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Kemmerer, Tranel, and Zdanczyk (2009) reported patients who failed
to discriminate between preferred and dispreferred orders of pre-
nominal adjectives, yet were sensitive to the order of adjectives in
relation to other parts of speech, and able to judge which of two
adjectives was most similar to a cue adjective. The authors concluded
that knowledge of the semantic constraints on prenominal adjective
order can be impaired without an impairment of purely syntactic
adjectiveorderknowledge, orknowledgeof semantic adjective classes.
Using simulation studies, we demonstrate that the impairment of
these patients can be characterized as overeager abstraction. Over-
smoothing a similarity-based bigram languagemodelwith a similarity
metric basedonword co-occurrencedistributions resulted in the same
performance dissociation between tasks as reported for Kemmerer
et al.’s selectively impaired patients. Additionally, the strength with
which the patients preferred a specific adjective order for a given
stimulus was predicted by the stimulus’ robustness to overeager
abstraction. Our results provide a general cognitive account based on
the online creation of temporary summary representations that is
supported by current neurocognitive views on verbal cognition. This
account lends a more insightful explanation for impairments of
linguistic knowledge than an explanation relying solely on linguistic
abstractions.
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1. Introduction
In English, there are constraints on howprenominal sequences of descriptive adjectives are ordered.
One adjective order is often clearly preferred over the other, e.g., a large brown desk vs. a brown large
desk. These constraints can be associatedwith the semantic classes of the adjectives involved: the order
of prenominal adjectives usually follows a linear precedence relation between their classes. Dixon
(1982), for instance, proposed the following class ordering scheme to account for adjective order in
a number of languages: VALUE 3 DIMENSION 3 PHYSICAL PROPERTY 3 SPEED 3 HUMAN PROPENSITY 3 AGE 3 COLOR. In
two self-paced reading experiments, Kennison (2010) showed that participants’ reading times
increased at the second adjective in adjective pairs that did not follow this order.

A more generalizing approach to explaining adjective order preferences is to appeal to abstract
semantic variables, such as degree of absoluteness (the less an attributive adjective’s meaning shifts
depending on the noun with which it co-occurs, the closer to that noun it tends to be positioned; the
interpretation of brown is more stable over noun contexts than that of large, e.g., a large brown desk vs.
a large brown peanut) (Kemmerer et al., 2009; Martin, 1969; Posner, 1986),1 or degree of objectivity
(adjectives denoting relatively inherent, verifiable properties are placed nearer to the noun than
adjectives expressing judgments or opinions) (Hetzron, 1978; Quirk, Greenbaum, Leech, & Svartvik,
1985; Whorf, 1945).2

Kemmerer et al. (2009) reported patients with brain lesions who showed selectively impaired
knowledge of the constraints on prenominal adjective order. They failed a two-alternative forced-
choice (2AFC) test that required them to discriminate between preferred and dispreferred adjective
orderings (e.g., a big brown dog vs. a brown big dog) (Task 1). The same patients were still able to
discriminate between correct and incorrect orderings of adjectives in relation to other parts of speech
in a noun phrase (e.g., a cool light rain vs. rain light cool a) (Task 2), and passed a semantic similarity
judgment task in which they had to choose which of two adjectives was most similar to a target
adjective (e.g., whether the adjective good was more similar to bad or to tiny) (Task 3).

Kemmerer et al. (2009) framed their findings in a construction-based account (Croft, 2001;
Goldberg, 1995, 2006; Langacker, 1987, 2008) of prenominal adjective order (see Fig. 1 on p. 93 of their
paper). Construction-based approaches to language explain linguistic knowledge as form-meaning
taxonomies. Kemmerer et al.’s account integrates a class precedence account with principles relying
on abstract semantic variables. The form (i.e., syntactic) part of the adjective order construction
proposed by Kemmerer et al. stipulates that multiple adjectives can precede a noun. The semantic part
specifies that those adjectives denote properties of the noun referent. Semantic constraints (i.e.,
adjectives denoting objective/absolute properties occur closer to the noun than adjectives denoting
subjective/relativistic properties) interact with semantic class-level features of the adjectives (VALUE,
SIZE, COLOR, etc.) (meaning) to determine the order of the adjectives (form). In this account, the COLOR

adjective brown is placed after the SIZE adjective large, because COLOR properties are more objective/
absolute than SIZE properties.

