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Abstract
In this work we describe research aimed at developing an assis-
tive vocal interface for users with a speech impairment. In con-
trast to existing approaches, the vocal interface is self-learning,
which means it is maximally adapted to the end-user and can
be used with any language, dialect, vocabulary and grammar.
The paper describes the overall learning framework and the
vocabulary acquisition technique, and proposes a novel gram-
mar induction technique based on weakly supervised hidden
Markov model learning. We evaluate early implementations
of these vocabulary and grammar learning components on two
datasets: recorded sessions of a vocally guided card game by
non-impaired speakers and speech-impaired users engaging in
a home automation task.
Index Terms: vocal user interface, self-taught learning,
dysarthric speech, non negative matrix factorization, hidden
Markov models

1. Introduction
These days, vocal user interfaces (VUIs) allow us to control
computers, smart phones, car navigation systems and domestic
devices by voice. While still generally perceived as a luxury,
assistive technology employing a VUI can make a prominent
difference in the lives of individuals with a physical disability
for whom operating and controlling devices would require ex-
haustive physical effort [1].

Unfortunately, even state-of-the-art speech recognition sys-
tems offer little, if any, robustness to dialectic or dysarthric
speech (often encountered with disabled users), and are often
restricted in their vocabulary and grammar. In practice, it is not
feasible to design speech interfaces featuring custom acoustic
and language models that cater to the dialectic and/or patho-
logical speech of individual users, and adaptation of existing
acoustic models is limited to only very mild speech pathologies
[2, 3, 4, 5, 6]. Moreover, the user’s voice may change over time
due to progressive speech impairments.

Our aim is to build a VUI that is trained by the end-user
himself, which means that it is maximally adapted to the —
possibly dysarthric — speech of the user, and can be used with
any vocabulary and grammar. The challenge is to learn both
acoustics and grammar from a small number of examples, with
as only supervisory information coarse annotation in the form of
associated actions. For example, the annotation of the command
“Turn on the television please”, accompanied by a button press,
would only be annotated at the utterance level with a device
label (television) and an action label (turn on).

Our learning approach consists of two components that in-
teract. Vocabulary acquisition first builds recurrent acoustic pat-

terns representing words or parts of spoken commands, while
grammar induction attempts to model the relationships between
these patterns. For vocabulary acquisition, we build on existing
work on child language learning modeling with non-negative
matrix factorisation (NMF) [7]. For grammar induction, we
propose the use of a weakly supervised Hidden Markov Model
(HMM).

In short, we first use NMF to find recurrent acoustic pat-
terns by mining utterance-level acoustic representations, super-
vised with relevant information about the action that was per-
formed, such as a ‘television’ device and a ’turn on’ action.
Building on these, we then use the temporal occurrence of these
patterns in the training data as observation features to train a
multi-label version of a discrete HMM [8, 9]. In the HMM, the
hidden states represent the collection of possible values in the
data structures (devices and actions in the example). By mining
the temporal occurrence of the NMF-based observations and the
commonalities and differences across commands, the HMM is
able to discover temporal structure in the commands, related to
the data structures representing the actions.

The goals of our work are similar to those of [10, 11] in that
we aim to discover acoustic patterns that recur in utterances and
ground these by linking them to other modalities. However,
to accommodate pathological voices, our work does not rely
on pre-trained models, but they are learned from the speaker-
specific acoustic data. In that sense, it shows similarities to the
work in [12], but we learn form continuous speech and do not
model low-level acoustics with an HMM. In terms of grammar
learning, our task approaches unsupervised grammar induction
[13, 14], but on a restricted domain with a small vocabulary.

We evaluate our learning framework on two databases: PAT-
COR, recorded sessions of a vocally guided card game by non-
impaired speakers, and DOMOTICA-2, speech-impaired users
engaging in a home automation task. The users were free to
choose their own words and grammatical constructs to address
the systems during the recording sessions.

The remainder of the paper is organised as follows. In sec-
tion 2, we present an overview of the learning framework, de-
scribe the acoustic representations and introduce the NMF and
HMM learning approaches. In section 3, the experimental setup
is explained and in sections 4 and 5 the experimental results are
presented and discussed. We conclude with our conclusions and
thoughts for future work in section 6.

