

The Dutch corpus has both advantages and disadvantages. An advantage is
that it includes reordering, substitutions and insertions, and is therefore better
suited to fully testing the claimed expressiveness of the model than the compression-
by-deletion corpora used in [7]. A disadvantage is that it contains many sentences
with a slightly ungrammatical word order. In order to understand the reason for
this, it is necessary to know that the internal representation of a syntactic parse
as used by the Alpino parser for Dutch is a dependency graph rather than a con-
stituent tree, and may therefore contain crossing edges. Although the parser can
output parse trees – which is what we use – crossing edges can only be resolved
at the cost of moving some terminal nodes around to a different position in the
tree. As a consequence, the yield of the parse tree, i.e., the sequence of terminals
from left to right, is not always identical to the original input sentence. Hence the
word order in the tree may differ slightly from that in the input sentence, and is in

8 http://www.dcs.shef.ac.uk/~tcohn/t3/

http://www.dcs.shef.ac.uk/~tcohn/t3/
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fact often ungrammatical. A typical example of the difference between an input
sentence and the yield of its parse tree is given in (8).

(8) a. Met
with

een
a

flinke
strong

wind
wind

erbij
included

kan
can

de
the

sneeuw
snow

zich
itself

ophopen
pile

“In combination with a strong wind, snow can pile up”
b. kan de sneeuw Met een flinke wind erbij zich ophopen

What is needed is a reverse step which converts the constituent tree back to a
dependency graph, thereby restoring the grammatical word order. This task of
word (re)ordering is addressed in for example [13] and [29] (this volume), but is
currently missing in our experimental setup.

We used the corpus of Dutch autocue and subtitle sentences as described in
Section 2. We divided it into 3865 sentence pairs for training and 1354 sentence
pairs for testing, in such way that all test material comes from another month of
news broadcasts than the training material. Syntax trees were converted to the
labeled bracket format as used in the Penn Tree Bank. Word alignments were ob-
tained by removing alignments involving non-terminal nodes from our manual tree
alignments. A trigram language model was trained on a background corpus of over
566M tokens of Dutch news text from the Twente News Corpus [25]. In all sub-
sequent steps, we used settings identical to those in the sample script provided
with the T3 distribution. Grammar rules were harvested from the training data,
amounting to a total of over 124k unique rules.9 Features were derived, the model
was trained, and subsequently applied to decode the test material.

Given the preliminary nature of this exercise, we performed no formal eval-
uation experiment. Instead we first discuss a number of issues specific to our
Dutch data set that we encountered upon inspecting the output. We also came
across some general problems with the approach, which will be discussed in the
next subsection.

Overall it seems that most acceptable compressions are the result of only
deletion. Even though we did not inspect all 1354 test sentences, we were unable
to find clear examples in which a combination of reordering, substitution or
insertion resulted in a shorter paraphrase.

The most obvious problem in the output is ungrammatical word order. How-
ever, this can to a large extent be blamed on the training material containing
ungrammatical word order, as explained above. It is therefore to be expected
that the word order in the compressed output is also somewhat distorted.10

Apart from word order issues, two other problems – as far as grammatical-
ity is concerned – are grammatical incongruence and missing complements. In

9 This includes epsilon rules and copy rules, but no deletion rules, because a head table
for Dutch, which specifies the head for each syntactic phrase, was not readily available.
These rules will be explained in Section 5.3.

10 This word order issue may also affect the n-gram language model, which plays a part
in the scoring function for the target tree. The n-gram model is trained on Dutch
sentences with a proper word order, whereas the yield of the source tree to be scored
may have a distorted word order.
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addition to subject-verb agreement, Dutch has determiner-noun and adjective-
noun agreement. It turns out that these agreement constraints are often violated
in the compressed output, presumably because the n-gram model has a lim-
ited capability for capturing these phenomena. Likewise, obligatory arguments,
usually verbal complements, are frequently missing. A related issue concerns
wrong/missing functions words such as determiners, complementizers, prepo-
sitions or verbal particles. Note that that this grammatical information is in
principle available, as the edges of the parse tree are labeled with dependency
relations such as su (subject) and obj1 (verbal/prepositional complement) and
predc (predicative complement). If we can force the model to take this depen-
dency information into account – perhaps simply by concatenating constituent
and dependency labels into a specialized label – this may have a positive impact
on the grammaticality of the output

The remaining problems have to do with content selection where deletions or
substitutions radically change the meaning of the compressed sentence or even
render it nonsensical. One frequent error is the reduction of a source sentence to
just its subject or object NP.

