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Abstract

In this paper we describe a memory-based machine learning system that extracts biomedical
events from texts relying on information from contextual and syntactic features. The main
characteristics of the system are that it uses information from dependency syntax and that it
integrates classifiers that learn event triggers and event participants jointly. The results show
that this system is more efficient than a similar memory-based system that used shallow
context information and integrated classifiers in a traditional pipeline architecture.

1 Introduction

In recent years, research on biomedical text mining has seen substantial progress,
(Krallinger and Valencia 2005, Ananiadou and McNaught 2006, Krallinger et al.
2008a). The focus on extraction of event frames using machine learning techniques
is relatively new, since most research was devoted to named entity recognition.
This was due in part to the lack of annotated corpora. Recently, some corpora have
been annotated with event level information of different types: PropBank-style
frames (Wattarujeekrit et al. 2004, Chou et al. 2006), frame independent roles (Kim
et al. 2008, Pyysalo et al. 2007), and specific roles for certain event types (Sasaki
et al. 2008). Thanks to these efforts it is possible now to extract biomedical events
by applying machine learning techniques.

Most work on biomedical information extraction focuses on extracting rela-
tions between biomedical entities within a text. For example, Bundschus et al.
(2008) developed a system to identify relations between genes and diseases from
a set of Gene Reference Into Function phrases. Progress in this field has been
boosted by the shared tasks on protein-protein interaction extraction in the frame-
work of the Language Learning in Logic Workshop 2005 (Nédellec 2005) and the
BioCreative competitions (Krallinger et al. 2008b). Event extraction has emerged
to satisfy new information extraction needs. Research on event extraction has ben-
efited from the data and tools made available for the BioNLP Shared Task on Event
Extraction 2009 (BioNLP-ST) (Kim et al. 2009), which consisted of finding event
triggers and event participants.

In this paper we describe a machine learning system that extracts event
triggers and event participants from biomedical texts. The system has been
trained and tested on the BioNLP-ST. Although the approach is possible us-
ing any classification-based supervised learning method, we chose for Memory-
Based Learning (MBL) as learning method. Memory-based language processing

Proceedings of the 20th Meeting of Computational Linguistics in the Netherlands
Edited by: Eline Westerhout, Thomas Markus, and Paola Monachesi.
Copyright c© 2010 by the individual authors.

91



92 Roser Morante, Vincent Van Asch, and Walter Daelemans

(Daelemans and van den Bosch 2005) is based on the idea that NLP problems can
be solved by reuse of solved examples of the problem stored in memory. Given a
new problem, the most similar examples are retrieved, and a solution is extrapo-
lated from them.

The originality of the system that we present lies in the fact that event triggers
and participants are learned jointly, whereas the machine learning systems that
were submitted to the task first learn the event triggers, and then the event partic-
ipants. It has been shown that jointly learning two tasks can lead to better results
than learning the tasks apart in a cascade. Wang et al. (2008) jointly learn Chinese
word segmentation, named entity recognition, and part-of-speech tagging, outper-
forming a pipeline architecture baseline. Finkel and Manning (2009) show that
joint learning of parsing and named entity recognition produce mildly improved
performance for both tasks. Our goal in this paper is to investigate whether the
joint setting is suitable for event extraction.

In Section 2 we briefly describe the data and the task. Section 3 introduces the
system architecture. Sections 4 and 5 present the system in detail, and Section 6
the results. Finally, some conclusions are put forward in Section 7.

2 Data and task description

The event extraction system that we present has been trained and evaluated with
the data provided by the BioNLP-ST1, which consisted of extracting bio-molecular
events from texts, focusing on events involving proteins and genes. The system
was developed after the competition finished. In this task, an event is defined as a
relation that holds between one or more entities that fulfill different roles. There
are two types of entities: proteins and biomedical events. Entities can be either
participants or arguments of an event. Participants fulfill the core roles (Theme,
Cause) in the event, and arguments (Location, Site) further specify the events.
In Sentence (6.1), the proteins STAT1, STAT3, STAT4, STAT5a, and STAT5b are
participants of the biomedical event phosphorylation. They fulfill the role Theme.
Tyrosine is an argument of the same event, and it fulfils the role Site.