2. Architecture
2.1. Semantic frame representation of an utterance

A semantic frame is a data structure that contains all the rel-
evant information (semantic concepts) associated with the ac-



Figure 1: Overview of the vocal interface framework. The
white boxes indicate events or systems outside the learning
framework. The top panel shows the training phase and the
bottom panel indicates the usage phase.

tion that is expressed in the spoken command. Semantic frames
have been used in many spoken language processing applica-
tions [15]. A frame contains at least one slot representing a spe-
cific aspect of the action. Each slot in a frame can only be filled
with a single value. A frame description of an action on the
other hand, identifies a single frame out of the possible frames
where the action is specified by the actual slot values.

2.2. The learning framework

The framework (Figure 1) is designed so it can learn from user
interaction examples, i.e. a spoken command accompanied by
an action on the device’s user interface. For instance, users
might say “ Turn on the light” while pressing the button to
switch on the light themselves or through the help of a care
taker. The action performed on the device is translated into
a frame description, which constitutes an abstraction layer
making the learning algorithms application independent.

During the training phase, the word finding module looks
for word-sized recurring acoustic patterns in the audio input
that correlate well with the frame description. The frame
description acts as a weak form of supervision in finding the
recurring acoustic patterns. Here the term weak supervision
is used because the supervision does not provide explicit
information about the sequence of words within the spoken
utterance.

The grammar induction module learns the relation between
the different parts of a command. Given the frame description
and the output of the word finding module, the grammar
induction module learns the structure within commands, as
well as the relation with the frame description during the
training phase. During the usage phase, when only audio
input is available, the grammar constrains the decoding process
[16] and allows to propose a frame description of the spoken
command. This frame description is then mapped onto an
actual action on the device.

2.3. Audio representation

The word finding module in the training phase as well as the
decoder in the usage phase need a suitable representation for
the input speech. Both learning and recognition are based on

NMF (section 2.4.1), which requires that the audio representa-
tion of an utterance be the sum of the representations of individ-
ual words. Therefore, and unlike main-stream ASR systems, an
utterance is mapped to a vector of fixed size in three steps which
are described below.

2.3.1. Spectral Representation

The first step of the audio processing chain extracts a 12-
dimensional Mel Frequency Cepstral Coefficient (MFCC) rep-
resentation of the short-term spectrum from speech segments
of 25 ms with 10 ms overlap. The 12-dimensional MFCC is
augmented with the log energy and the ∆ and ∆∆ features are
appended, forming a 39 dimensional spectral feature stream.

2.3.2. Intermediate representations

The obtained MFCC spectral representations are further
processed to form posteriorgrams from which the final rep-
resentations described in section 2.3.3, are obtained. Two
different forms of posteriorgrams are considered here: a
spectral feature vector is either transformed into a vector of
posterior probabilities of Gaussians forming a code book (soft
VQ), or it is transformed to the posterior probability of phone
classes.

In Soft Vector Quantisation, each spectral feature vector is
softly assigned to all clusters in a code book. Each cluster is
characterized by a Gaussian with full covariance. The degree
of assignment is measured by the posterior probability of a
Gaussian given the spectral feature vector.
The code book training starts off from a single cluster de-
scribing all training data. It is then split along the dominant
eigenvector of its covariance matrix into two subclusters. The
centres are refined with k-means iterations after which each
subcluster is characterised by a full covariance Gaussian. This
process is repeated, each time splitting the cluster with the
largest volume as measured by the determinant of the covari-
ance matrix. This process is either stopped when the desired
number of clusters are obtained [17], which we will refer to
by Soft VQ, or when the number of spectral feature vectors
assigned to a cluster falls below a threshold, minimum-number
of frames, which is referred to as Adaptive Soft VQ, because the
number of clusters will depend on the amount of training data.

Phone posteriorgrams are constructed from 50 monophone
HMMs (including a model for silence), each modeled by three
states with GMM emission densities, connected in a strict left-
to-right topology. The utterance is first transcribed into a phone
lattice without using a phone-level language model. The acous-
tic likelihoods associated with the arcs are subsequently renor-
malised to posterior probabilities, which allows us to compute
a posterior probability for each phone at any time.

A major difference with Soft VQ is that phone posterior-
grams exploit prior knowledge about the phone inventory that
the user can produce.