According to Kemmerer et al. (2009), their findings demonstrated that knowledge of the semantic
constraints on prenominal adjective order can be impaired (as shown by the patients’ impaired
performance on Task 1) without an impairment of knowledge about the purely syntactic constraints on
the positioning of adjectives (as shown by the patients’ unimpaired performance on Task 2), and with
intact knowledge of the adjectives’ semantic classes (as shown by the patients’ unimpaired perfor-
mance on Task 3). Kemmerer et al.’s account of their findings is heavily reliant on the theoretical
framework they employed, however. In particular, the interpretation that the selectively impaired
patients had intact knowledge of the adjectives’ semantic classes and must therefore have been
impaired in their knowledge of the semantic principles that link those classes with the adjectives’
surface order hinges on two assumptions: (a) knowledge of the constraints on adjective order relies on
access to persistent abstract representations (features) that correspond to linguistic semantic classes,
and (b) a semantic similarity judgment task such as Task 3 of Kemmerer et al. tests for knowledge of
1 Posner (1986) referred to this principle as context independence. Martin (1969) called it definiteness of denotation.
2 See Wulff (2003) for an analysis of the different factors proposed in the literature.
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those semantic classes. In this paper, we present an alternative account that does not rely on stored
summary representations at the level of semantic classes (Tasks 1 and 3) or parts of speech (Task 2) but
provides a more fundamental characterization of the selectively impaired patients’ behavioral profile
as resulting from overeager online abstraction.

Language processing is a prime example of abstract cognitive processing. It seems implausible that
the participants of Kemmerer et al. (2009) could exclusively rely on their recollection of the specific
word sequences used as stimuli in Tasks 1 and 2 to successfully solve those tasks, as some of the
sequences were relatively unusual (e.g., a terrible narrow bridge). Instead, they had to have access to
mental representations that were more abstract than the specific words in the stimuli. The assump-
tions on which the account of Kemmerer et al. is built exemplify the common presupposition that
abstract mental representations correspond to persistent, stored summary representationsdin this
particular case, semantic classes for Tasks 1 and 3, and parts of speech for Task 2. However, abstract
cognitive processing can also be achieved through online summarization of more concrete represen-
tations (Barsalou, 2005). Exemplar models (e.g., Hintzman, 1986; Nosofsky, 1986) store only concrete
instances of experience and abstract by creating temporary similarity-weighted summaries of those
instances online. This idea of online abstraction over concrete exemplars provides the key to a more
insightful, general cognitive account of Kemmerer et al.’s findings that fits in with current neuro-
cognitive views on verbal cognition (e.g., Jefferies & Lambon Ralph, 2006).

Building on the possibility that the participants of Kemmerer et al. (2009) did not refer to stored
summary representations but instead relied on online abstraction, we hypothesize that the behavioral
pattern of the selectively impaired patients can be described as overeager abstraction: while performing
the word order tasks (Task 1 and 2), which required the participants to abstract away from the input
words for successful performance, the selectively impaired patients activated word representations
that were too dissimilar from the input words to still be informative. Instead, those remote repre-
sentations provided noise that interfered with the formation of task-appropriate summary represen-
tations and therefore negatively affected the patients’ decisions. According to the overeager abstraction
hypothesis, the selectively impaired patients’ performance dissociation between Task 1 and Task 2 is
explained by the fact that in the former task, the differences between conditions appeal to more fine-
grained, less abstract knowledge than in the latter task. In other words, the stimuli of Task 2 are more
robust to overeager abstraction than those of Task 1.

Rejecting the assumption that knowledge of the constraints on adjective order relies on access to
persistent semantic classes entails rejecting the assumption that Task 3 of Kemmerer et al. (2009) tests
for knowledge of those classes. Otherwise, one has to accept the theoretical inconsistency that the
participants did not rely on persistent semantic class representations for Task 1, but that they did for
Task 3. Because Kemmerer et al. supposed that both Task 1 and Task 3 plug into semantic class
knowledge, and because we propose online abstraction as an alternative to predetermined semantic
classes, onemight thenwonder why overeager abstraction should only have a detrimental effect on the
former task and not on the latter. However, we claim that the selectively impaired participants of
Kemmerer et al. largely solved Task 3 without abstracting away from the stimulus adjectives. Instead,
they relied on the strong associations between the cue and target adjectives of Task 3 and the
comparatively weaker associations between the cue and distractor adjectives to successfully solve this
task.

To test the overeager abstraction hypothesis, we operationalized the idea of online abstraction in
a computational implementation of the exemplar model, namely memory-based learning (also known
as instance/case-based reasoning/learning) (Cost & Salzberg, 1993; Cover & Hart, 1967; Fix & Hodges,
1951; Stanfill & Waltz, 1986; see Daelemans and van den Bosch (2005) for the application of
memory-based learning to linguistic processing). To investigate the hypothesis that Task 3 can be
solved on the basis of the prepotent cue–target associations, we compared the performance of a model
that used a measure of the adjectives’ association strength to that of a similarity-based model.