5.3 Some General Issues

We encountered a number of issues which we feel are general drawbacks of the
model. The first of these is that it has a tendency to insert ungrounded lexical
material. That is, the compressed output contains information that was in no
form present in the source sentence. In (9), for example, the NP de grootste in
z’n soort in de wereld is replaced by the completely unrelated phrase Macedonie.
Likewise, (10) contains an extra piece of information in the form of the PP van
het concertgebouw, for which there is no ground in the input.

(9) a. De
The

high
high

tech
tech

campus
campus

wordt
becomes

de
the

grootste
biggest

in
in

z’n
its

soort
sort

in
in

de
the

wereld
world

b. De
The

high
high

tech
tech

campus
campus

wordt
becomes

Macedonie
Macedonia

(10) a. Tot
until

vorige
last

week
week

werkte
worked

ingenieur
engineer

De
De

Kwaadsteniet
Kwaadsteniet

hier
here

aan
on

mee
with
Until last week, engineer De Kwaadsteniet agreed to this

b. van
from

vorige
last

week
week

werkte
worked

De
De

Kwaadsteniet
Kwaadsteniet

ingenieur
engineer

van
of

het
the

Concertgebouworkest
Concertgebouw-orchestra

hier
here

aan
on

mee
with

The same problem is also observed in [24, p. 396] using automatically aligned
comparable text as training material. One possible explanation is that the train-



62 E. Marsi et al.

ing material contains examples in which the source and compressed sentences
are only partly overlapping in meaning. This would occur when multiple au-
tocue sentences are compressed into a single subtitle sentence, so the subtitle
may contain content that is not present in a least one of the autocue sentences.
However, recall from Section 2 that we disregarded all cases of one-to-many
and many-to-one sentence alignment. Just to check, we also ran an experi-
ment in which we included these non-uniquely aligned sentences in the training
material, and found that that indeed insertion of ungrounded material became
a major problem, often giving rise to nonsensical output.

The second general problem is related to the compression ratio: it cannot be
directly adapted to fit the level of compression desired by the user. As mentioned
in [7], it can currently only be indirectly changed by modifying the loss function of
the model. However, this means that differentmodels must be trained for a discrete
range of compression ratios, which seems impractical for real applications.

The third and final general problem has to do with coverage. The grammar
rules induced from the development data are highly unlikely to cover all the
lexical and syntactic variations in unseen data. This means that a source tree
cannot be produced with the given rules, and consequently the transduction
process will fail, resulting in no output. This problem seems unavoidable, even
when training on massive amounts of data. The solution proposed by Cohn &
Lapata is to add back-off rules. There are epsilon rules which delete unaligned
constituents in the subtree, deletion rules which delete one or more non-head
child nodes, and finally copy rules which simply copy a node and its child nodes
from the source to the target tree (resulting in zero compression). However, the
important thing to notice is that in the experiments reported, both here and in
[6,7], it is implicit that these rules are derived not only from the development
data, but also from the test data. While this is arguably a fair methodology
in an experimental setting, it is problematic from a practical point of view.
It means that for each unseen input sentence, we have to derive the epsilon,
deletion and copy rules from the corresponding source tree, add them to the
rule base, and retrain the model. Since training the support vector machine
underlying the model takes considerable computing time and resources, this is
clearly prohibitive in the case of online application.

To illustrate the point, we repeated our experiment for Dutch, with the dif-
ference that this time epsilon and copy rules were derived from the training data
only, excluding the test data. In this setting, just 94 out of the total of 1354 test
sentences (less than 7%) result in an output sentence.

To sum up, exploring sentence compression for Dutch with the tree transducer
model from [7] gave results which are not immediately encouraging. However,
these are preliminary results, and tuning of input and parameters may lead to
significant improvements.