2.3.3. Utterance-level HAC representation

The posteriorgrams of spectral feature clusters or of phone
classes are not suitable to model directly with an NMF. To be
able to discover recurring patterns in utterances, they need to
be mapped to a representation of fixed dimension in which lin-
earity holds, i.e. that the utterance-level speech representation
is approximately equal to the sum of the speech representations



of the acoustic patterns it contains [18, 19]. A mapping that
exhibits this property is the so-called histogram of acoustic co-
occurrences (HAC) [19]. The HAC of a speech segment is the
posterior joint probability of two acoustic events happening at
a predefined time lag τ , accumulated over the entire segment.
An acoustic event is the observation of a spectral feature vector
from a particular cluster in the case of soft VQ, or the observa-
tion of a phone in the case of phone posteriorgrams. Since the
HAC representation considers event pairs, its dimensionality is
the square of the number of acoustic event classes. In this paper,
we stack HAC vectors computed for multiple values of the time
lag τ = 20, 50, 90 and 200 ms into a single augmented HAC
vector to characterise an utterance. When multiple (training)
utterances are available, their augmented HAC representations
are arranged as columns of a matrix Va.

2.4. Non-negative matrix factorisation

NMF uses non-negativity constraints for decomposing a matrix
into its components [20, 21, 22, 23], i.e given a non-negative
matrix V of size [MxN ], NMF approximately decomposes it
into its non-negative components W of size [MxR] and H of
size [RxN ]. Under the right conditions, NMF is able to find
parts in data. In ASR, NMF is used to discover recurring acous-
tic patterns (word units) through some grounding information
[24, 25, 26].

In this paper, we use the Kullback-Leibler divergence to
quantify the approximation quality of the NMF as expressed in
Eq 1.

(H,W) = arg min
(H,W)

DKL( V || [WH]) (1)

Finding the W and H that minimize this approximation
metric for a given data matrix V is achieved using multiplica-
tive update rules[20].

2.4.1. Supervised NMF word learning

To employ NMF for word learning, we use a weak form of
supervision represented by Vg , which is used together with
the augmented HAC acoustic representation of all the training
utterances stacked into a matrix Va. The supervision informa-
tion links the discovered acoustic patterns to slot values and
also helps NMF to avoid local optima of the Kullback-Leibler
divergence. The supervision Vg is a label matrix where each
column represents an utterance and each row represents a slot
value. The presence of a slot value in an utterance is rep-
resented in the label matrix with a ‘1’ and its absence with a ‘0’.

Through the factorization of the composite matrix con-
structed by vertical concatenation of Vg and Va, NMF discov-
ers latent slot value representations in each column of Wa. The
columns of Wg link the learned acoustic patterns in columns of
Wa to the slot values represented by the rows of Vg . Further-
more, some extra columns of Wa and Wg are used to represent
filler words (words which are present in the utterance but are not
related to any slot value). The columns of H matrix indicate
which columns of Wa and Wg are combined to reconstruct
Va and Vg respectively. The learned acoustic patterns in Wa

and labeling information in Wg as given in Eq. 2 will be used
in the testing phase to detect the learned acoustic units within
unseen test utterances.

»
Vg

Va

–
≈

»
Wg

Wa

–
H (2)

2.4.2. NMF in the usage phase

The learned NMF model is applied in two different approaches
to decoding. Both decoders apply the learned NMF model to
word-sized segments of speech in a sliding window analysis.
A sliding window of a width of 300 ms and a shift of 100 ms
is used to produce an augmented HAC vector at 100 ms inter-
vals across an utterance. As a result, an utterance is represented
by a matrix Vs, containing one column per window position.
By employing the NMF factorization Eq. 3, which is called the
local NMF, the corresponding slot value activations are calcu-
lated.

Hs = arg min
Hs

DKL(Vs||WaHs) (3)

This is followed by the calculation of the activation matrix
As. Each column of the activation matrix contains labeling in-
formation of all slot values for a particular window position.

As = WgHs (4)

In the simplest form of decoding, called NMF decoding, the
slot values are inferred directly from the local (sliding window)
NMF. The activations for all slot values are accumulated over
all window positions, i.e. over the complete utterance. Since
each slot can have at most one value assigned, only the value
hypothesis with the largest accumulated activation is kept
per slot. The slot value is considered to be detected, only if
the accumulated activation exceeds a threshold. The order in
which the acoustic patterns related to the slot values occur in
the utterance is therefore ignored. Since this procedure may
result in multiple possible frames, we select the frame with the
highest average probability mass.