The computational algorithms are presented in the Section 2. In Section 3, we present two empirical
assessments of our hypotheses. In Section 3.1, we report proof-of-concept simulations with the algo-
rithms described in Section 2, which confirm that overeager abstraction can account for the impaired
patients’ performance dissociation between Tasks 1 and 2, and that an association-based approach
performs at least as well on Task 3 as a similarity-based (abstraction-based) approach, without being
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vulnerable to overeager abstraction. Through a reanalysis of Kemmerer et al.’s (2009) data in Section
3.2, we show that overeager abstraction also accounts for the dissociation in Task 1 performance
between the selectively impaired and the unimpaired participants. In Section 4, we discuss the
linguistic significance of our results and relate the overeager abstraction hypothesis to Kemmerer
et al.’s neuroanatomical findings.

2. Implementing online abstraction and association strength

2.1. A bigram language model

To simulate potential effects of overeager abstraction on Task 1 and Task 2 performance,
a computational model needs to (a) be capable of assigning different scores to differently orderedword
sequences (preferred/correct vs. dispreferred/incorrect), as word order is what distinguishes the two
conditions of Tasks 1 and 2, and (b) contain a parameter that governs online abstraction, i.e., deter-
mines how far the temporary summary representations used by the model abstract away from the
input. A bigram language model with similarity-based smoothing meets both those requirements.

A word n-gram is a sequence of n words, with n being 2 for a bigram. In its most basic form, an n-
gram language model approximates the probability of a word sequence w1,.,wm as the product of the
conditional probabilities of each word (the conditioned word wi) given the n � 1 previous words (the
conditioning words wi � (n � 1),.,wi � 1):

Pðw1;.;wmÞz
Ym

i¼1

P
�
wi

���wi�ðn�1Þ;.;wi�1

�
(1)

The probabilities are derived from frequency counts in a training corpus. The decision to use an n-
gram languagemodel for scoring theword sequences of Tasks 1 and2had twomotivations. First,n-gram
models are close to the simplest possible model for assigning probabilities to word sequences, but have
been used extensively and very successfully in natural language processing (Jurafsky & Martin, 2009).
Secondly, there is a large body of psycholinguistic evidence that shows the importance of probabilistic
predictions about properties of upcoming items on the basis of previous (linguistic) context in human
language comprehension. In a visual context, listeners canpredict post-verbal arguments on the basis of
the verb and its already perceived arguments (Kamide, Altmann, & Haywood, 2003), readers predict the
presence of a coordination structure upon reading either (Staub&Clifton, 2006), and there are numerous
electrophysiological studies showing that sentence processing involves predictions about the semantic
and syntactic properties of upcoming material (for a review, see Federmeier, 2007). Because an n-gram
model can also be seen as a word prediction model, it should be able to capture that aspect of human
language processing, especially for the simple word sequences of Tasks 1 and 2.

The two conditions of both tasks consist of the samewords and only differ in their word order; so to
discriminate between conditions, the minimal size of the n-grams should be two. This means that the
probabilityof eachword in the sequence is conditionedon thepreviousword. In aneye-movement study,
McDonald andShillcock (2003) provided evidence that bigramprobabilities influencefixationdurations,
which means that it makes sense to rely on a bigram model for simulating linguistic processing.

2.2. A similarity-smoothed bigram language model

The basic language modeling approach described in the previous section is limited, because it
cannot account for people’s intuitions about the order of prenominal adjectives for adjectives they have
never seen together or in co-occurrencewith the head noun before. As discussed in the Introduction, to
solve Tasks 1 and 2, the participants of Kemmerer et al.’s (2009) study needed to access information
that was more abstract than the stimulus words. Likewise, the bigram language model needs to
abstract away from the specific words in the word sequence to cope with bigrams that are not attested
in its training input. Backing off to unigram probabilities, which is the usual method to cope with
unattested bigrams in language modeling, is not a viable option for adjective order problems. All else
being equal, if both P(AdjarAdjb) and P(AdjbrAdja) are zero, backing off to the unigram probabilities of
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Adja and Adjb would favor the order in which the most frequent adjective appears in the second
position. However, in adjective order sequences, there is a tendency for the most frequent adjective to
come first (see e.g., Wulff, 2003), whichmeans themodel would choose the dispreferred order over the
preferred order.