6 Discussion

In the first part of this chapter we performed an in depth analysis of sentence
compression as observed in the context of subtitling for Dutch. We found that
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only 16.11% of 5233 subtitle sentences were proper subsequences of the corre-
sponding autocue sentence, and therefore 84% can not be accounted for by a
deletion model. One conclusion appears to be that the subsequence constraint
greatly reduces the amount of available training material for any word dele-
tion model. However, an attempt to rewrite non-subsequences to semantically
equivalent sequences with the same CR suggests that a deletion model could in
principle be adequate for 55% of the data. Moreover, in those cases where an
application can tolerate a little slack in the CR, a deletion model might be suf-
ficient. For instance, if we are willing to tolerate up to two more tokens, we can
account for as much as 169 (84%) of the 200 non-subsequences in our sample,
which amounts to 87% (16% plus 84% of 84%) of the total data.

It should be noted that we have been very strict regarding what counts as a
semantically equivalent subtitle: every piece of information occurring in the non-
subsequence subtitle must reoccur in the sequence subtitle.11. However, looking
at our original data, it is clear that considerable liberty is taken as far as con-
serving semantic content is concerned: subtitles often drop substantial pieces of
information. If we relax the notion of semantic equivalence a little, an even larger
part of the non-subsequences can be rewritten as proper sequences.

The remaining problematic non-subsequences are those in which insertion,
substitution and/or word reordering are essential to obtain a sufficient CR. One
of the issues we identified is that deletion of certain constituents must be accom-
panied by a change in word order to prevent an ungrammatical sentence. Since
changes in word order appear to require grammatical modeling or knowledge,
this brings sentence compression closer to being an NLG task.

Nguyen and Horiguchi [19] describe an extension of the decision tree-based
compression model [18] which allows for word order changes. The key to their
approach is that dropped constituents are temporarily stored on a deletion stack,
from which they can later be re-inserted in the tree where required. Although this
provides an unlimited freedom for rearranging constituents, it also complicates
the task of learning the parsing steps, which might explain why their evaluation
results show marginal improvements at best.

In our data, most of the word order changes appear to be minor though,
often only moving the verb to second position after deleting a constituent in the
topic position. We believe that unrestricted word order changes are perhaps not
necessary and that the vast majority of the word order problems can be solved
by a fairly restricted way of reordering, in particular, a parser-based model with
an additional swap operation that swaps the two topmost items on the stack. We
expect that this is more feasible as a learning task than an unrestricted model
with a deletion stack.

Apart from reordering, other problems for word deletion models are the inser-
tions and substitutions as a result of paraphrasing. Within a decision tree-based
model, paraphrasing of words or continuous phrases may be modeled by a com-
bination of a paraphrase lexicon and an extra operation which replaces the n

11 As far as reasonably possible, because in a few cases the substitute contains extra
information that is simply not present in the autocue.
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topmost elements on the stack by the corresponding paraphrase. However, para-
phrases involving variable arguments, as typical for verbal paraphrases, cannot
be accounted for in this way. More powerful compression models may draw on
existing NLG methods for text revision [16] to accommodate full paraphrasing.

We also looked at the perspectives for automatic paraphrase extraction from
large text corpora. About a quarter of the required paraphrase patterns was
found at least a hundred times in our corpus of 325M tokens. Extrapolation
suggests that using the web at its current size would give us a coverage of ap-
proximately ten counts for three quarters of the paraphrases.

In the second part of this chapter we explored sentence compression with
the tree transducer model as proposed by Cohn & Lapata [7]. We reported
preliminary results of applying this more powerful compression model to the
task of subtitle compression for Dutch. In theory the proposed model looks very
promising, because it can handle and learn reordering, substitution and insertion
in an elegant way. In practice, the results were not immediately encouraging. We
identified a number of problems with the model, both when applied to Dutch and
in general. We might interpret these findings as support for choosing a hybrid
approach to sentence compression – explicitly modeling linguistic knowledge –
rather than a fully data-driven approach, at least if the goal is to model more
complicated forms of compression beyond deletion.

Incidentally, we identified two other tasks in automatic subtitling which are
closely related to NLG. First, splitting and merging of sentences [17], which seems
related to content planning and aggregation. Second, generation of a shorter
referring expression or an anaphoric expression, which is currently one of the
main themes in data-driven NLG [14].

In conclusion, we have presented evidence that deletion models for sentence
compression are not sufficient, at least not as far as concrete application in
subtitle compression is concerned. More elaborate models involving reordering
and paraphrasing are therefore required, which puts sentence compression in the
field of NLG.
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