In a refinement, called HMM decoding, the local NMF
model generates a data stream which is modeled by an HMM.
The HMM captures the relation between word usage – includ-
ing word order – and frame descriptions of actions. Since the
HMM models the sequential aspects of the utterance (such as
word order), we consider the learning of this HMM a form of
grammar induction. The details of this approach are explained
in the next section.

2.5. Grammar induction

Identical or similar words (e.g. numbers) may refer to different
slots, so slot-value pairs can only be assigned correctly from
spoken input if grammar is taken into account. HMM decod-
ing fixes the major shortcoming of NMF decoding, i.e. that the
order in which slot values occur, is ignored. The local NMF
stream is then modeled by an HMM, which is learned from the
user interaction examples.

2.5.1. HMM learning

The activation sequence is modeled by a multi-labeling
HMM [9]. Like in discrete-density HMMs, each state q is
characterized by probabilities bj(q) over observations j. In this
framework, the observation is characterized by a probability
distribution derived from NMF atom activations, obtained as
Hs, normalized to sum to unity. The state probability is then



the inner product of this distribution with the state distribution.

Applied to this problem, each semantic frame is modeled
by an HMM in which each slot value is assigned an HMM state
referred to as slot value state. States are fully connected, with
two exceptions. First, within slot transitions are prohibited,
since each slot needs to be assigned only one value. Second,
states can only transition to slot-value states within the
same semantic frame, since each spoken command can only
correspond to a single semantic frame. To limit the number
of transition probabilities to be estimated, all transitions from
states associated with a particular slot, to all states associated
with another slot, share the same transition probability. The
HMM will hence learn the sequence of slots in the user’s
utterances, but not the sequence of individual words. All the
states can be initial or final states.

HMM training is done using the Baum-Welch algorithm
[27]. Supervision information provided by the labeling matrix
Vg , is used to only assign non-zero state posteriors to slot val-
ues that are present in the frame description of an utterance. All
non-zero entries of the state-transition matrix are initialised to
(properly normalised) random values. The emission matrix is
initialised by Wg .

2.5.2. HMM decoding

During decoding, the maximum likelihood state sequence is ob-
tained using the Viterbi algorithm for the given observation se-
quence Hs. Visiting a state in an HMM corresponding to a se-
mantic frame implies the corresponding slot value is detected.
Since states representing slot values can only transition to states
within the same semantic frame, the Viterbi search implicitly
selects the most likely frame.

3. Experimental Setup
In this section, we give a description of the databases used for
evaluation, the evaluation procedure and metrics.

3.1. Databases

3.1.1. PATCOR

The database PATCOR contains recordings of subjects playing
a card game called “Patience” using spoken commands. The
database contains 8 speakers with in total more than two thou-
sand commands. The data was collected from unimpaired sub-
jects with non-pathological speech, speaking Belgian Dutch.
The users were free to choose their vocabulary and grammar,
although in practice the vocabulary was limited indirectly by
the number of cards, card positions and functionality.

A typical utterance in PATCOR is “Put the four of clubs on
the five of hearts”. In this type of utterance, the order of the

Table 1: parameters of the speech databases

Database PATCOR DOMOTICA

number of speakers 8 20
number of frames 2 4
number of slots 9 7

number of slot values 58 27
number of blocks 8 6
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Figure 2: Speech intelligibility measurements of the speak-
ers in DOMOTICA-2. The speakers are order by intelligibility
score. Generally speaking, a score higher than 85% is non-
pathological (see the dashed line).

words plays a key role in discovering the utterance’s meaning.
The gold-standard frame descriptions of the utterances were
created manually. In Table 1 an overview of the total number
of frames, slots and slot values used is given. Since not all pos-
sible slot values occur for all speakers, Table 7 gives the actual
number of slot values for each speaker. For a more detailed de-
scription of the frame descriptions that were used, as well as
the slot values used for each speaker, we refer the reader to the
technical report [28].

3.1.2. DOMOTICA-2

The DOMOTICA-2 database contains recordings of impaired,
dysarthric speakers controlling a home automation system. A
typical DOMOTICA-2 utterance would look like “Turn on the
kitchen light”.