(6.1) IFN-alpha enhanced tyrosine phosphorylation of STAT1, STAT3, STAT4, STAT5a,
and STAT5b

For this sentence, the task consists of identifying phosphorylation as an event
trigger, and extracting the five events listed in Table 6.1.

The event types annotated in the corpora are: Gene Expression, Localization,
Phosphorylation, Protein Catabolism, Transcription, Binding, and (Positive, Neg-
ative) Regulation. All of them have one Theme as participant, except for Binding
that can have more than one. Regulations have also a participant Cause. Sen-
tence (6.2) contains triggers (binding) of Binding events with multiple Themes.
The events to be extracted are listed in Table 6.2.

1Web page: http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/
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Theme Argument Theme Argument
Event 1 STAT1 tyrosine Event 4 STAT5a tyrosine
Event 2 STAT3 tyrosine Event 5 TAT5b tyrosine
Event 3 STAT4 tyrosine

Table 6.1: Events to be extracted from Sentence (6.1).

(6.2) When we analyzed the nature of STAT proteins capable of binding to IL-2Ralpha,
pim-1, and IRF-1 GAS elements after cytokine stimulation, we observed
IFN-alpha-induced binding of STAT1, STAT3, and STAT4, but not STAT5 to all of
these elements.

Theme(s) Argument Theme(s) Argument
Event 1 STAT4, IRF-1 GAS elements Event 7 IL-2, Ralpha GAS elements
Event 2 STAT3, IL-2Ralpha GAS elements Event 8 pim-1 GAS elements
Event 3 STAT3, IRF-1 GAS elements Event 9 STAT1, IRF-1 GAS elements
Event 4 STAT4, pim-1 GAS elements Event 10 STAT3, pim-1 GAS elements
Event 5 STAT1, IL-2Ralpha GAS elements Event 11 IRF-1 GAS elements
Event 6 STAT4, IL-2Ralpha GAS elements Event 12 STAT1, pim-1 GAS elements

Table 6.2: Events to be extracted from Sentence (6.2).

Events can be single or nested. A nested event has as argument another event,
like in Sentence (6.3), where effects triggers a Regulation event, which has as a
participant the Gene Expression event production.

(6.3) We have studied the effects of prednisone (PDN) on the production of cytokinase
(IL-2, IL-6, TNF-alpha, IL-10).

The training corpus provided for the task consists of 176,146 words and 8,597
events, the development corpus of 33,937 words and 1,809 events, and the test
corpus of 57,367 words and 3,182 events. The corpora are annotated with gold
standard protein and named entities. The task consists of two subtasks: 1) detect-
ing the triggers of events, that is, the words that express the event, and the triggers
of participants and arguments that are not proteins; 2) detecting participants and
arguments per event.

The system is evaluated in terms of precision, recall and F1 using the evalua-
tion scripts of the BioNLP-ST. We provide intermediate results of the system based
on the development data and we provide the final results on development and test
data. As in the official results of the BioNLP-ST, here we will report results un-
der the mode Approximate Span Matching and Approximate Recursive Matching
(ASM/ARM) as defined in (Kim et al. 2009). In ASM mode, the requirement of
exactly matching the text span of triggers is relaxed. The ARM mode relaxes the
requirement for recursive event matching, so that an event can be correct even if
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the events it refers to are only partially correct. More details about the task setting,
corpora, and evaluation can be found in the webpage of the task and in Kim et al.
(2009).

3 System architecture

The architecture of the system is represented in Figure 1. It works in three phases:
preprocessing, classification and postprocessing.

Figure 1: Architecture of the event extraction system.