Since collecting a large number of realistic, spontaneous
spoken commands is difficult due to the targeted users getting
tired quickly, a two-phase data collection method was used. In
the first phase, 9 users were asked to control 31 different appli-
ances in a 3D environment [28], guided by a visualised scenario
in order to ensure an unbiased choice of words and grammar. In
the second phase, these command lists were read back repeat-
edly by 21 test users. Of these 21, 8 speakers were selected
based on their increased risk for degenerate voice rather than
currently having a pathological voice.

For all speakers, speech intelligibility scores were obtained
by analysing their recorded speech using an automated tool
[29]. These scores are shown in Fig. 2. Table 1 gives an
overview of the total number of frames, slots and slot values.
For some speakers some slot values were not used, since some
commands were not spoken enough times to allow a meaning-
ful evaluation; Table 7 gives the actual number of slot values for
each speaker. For a more detailed description of the slot values
used for each speaker we refer the reader to the technical report
[28].

3.2. Methodology

The goal of the experiments is to evaluate the performance as
a function of the amount of training data used. However, since



this means the amount of training data can be very small, a form
of cross validation is needed to obtain statistically meaningful
scores.

First, we divide the spoken commands (utterances) of each
speaker into equal or nearly equal parts called blocks. The k
blocks are created by minimising the Jensen-Shannon diver-
gence (JSD) between the slot value distributions of all blocks.
This optimisation is performed in an iterative process starting by
dividing all utterances randomly into k blocks and then swap-
ping at each iteration those two utterances that minimise the
JSD the most from one block to the other one. The process stops
when the JSD is minimised, i.e. when there are no swaps left
that can lower the JSD. The slot values are then approximately
evenly distributed throughout the blocks. Under the constraint
that each slot value should occur at least once in each block,
some slot values are excluded from the frame structure, mean-
ing that the spoken words corresponding to these slot values,
become filler words: they are not supervised and they are not
scored anymore. Such adaptation to the supervision is speaker
dependent and the number of slot values used for each speaker
can be found in [28]. Utterances without any slot values were
removed from the training and test sets.

To evaluate the learning speed of our framework, we cre-
ated a k × k latin square in which each block occurs exactly
once in each row and in each column. We selected five rows of
the latin square to create a five-fold cross-validation experiment
in which the train and test sets respectively increase and de-
crease in size. In each fold, we start with an experiment where
only one block is used for training while the remaining k − 1
blocks are used for testing. We incrementally increase the num-
ber of blocks n used for training in the subsequent experiments
and the last experiment will be performed with n = k−1 train-
ing blocks and one test block. Throughout the folds, the train
and test sets are always composed of different blocks allowing
for a more reliable scoring.

3.3. Parameters

The number of frames needed to have a reliable estimation of
the cluster centres, depends on the dimensionality of the fea-
ture vectors. The minimum number of frames used for adaptive
codebook training is chosen to be 78, two times the dimension-
ality of the MFCC feature vectors. For PATCOR, the resulting
VQ codebook sizes typically ranged from 40 for the smallest
training set to 145 for the largest training set. For DOMOTICA-
2, the resulting codebook sizes typically ranged from 36 for the
smallest training set to 118 for the largest training set.

For both databases, phone posteriorgrams were obtained us-
ing a free phone recognizer using a unigram language model.
The phone recognizer was trained on a dataset containing
recordings of selected radio and television news broadcasts in
the same language as the collected databases. Phones are mod-
eled with 3-state HMMs and in total 48845 tied Gaussians are
used in the acoustic model. The phonetic alphabet includes one
noise unit and one silence unit in addition to 48 phones.

For the utterance-based HAC representations, from both
VQ and phone posteriorgrams, only the top-three largest indices
at each time frame were retained.

3.4. Evaluation

For each utterance in the databases, we have a manually con-
structed gold standard frame description, which is used as a
reference for system evaluation. In this reference frame de-
scription, the slot values that are expressed in the utterance, are

filled in. The system was evaluated by comparing the automati-
cally induced frame descriptions to the gold standard reference
frames. The used metric is the slot Fβ=1-score, which is the
harmonic mean of the slot precision and the slot recall. These
metrics are commonly used for the evaluation of frame-based
systems for spoken language understanding [15]. The follow-
ing formulas were used for calculation:

slot precision =
# correctly filled slots

# total filled slots in induced frame
(5)

slot recall =
# correctly filled slots

# total filled slots in reference frame
(6)

slot Fβ=1-score = 2 · slot precision · slot recall
slot precision + slot recall

(7)

This means that only slots that are filled with a correct value
are rewarded, and both slots that are falsely filled and slots that
are falsely left empty are penalised. When an induced frame
is of another type than the corresponding reference frame, the
filled slots in the induced frame and in the reference frame are
consequently different, which automatically results in a rela-
tively large drop in the slot F-score. It should be noted that the
reported F-scores aggregate slot counts over all five folds.

4. Results
In Fig. 3, F-scores for eight speakers per database are depicted
as a function of the average number of utterances in the train-
ing set. The F-scores against increasing train set sizes provides
some insight into the self-learning aspect of the framework. For
each database, there are two graphs, one graph depicting NMF
learning of slot value representations and one graph depicting
HMM-based grammar induction.

For visibility, Fig. 3 does not contain all speakers from
DOMOTICA-2. For this dataset, all F-scores for the NMF-based
word finding module are presented in Table 2 and all scores
for the HMM-based grammar induction module are presented
in Table 3. There is one column for each speaker and the rows
indicate the number of blocks in the training sets.

4.1. PATCOR

When we compare the respective F-scores for each speaker and
for each training set size, we find a significant difference be-
tween the scores of the word finding module and the grammar
induction module using a paired student’s t-test, t(55) = 5, 11,
p < 0.001. On average, the grammar induction module im-
proves the F-score with 5%, but the improvement varies be-
tween speakers. For some speakers, the induced grammar pro-
vides a considerable improvement, for instance for speaker 3,
The improvement is 16% on average, t(6) = 33, 16, p <
0.001. However, for instance, for speaker 5, we don’t find a
substantial improvement using the grammar induction module.
In any case, using grammar induction does not seem to degrade
the performance for any user in PATCOR.
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Figure 3: The F-scores per speaker against the averaged number of utterances in the respective training sets. In Panel (a), the NMF-
based results of the word finding module for the PATCOR database are depicted. In Panel (b), the results of the word finding module
augmented with the HMM-based grammar induction tool are displayed. Panel (c) and Panel (d) display the same results as Panel (a)
and Panel (b), respectively, for eight selected speakers in the DOMOTICA-2 database.

Table 2: F-scores for NMF word learning for all speakers of DOMOTICA-2 and all training set sizes

speaker 11 17 28 29 30 31 32 33 34 35 37 40 41 42 43 44 45 46 47 48
1 block 0.56 0.55 0.30 0.32 0.27 0.22 0.22 0.27 0.46 0.25 0.24 0.36 0.35 0.28 0.34 0.31 0.38 0.16 0.17 0.36
2 blocks 0.67 0.65 0.36 0.37 0.32 0.31 0.26 0.31 0.64 0.27 0.30 0.44 0.51 0.29 0.37 0.46 0.48 0.16 0.17 0.29
3 blocks 0.72 0.68 0.41 0.44 0.40 0.37 0.33 0.32 0.71 0.28 0.36 0.50 0.60 0.32 0.39 0.53 0.48 0.20 0.15 0.33
4 blocks 0.79 0.70 0.50 0.41 0.41 0.36 0.32 0.32 0.81 0.29 0.36 0.48 0.61 0.41 0.38 0.61 0.51 0.17 0.14 0.29
5 blocks 0.79 0.74 0.48 0.45 0.43 0.38 0.38 0.40 0.88 0.31 0.44 0.53 0.64 0.45 0.44 0.63 0.46 0.22 0.13 0.26