The system starts by preprocessing the corpora into a learnable format. In order
to get information for feature construction for the machine learner, we process the
corpora with the GDep dependency parser (Sagae and Tsujii 2007), which outputs
for every word the part-of-speech (POS) tag, the lemma, IOB-style chunks, named
entities, the syntactic head, and the dependency relation. The data are converted
into a column format, following the standard format of the CoNLL Shared Task
2006 (Buchholz and Marsi 2006). Table 6.3 shows a simplified example of a pre-
processed sentence. The first column contains the token number in the sentence;
the second the word; the third to the sixth contain information provided by the
GDEP parser; the seventh column contains the named entities as provided by the
BioNLP-ST. The eighth and ninth columns contain as many slots separated by “:”
as there are events in the sentence; the eighth column marks with the event type the
tokens that are event triggers, and the ninth column marks the tokens that are event
participants in the same slot as the event to which they belong. For example, Token
4 “alter” expresses two Regulation events. The first one has as participant Token
9, and the second one Token 11. Triggers are expressed with BI tags (Beginning,
Inside) in order to capture multiword triggers.

Rewriting the development corpus into the column format and converting it
back into the BioNLP-ST format with gold standard information results in an F1-
score of 93.57 %. This score effectively constitutes an upperbound for a machine
learner using this data format. The loss in performance can be attributed to the fact
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that we do not process intersentential event participants(they amount to 5% of the
data), and to the complicated structures of the nested events.

# WORD POS NE DEP LABEL NE TASK EVENT TRIGGERS PARTICIPANTS
1 RCC-S NNS O 2 SUB O _:_:_:_:_:_ _:_:_:_:_:_
2 did VBD O 0 ROOT O _:_:_:_:_:_ _:_:_:_:_:_
3 not RB O 2 VMOD O _:_:_:_:_:_ _:_:_:_:_:_
4 alter VB O 2 VC O B-Reg:B-Reg:_:_:_:_ _:_:_:_:_:_
5 the DT O 7 NMOD O _:_:_:_:_:_ _:_:_:_:_:_
6 cytoplasmic JJ O 7 NMOD O _:_:_:_:_:_ _:_:_:_:_:_
7 levels NNS O 4 OBJ O _:_:_:_:_:_ _:_:_:_:_:_
8 of IN O 7 NMOD O _:_:_:_:_:_ _:_:_:_:_:_
9 RelA NN B-protein 11 NMOD B-Protein _:_:_:_:_:_ Theme:_:_:_:_:Theme

10 and CC O 11 NMOD O _:_:_:_:_:_ _:_:_:_:_:_
11 NF-kappaB1 NN B-protein 8 PMOD B-Protein _:_:_:_:_:_ _:Theme:_:_:Theme:_
12 but CC O 2 VMOD O _:_:_:_:_:_ _:_:_:_:_:_
13 did VBD O 2 VMOD O _:_:_:_:_:_ _:_:_:_:_:_
14 suppress VB O 13 VC O _:_:B-NegReg:B-NegReg:_:_ _:_:_:_:_:_
15 their PRP$ O 17 NMOD O _:_:_:_:_:_ _:_:_:_:_:_
16 nuclear JJ O 17 NMOD B-Entity _:_:_:_:_:_ _:_:_:_ToLoc:ToLoc
17 localization NN O 14 OBJ O _:_:_:_:B-Loc:B-Loc _:_:Theme:Theme:_:_
18 and CC O 2 VMOD O _:_:_:_:_:_ _:_:_:_:_:_
19 inhibited VBD O 2 VMOD O _:_:_:_:_:_ _:_:_:_:_:_
20 the DT O 21 NMOD O _:_:_:_:_:_ _:_:_:_:_:_
21 activation NN O 19 OBJ O _:_:_:_:_:_ _:_:_:_:_:_
22 of IN O 21 NMOD O _:_:_:_:_:_ _:_:_:_:_:_
23 RelA NN B-protein 27 NMOD B-Protein _:_:_:_:_:_ _:_:_:_:_:_
24 / SYM I-protein 27 NMOD O _:_:_:_:_:_ _:_:_:_:_:_
25 NF-kappaB1 NN I-protein 27 NMOD B-Protein _:_:_:_:_:_ _:_:_:_:_:_
26 binding NN I-protein 27 NMOD O _:_:_:_:_:_ _:_:_:_:_:_
27 complexes NNS I-protein 22 PMOD O _:_:_:_:_:_ _:_:_:_:_:_
28 . . O 2 P O _:_:_:_:_:_ _:_:_:_:_:_

Table 6.3: Example sentence represented in CoNLL format.

The classification component will be described in Section 4. The postprocess-
ing component consists of three rules that are applied to the output of the classifi-
cation in order to reconstruct the data into the original BioNLP-ST files. Further
details are presented in Section 5.

4 Classification of event triggers and participants

The classification component consists of three memory-based classifiers. Two
classifiers are used to find triggers and participants of single events, and one clas-
sifier is used to find triggers and participants of nested events, based on the output
of the first two classifiers.

The algorithm used is TRIBL as implemented in TiMBL (version 6.1.2)
(Daelemans et al. 2007). TRIBL is a hybrid combination of IB1, a k-NN clas-
sifier, and IGTREE, a fast decision-tree approximation of k-NN (Daelemans and
van den Bosch 2005) that splits the classification of instances into a quick decision-
tree traversal based on the first, most informative, features, followed by a slower
k-NN classification based on the remaining features. In this case the classifier used
the two most informative features for the IGTREE classification. The k-NN clas-
sifier is IB1, the usual memory-based algorithm based on the k-nearest neighbor
classification rule.

Parameterisation of the classifiers was performed by experimenting with sets of
parameters on the development set. TRIBL was parameterised in this case by using
gain ratio for feature weighting, overlap as distance metric, 5 nearest neighbors
for extrapolation, and normal majority voting for class voting weights. The three



96 Roser Morante, Vincent Van Asch, and Walter Daelemans

classifiers use the same parameters.
In the next subsections the three classifiers are described and intermediate re-

sults are provided.

4.1 Learning single events

Two classifiers are used to find triggers of single events and their participants.
Instances represent combinations of tokens that are tagged as Proteins and all the
tokens in the sentence with POS verb, noun or adjective, which amount to almost
99% of the events in the training corpus. The three classifiers learn the combined
label “EventType:ParticipantType".

Classifier 1 (C1) processes the instances in which the combined token is an
ancestor of the Protein in the dependency tree, and Classifier 2 (C2) processes the
rest of the cases. This is motivated by the fact that the predictive power of features
is different, as will be explained below. For the sentence in Table 6.3, C1 processes
the combinations of protein RelA (Token 9) with Tokens 11, 7, 4, and 2, and C2
processes the combination of the same protein with tokens 1, 6, 9, 13, 14, 16, 17,
19, 21, 23, 25, 26, and 27.

We experimented successfully with the features that we list below. Each group
of features is tagged with an identifier in bold characters that will be used in the
Tables below where we analyze the performance of the classifier per group of
features. We mark with (*) the features that are not used by C1.

• Information about protein and combined token: [Basic] word, lemma, POS
tag, chunk tag, named entity (NE) tag, and dependency label.

• Information about the context of protein and combined token: [Context]
the same features as for protein and combined token, for a window of three
tokens to the right and three to the left in the sequence of tokens, and n-
grams of 1, 2, and 3 tokens for the same window of tokens.

• Information about the path in the dependency tree:

[Path] Feature indicating who is the ancestor in the dependency tree (pro-
tein, combined token, none)*; boolean feature indicating whether combined
token is head of protein, number of steps up from protein; number of steps
from common ancestor to combined token* if there is a common ancestor;
chains of lemmas, POS, and dependency labels from protein to common
ancestor if there is one, or to combined token for C1, and from common
ancestor, if there is one, to combined token*;

[Path 2] POS, lemma and dependency label of the tokens that are three steps
up from protein and three steps up from the combined token, and from the
tokens that are three steps down from the common ancestor in the direction
of the protein or from combined token in C1, and three steps down from the
common ancestor to the combined token.
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• Information about the head and children of protein: [ProtFam] Word,
lemma, POS, chunk tag NE and dependency label of head, and strings of
POS, chunk tags, NE and dependency labels of the children.