Table 3: F-scores for HMM grammar induction for all speakers of DOMOTICA-2 and all training set sizes

speaker 11 17 28 29 30 31 32 33 34 35 37 40 41 42 43 44 45 46 47 48
1 block 0.67 0.42 0.32 0.34 0.26 0.32 0.21 0.18 0.54 0.24 0.27 0.33 0.35 0.21 0.32 0.43 0.42 0.20 0.18 0.40
2 blocks 0.73 0.54 0.36 0.44 0.36 0.43 0.24 0.31 0.69 0.30 0.28 0.45 0.47 0.26 0.44 0.55 0.45 0.23 0.19 0.46
3 blocks 0.78 0.60 0.43 0.45 0.46 0.46 0.25 0.29 0.77 0.26 0.45 0.58 0.55 0.33 0.41 0.58 0.46 0.25 0.16 0.48
4 blocks 0.82 0.66 0.49 0.41 0.50 0.52 0.31 0.32 0.83 0.29 0.37 0.59 0.57 0.31 0.32 0.66 0.51 0.22 0.19 0.58
5 blocks 0.82 0.71 0.48 0.50 0.43 0.58 0.29 0.35 0.87 0.31 0.50 0.60 0.61 0.28 0.59 0.70 0.46 0.24 0.19 0.61



Results are in the same range as the reported word finding
results in [25], however, there are some speaker dependent dif-
ferences in performance due to different experimental settings.
The major discrepancies in settings are scoring and grammar
discovery. While we report F-scores and investigate automat-
ically induced grammar structures in this study, slot value re-
call scores are reported in [25] and frame decoding is guided
by a handcrafted grammar. Additionally, the feature represen-
tations are also different between the two studies. While we
combine phone posteriorgrams and adaptive softVQ for build-
ing the acoustic feature representations, the feature representa-
tion is based on softVQ using more larger codebooks in [25].

4.2. Domotica-2

For DOMOTICA-2, we find a small but significant improvement
using a paired student’s t-test when comparing the F-scores
between the word finding module and the grammar induction
module for each speaker and training set size (see Fig. 3c and
Fig. 3d), t(99) = 3, 24, p < 0.01. On average the gram-
mar induction module cause an increase in F-scores of about
3%. For some speakers, the F-score improvements were more
pronounced than for others. For instance, F-scores for speaker
31 improved on average with a decimal of 0.14, t(4) = 7, 6,
p < 0.05 while the F-scores for speaker 17 decreased with 8%,
t(4) = −3.77, p < 0.05.

The differences between speakers is related to the intelligi-
bility scores. We found a significant Kandall’s tau rank correla-
tion equal to 0.41, p < 0.05 for the average F-score per speaker
and their respective intelligibility score. There are trend lines
in Fig. 3c and Fig. 3d that are rather short because the amount
of data was limited, such as the graphs for speaker 35, resulting
from early fatigue for some speakers in the recording phase of
the DOMOTICA-2 corpus.

5. Discussion
In the word finding module, we aim to find the acoustic repre-
sentation of the words corresponding to slot values in a semantic
frame. In the grammar induction tool, the temporal structure in
the commands is discovered and related to the semantic frame
structure of the spoken commands. Positive scores necessitate a
positive evaluation on both aspects, that is the correct recogni-
tion of the spoken words and the correct allocation of the recog-
nised words to the slots in the semantic frame structure. The
second aspect is not a trivial issue for the utterances used in the
PATCOR database. For instance, in the utterance “Put the four
of clubs on the five of hearts”, words like “four” and “clubs” are
related to the moving card while the same words are sometimes
used to define the destination of the move. Some speakers spec-
ify the moving card first while others may specify the destina-
tion card first. Although spoken words are sometimes identical,
different slot value labels specify different meanings. It can be
seen in Fig 3b that the VUI gradually succeeds to distinguish
these slots corresponding to the moved card and the destina-
tion card for at least some speakers, such as speaker 2, 5 and 8.
Scores above 0.5 are only possible when the correct slots are
recognized, such as the slots related to the moving card versus
the slots related to the destination card in PATCOR.

The NMF-based word finding module is able to learn more
than words, as some context information of the words is incor-
porated in the slot value representations. The features used in
NMF learning consist of the co-occurrence of acoustic events
over multiple delays, up to τ = 200 ms, allowing for learning

context over spoken word boundaries. Moreover, the learned
context of a word also involves the co-occurrence of acous-
tic events with the frame slot events of the demonstrated com-
mands. The learned context is helpful in identifying the words
but also the frame slots for some speakers as can be seen in
Fig 3a and Fig 3c. However, context learning in NMF over word
boundaries is only possible in a local time context because co-
occurrence of acoustic events over longer time delays are more
divergent. Useful time delays might be extended by using prob-
abilistic time delays instead of fixed ones used here. The use of
longer time delays in learning the co-occurrence of events poses
a challenge for future research.