• Information about the head and children of combined token: [EvFam] the
same as for head and children of protein.

Table 6.4 shows the F1 scores of C1 per event type. The number under the
event type expresses the frequency of the class.

Features Event type
Bin GEx Loc Pho PrC Reg +Reg -Reg Trans
195 260 39 35 12 37 127 43 64

Basic 53.97 77.30 75.32 80.95 84.61 25.53 34.86 25.45 61.65
+Context 58.40 78.26 74.35 82.92 84.61 27.45 47.34 31.74 60.86
+Path 61.29 79.41 74.35 80.95 91.66 26.41 50.19 34.92 65.11
+Path 2 65.94 79.85 80.00 82.35 91.66 20.00 53.84 22.22 64.12
+ProtFam 66.66 79.77 80.95 83.33 91.66 20.83 54.26 21.87 64.12
+EvFam 65.39 77.26 79.51 83.33 91.66 26.92 54.26 19.67 61.31

Table 6.4: F1 results of C1 on the development set in CoNLL format. “Bin”: Binding;
“GEx”: Gene Expression; “Loc”’: Localization; “Pho”: Phosphorylation; “PrC”: Protein
Catabolism; “Reg”: Regulation; “+Reg”: Positive Regulation; “-Reg”: Negative Regula-
tion; “Trans”: Transcription.

As expressed by the “+” character in the first column, features are successively
added to the Basic features. We observe that the scores per groups of features are
not homogeneous for all event types. It is difficult to find a combination of features
that increases the performance for all event types, and it is also difficult to evaluate
the scores for the classes that are not frequent. The final system incorporates the
version of the classifier that uses the groups of features +ProtFam. The motiva-
tion is that these features score the highest for Binding and Positive Regulation,
and score only 0.12 lower than the highest for Gene Expression, which are the
most frequent event types. These features score also the highest for Localization,
Phosphorylation, and Protein Catabolism.

The behavior of features for C1 contrasts with the behavior of features for C2,
the results of which are shown in Table 6.5. C2 processes a bigger and more
imbalanced data set. In this case, we observe two main characteristics: the Basic
features score clearly lower than the highest scoring combination of features, and
adding the context features produces lower scores for most event types. When
Context features are used, the two most informative features, which TRIBL uses
to split the classification, were features about the second and third token to the right
of Combined Token, whereas when Context features are not used TRIBL uses the
lemma and the word of the Combined Token. Additionally, we also observe that
the scores of C2 are much lower than the scores of C1, suggesting that it is more
difficult to classify instances in which Protein and Combined Token do not have
a dependency relation. The final system incorporates the version of C2 that uses
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the groups of features Basic, Path, Path 2, and ProtFam. In general, the most
informative features are lemmas of the event context in the sequence of words and
in the dependency tree.

Features Event type
Bin GEx Loc Pho PrC Reg +Reg -Reg Trans
102 84 14 11 9 24 51 15 18

Basic 20.15 22.01 12.50 36.36 36.36 0.00 12.90 0.00 0.00
+Context 38.09 6.66 0.00 0.00 0.00 13.33 3.84 0.00 0.00
+Path 3.80 6.66 0.00 0.00 0.00 13.79 7.54 0.00 0.00
+Path 2 3.80 6.59 0.00 0.00 0.00 14.81 7.54 0.00 0.00
+ProtFam 3.80 6.66 0.00 0.00 0.00 13.79 7.54 0.00 0.00
+EvFam 3.80 6.66 0.00 0.00 0.00 14.28 7.54 0.00 0.00
Basic 20.15 22.01 12.50 36.36 36.36 0.00 12.90 0.00 0.00
+Path 33.96 29.41 22.22 43.47 50.00 11.76 13.33 0.00 0.00
+ Path 2 38.50 32.11 30.00 38.09 53.33 10.52 31.16 0.00 8.00
+ProtFam 41.46 33.56 19.04 36.36 40.00 9.52 25.00 0.00 8.33
+EvFam 37.28 35.21 19.04 34.78 40.00 9.75 23.68 0.00 9.09

Table 6.5: F1 results of C2 on the development set in CoNLL format.

The results of evaluating the system with only C1 and C2 are shown in Ta-
ble 6.62. Binding and Regulation events score lower, which can be expected be-
cause of the possibility of multiple Themes for Binding events and the nested
events in Regulations. A positive aspect of these results is that precision is rea-
sonably high.

Total Precision Recall F1
Binding 248 43.75 28.23 34.31
Gene Expression 356 75.08 63.76 68.96
Localization 53 72.09 58.49 64.58
Phosphorylation 47 65.45 76.60 70.59
Protein Catabolism 21 93.33 66.67 77.78
Transcription 82 66.15 52.44 58.50
Regulation 169 28.00 4.14 7.22
Positive Regulation 617 53.42 12.64 20.45
Negative Regulation 196 26.09 3.06 5.48
TOTAL 1789 61.34 28.62 39.03

Table 6.6: Evaluation of the system with C1 and C2 (ASM/ARM) on development data.

2The total number of events in Table 6.6 is not equal to the sum of the total number of events in Table 6.4
plus the total number of events in Table 6.5 because Tables 6.4 and 6.5 count the events in the CoNLL
representation, whereas Table 6.6 counts the events in the BioNLP-ST format. The conversion into
CoNLL format is not perfect, as indicated in Section 3.
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4.2 Learning nested events

In order to find nested events, we add Classifier 3 (C3). Instances represent com-
binations of a protein or an event predicted by C1 and C2, and all the tokens in the
sentence with POS verb, noun or adjective. Some features used by C3 are different
from the ones used by C1 and C2:

• [Lemmas] Lemmas of the protein/predicted event and of the combined to-
ken.

• [Basic] Word, POS tag, chunk tag, named entity (NE) tag, and dependency
label of the protein/predicted event and of the combined token.

• [Context] of the protein/predicted event and of the combined token. The
same features as [Basic], for a window of three tokens to the right and three
to the left in the sequence of tokens.

• [Path] Same as for C1 and C2.

Table 6.7 shows the results of C3 on development data. In contrast with C1
and C2, the Basic features do not achieve results comparable to the highest scores
and the +Path features provoke a clear increase in the scores for all event types,
yielding the best combination of features.

Features Event type
Bin GEx Loc Pho PrC Reg +Reg -Reg Trans
297 344 55 46 21 101 347 121 82

Lemmas 17.74 33.94 51.61 40.00 63.15 20.28 29.25 6.89 16.07
+Basic 34.00 38.53 52.42 54.11 61.11 16.26 19.65 10.44 27.82
+Context 44.44 59.84 46.15 61.01 77.55 18.42 39.80 22.98 48.97
+Path 56.88 71.84 68.68 73.58 85.71 34.48 53.37 39.19 55.69

Table 6.7: F1 results of C3 on the development set in CoNLL format.

The most informative features for this classifier are: the feature indicating what
is the ancestor; the lemma and word of combined token; the string of lemmas from
protein to common ancestor or to combined token in the dependency tree; the full
form of protein; the number of steps down from common ancestor to combined
token, or from protein if protein is the ancestor; the lemmas of the token to the left
and one and two tokens to the right of combined token; the dependency label of
combined token.

5 Postprocessing

The Classification phase produces a multicolumn file, as shown in Table 6.8. Some
heuristics are needed to rewrite the multicolumn file into the original BioNLP-ST
format. We defined three rules: multiple events rule, multiple themes rule, nested
events rule.