Although the frame structure is acquired for some speakers
without using the grammar induction module, not all speakers
display good scores without grammar induction, such as speak-
ers 3, 6 and 7 in PATCOR. The HMM-based grammar induc-
tion tool improves the learning of the frame structure, espe-
cially for those speakers for which the NMF word finding mod-
ule demonstrates insufficiencies. The results demonstrated in
Fig. 3 and Table 3 are encouraging in the sense that the graphs
of all speakers in Fig. 3 tend to rise by increasing training set
sizes, demonstrating the self-learning ability of the investigated
framework. Further directions of research includes the accel-
eration of the learning plots for normal and dysarthric speech.
Accelerating the speed of learning is especially important for
speech-impaired users, because they have to make more effort
to utter commands and train the system. Besides accelerating
the speed of learning, it remains an open issue at which level
the scores tend to level off. Obviously, all scores presented in
the graphs of Fig. 3b and Fig. 3d are not at levelling off for
the largest training set, as the training data is too scarce for the
self learning VUI to reach maximal performance. More data
is needed to find out the maximal performance of the system
and the relation between maximal scores and intelligibility of
the users. We could help this issue by gathering more data or
by sharing the emission probabilities for particular slot values
sharing identical words similar to the sharing of the transition
probabilities explained in Section 2.5.1.

There are some differences in performance between
databases. Our framework performs best for intelligible
speech. The speakers with higher F-scores for the DOMOTICA-
2 database are the speakers with the higher intelligibility scores
close to 85%. The performance of our framework for differ-
ent speakers in DOMOTICA-2 demonstrates a larger variability
and more spurious trajectories in Fig.3d than for normal speak-
ers in PATCOR. Low scores are corresponding to a low number
of slot values which in turn is corresponding to a limited num-
ber of recorded utterances due to early fatigue. However, the
scores between the two databases are difficult to compare since
the complexities of the categorical decisions are different from
each other. For instance, there are more frame slot values per
slot in PATCOR than in DOMOTICA-2 and there is more hier-
archical structure in the PATCOR-commands compared to the
DOMOTICA-2-commands, making the recognition of PATCOR-
commands much more difficult. In future research, we will
evaluate our framework on more databases allowing us to com-
pare the strengths and weaknesses of our system with other
small-vocabulary, speaker-dependent systems, such as those de-
scribed in [2, 6].

6. Conclusion
In this work we described research aimed at developing an as-
sistive vocal interface for people with a speech impairment.



In contrast to existing approaches, the vocal interface is self-
learning which means it is maximally adapted to the end-user
and can be used with any language, dialect, vocabulary and
grammar. We proposed a novel grammar induction technique,
based on weakly supervised HMM learning, and we evaluated
early implementations of these vocabulary and grammar learn-
ing components on two datasets: recorded sessions of a vo-
cally guided card game by non-impaired speakers, and speech-
impaired users engaging in a home automation task.

While the performance varied widely between speakers,
both for impaired and non-impaired speakers, performance did
improve even with relatively small amounts of additional train-
ing data. This demonstrates the potential of the self-learning
vocal interface. Additionally, the proposed HMM approach to
weakly supervised grammar induction did improve the results
for all but a few speakers, indicating that a limited form of gram-
mar induction is not only feasible, but also beneficial to distin-
guish between commands. Future work will focus not only on a
detailed analysis of the obtained results, such as the grammars
that were inferred and the relation between speech pathology
and performance, but also on improvements such as more ad-
vanced acoustic modelling techniques, hierarchical approaches
of HMM learning, and integrating grammar induction and vo-
cabulary acquisition in a single probabilistic framework.

7. Appendix

Table 4: number of slot values and maximum codebook size
PATCOR

speaker number of maximum
id slot values codebook size
1 29 117
2 37 145
3 23 152
4 27 78
5 25 151
6 18 189
7 27 165
8 19 142

DOMOTICA-2
speaker number of maximum

id slot values codebook size
11 22 149
17 18 81
28 18 115
29 9 138
30 14 94
31 12 52
32 17 200
33 11 93
34 6 59
35 13 187
37 13 94
40 18 126
41 18 169
42 17 87
43 4 62
44 18 78
45 3 63
46 19 164
47 17 135
48 5 79
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