100 Roser Morante, Vincent Van Asch, and Walter Daelemans

token word event trigger 1 participants 1 event trigger 2 participants 2
1 We – – – –
2 have – – – –
3 studied – – – –
4 the – – – –
5 effects Regulation – – –
6 of – – – –
7 prednisone – – – –
8 ( – – – –
9 PDN – – – –

10 ) – – – –
11 on – – – –
12 the – – – –
13 production – Theme Gene_expression –
14 of – – – –
15 cytokinase – – – –
16 ( – – – –
17 IL-2 – – – Theme
18 , – – – –
19 IL-6 – – – Theme
20 , – – – –
21 TNF-alpha – – – Theme
22 , – – – –
23 IL-10 – – – Theme
24 ) – – – –

Table 6.8: Output of the Classification component.

5.1 The multiple events rule

For the sentence in Table 6.8, two events have been predicted. Event 1 expressed
by Token 5 is a Regulation event with Event 2 (Token 13) as Theme. Event 2 is
a Gene Expression event that has four Themes (Tokens 17, 19, 21, 23). However,
the task specifications indicate that a Gene Expression event can have only one
Theme. In order to rewrite the output, the system reads in all tokens and the as-
sociated predictions containing information about event triggers and participants.
One event is created for every predicted trigger and it is assigned a unique identi-
fication number. When more than one Theme is predicted for an event, this event
is duplicated. As for the example in Table 6.8, the Gene Expression event with
four Themes will be split up into four Gene Expression events, each with its own
Theme.

5.2 The multiple themes rule

Binding events can have multiple Themes. By analyzing the data we found that
the syntactic information contains clues about the differences between a Binding
event with multiple Themes and multiple Binding events with one Theme.

Figure 2 exemplifies cases where a Binding event has multiple Themes. In
these cases, the common path to the root of the dependency tree is the same for
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(a) Multiple Themes for a Binding event

(b) Multiple Binding events

Figure 2: Multiple Themes for a Binding event versus multiple Binding events

all Themes and for the event trigger. In Figure 2a the common path between the
dashed lines (the Themes) is also common with the doubled line (the event trigger).
If there are multiple Binding events –all with one Theme– the common path of the
Themes is longer than the part that they share with the event trigger, which might
indicate that there is a syntactic construction that acts as a coordination. Figure 2b
shows that the common path for the dashed lines contains the token “with”. The
path to this token is not common with the path of the event trigger. The system
uses this path information to disambiguate between multiple Themes for a Binding
event and multiple Binding events.
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5.3 The nested events rule

Another rule takes care of nested events, like the Regulation event in Table 6.8.
For the Gene Expression event in Table 6.8 the first rule created four events from
the same event trigger. The rule for nested events will add as many Regulation
events as there are new Theme events, in this case Gene Expression events. As
a result of the first rule and this rule, the system outputs eight events: four Gene
Expression events and four Regulation events, which, in this case, happens to be
the same as the gold standard.

6 Results and discussion

The results that we report in this Section have been obtained by training the system
on the training corpus and testing it on the test corpus via the web service provided
in the web page of the BioNLP Shared Task3. The final results are presented in
Table 6.9.

Total Precision Recall F1
Binding 347 43.46 23.92 30.86
Gene Expression 722 74.12 52.35 61.36
Localization 174 76.74 37.93 50.77
Phosphorylation 135 69.05 64.44 66.67
Protein Catabolism 14 30.00 21.43 25.00
Transcription 137 60.26 34.31 43.72
Regulation 291 33.94 12.71 18.50
Positive Regulation 983 36.59 19.43 25.38
Negative Regulation 379 39.33 15.57 22.31
TOTAL 3182 53.37 29.89 38.32

Table 6.9: Results of the system (ASM/ARM) on the test set.

The scores show that the system does not process Regulation and Binding
events at a satisfactory competitive level, like most participating systems4. Both,
precision and recall are low. Protein Catabolism also gets low scores, but the fre-
quency of these events is extremely low, so the score is not reliable. Precision is
acceptable for Gene Expression, Localization, Phosphorylation and Transcription
events, and recall for Phosphorylation events. The system reaches an F1 score of
38.32 % in the ASM/ARM mode. The results of this system can be compared to
the results of the systems that participated in the BioNLP-ST. There was a large
range of variation in the results of participating systems (between 16 and 52% F1

3Web page of the evaluation server: http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
SharedTask/eval-test.shtml.
4Results of all the participating systems can be found at http://www-tsujii.is.s.u-tokyo.
ac.jp/GENIA/SharedTask/results/results-master.html.

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/eval-test.shtml
http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/eval-test.shtml
http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/results/results-master.html
http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/results/results-master.html
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score). Compared to the best three systems of the task, the system presented in
this paper scores 13.63, 8.34 and 6.3 % lower.

The three best systems used diverse approaches. In Björne et al. (2009), a
graph representation and transformation approach is used in which the different
steps of the processing (trigger detection and role detection) are graph transforma-
tions (adding or removing nodes and edges) achieved using a multi-class SVM.
A hand-crafted rule-based postprocessing step patches the output (e.g. removing
extra themes for events that can have only one theme). In Buyko et al. (2009), man-
ually curated dictionaries were used as extra information for event trigger identi-
fication. This approach starts from dependency parses which are simplified and
decorated with conceptual class information. Maximum entropy and graph kernel
SVM machine learning algorithms were used for classification (sometimes com-
bined in an ensemble) in different combinations for different types of events. A
postprocessing module is used here as well. In Kilicoglu and Bergler (2009), a
rule-based system was used, operating on dependency parses and using manually
curated dictionaries like UMLS for trigger identification.

Compared to a memory-based system (Morante et al. 2009) that participated
in the BioNLP-ST, this system scores 7.75 % F1 higher. The system described in
(Morante et al. 2009) solves the classification task in two not-joint learning steps,
as most systems do. First, a token-based classification finds event triggers, and then
a pairwise classification finds participants. Additionally, that system uses more
rules for postprocessing, which are more complex. The difference in precision
is 5.67 %, and in recall 7.39 %. The comparison would suggest that the joint
approach combines better with memory-based learning, though this conclusion
should be further explored, since the classifiers used in both systems do not use
the same features. The main difference lies in the fact that the system presented
here uses features from the dependency tree, whereas the system in Morante et al.
(2009) uses mostly features from the sequential context in the sentence.

It is difficult to gain insight into the decisions made by the machine learner in
order to explain the cause of misclassification errors. A low percentage of errors
is caused by the lack of intersentential event finding, which amount to 5 % of the
cases in the training data. Another percentage of errors is caused by the conversion
from BioNLP-ST to CoNLL format (7.43% F1 on development data). Some errors
are related to Binding events that have multiple Themes, and to Regulation events
with nested structures. Another source of errors are overlapping events, that is,
events that are triggered by the same token. Finally, the system has problems
with detecting multitoken event triggers like “had only a slight effect”, which is a
Positive Regulation event. In sum, apart from the difficulties of the classification
tasks, a proportion of errors is caused by the conversion of the data into a learnable
format and by the reconstruction of the output of the classification phase into event
frames.
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7 Conclusions

In this paper we presented a supervised machine learning system that extracts
events from biomedical texts according to the definition of the BioNLP Shared
Task 2009 (Kim et al. 2009). The main characteristic of the system is that it in-
tegrates classifiers that learn event triggers and event participants jointly, avoiding
the traditional pipeline architecture prone to error propagation. Additional charac-
teristics are that the system does not make use of external resources like ontologies
or dictionaries, and that the rules needed to reformat the data into the original data
files are kept to the minimum number making the system adaptable to any domain.
The results show that this system is more efficient than a similar memory-based
system that used shallow context information and integrated classifiers in a tradi-
tional pipeline architecture.

However, the fact that the system scores 13.63 % lower than the best system for
the same task suggests that research has to continue in order to reach a more satis-
factory performance. Further research will experiment with other algorithms and
ensembles because we believe that, given the complexity of the task, taking profit
of the positive aspects of different algorithms might increase the performance and
help produce results at the level of other well established tasks. Additionally, re-
search should focus on determining what type of domain knowledge would be
useful to solve the task and on integrating it in the system.
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