The construction-based account of Kemmerer et al. (2009) depends on categorical features such as
semantic classes (Task 1) and parts of speech (Task 2) to achieve abstraction. In our account, abstraction
is realized online through similarity-based smoothing (seeDagan, Lee, & Pereira,1999; Dagan, Pereira, &
Lee,1994). This is where languagemodelingmeetsmemory-based learning (Zavrel & Daelemans,1997).
Memory-based learning (MBL) models are classification models that predict the category of a new
observation from stored representations of earlier observations. Their knowledge base is not abstracted
from the training data, but consists of a memory of exemplars. Exemplars are usually represented as
feature-value vectors, each with an associated category label. During processing, a distance function
(metric) is used to assemble the nearest neighbor set, which is the set of memory exemplars at the k
nearest distances from the test exemplar (because all exemplars at the same distance from the test
exemplar are included in the nearest neighbor set). A decision function then determines the test
exemplar’s category, based on the distribution of categories in the nearest neighbor set (possibly
weighted by the distances between the exemplars in the nearest neighbor set and the test exemplar).

The neighborhood size (k) determines how stringent the similarity requirements for membership of
the nearest neighbor set are. At a neighborhood size of 1, the nearest neighbor set is restricted to one
nearest neighbor, i.e., the memory exemplar that is most similar to the test exemplar, or all exemplars
at that distance, in case of a tie. By increasing the neighborhood size, less similar exemplars are allowed
in the nearest neighbor set. Thus, nearest neighbor sets function as summary representations, i.e., they
summarize the properties of the exemplars they contain. With the neighborhood size parameter, the
memory-based learning model implements a way of varying how abstract these summary represen-
tations are. The larger the set, the less properties the members of that set share with the target
exemplar, and the more abstract it will be as a summary representation.

The unsmoothed languagemodel described in Section 2.1 can be recast as amemory-based learning
model. The feature-value vectors of the exemplars in this model consist of only one variable, namely
the conditioning word (wi � 1), while the category label is the conditioned word (wi). Recast as
a memory-based learning model, an unsmoothed language model has its neighborhood size set to
a value of 1. Similarity-based smoothing consists of increasing the neighborhood size.

In most linguistic classification tasks, e.g., part of speech tagging, the categories are representations
at a higher level of abstraction than the exemplars and are therefore greatly outnumbered by the
exemplar types. Neighbor sets are therefore typically created on the basis of the feature-value
exemplar representations. However, in bigram word prediction, the number of categories is usually
the same as the number of exemplars, namely the type count in the training corpus,3 because the set of
categories (the conditioned words) is generally the same as the set of exemplars (the conditioning
words).4 In this context, it is therefore as justifiable to smooth over the former as it is to smooth over
the latter. The similarity-smoothed language model that was used for the simulations in this study
employs the former approach.5 A model that employs similarity-based smoothing over conditioned
words does not estimate conditional probabilities of specific words, but of the nearest neighbor sets of
those words. In more formal terms, the model stipulates that the similarity-smoothed probability of
a wordwi conditioned onwi � 1 is given by the summed bigram frequencies ofwi � 1 and the neighbors
of wi at the k nearest distances of wiðNk

wi
Þ divided by the frequency of wi � 1 (so that the denominator

captures the frequency of all bigrams whose first word is wi � 1):

PSIMðwijwi�1Þ ¼
Sw0

i˛N
k
wi
count

�
wi�1;w0

i

�

countðwi�1Þ
: (2)
3 Types include words, punctuation marks, and the sentence delimiter.
4 That is, if every sentence is preceded and followed by a sentence delimiter.
5 Dagan et al. (1994) suggested smoothing over conditioned words as an alternative to smoothing over conditioning words.

Yet, to our knowledge, there has been no empirical test of this proposal to date.
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When the neighborhood size is set to a value higher than 1, the question of which metric to use
becomes relevant. Ametric that relies onword co-occurrences can be derived directly from the training
corpus statistics (Dagan et al., 1999). The Modified Value Difference Metric (MVDM, Cost & Salzberg,
1993; Stanfill & Waltz, 1986) is a metric often used in memory-based learning models, according to
which feature values aremore similar to the extent that their category distributions overlap. Applied to
bigram language models, two words will be more similar as the conditional distributions of the words
following them have greater overlap. More formally, the distance between twowordswi andwj is given
by the difference between the distribution of the words conditioned on wi and the distribution of the
words conditioned on wj,

d
�
wi;wj

� ¼
X
wiþ1

��Pðwiþ1jwiÞ � P
�
wiþ1

��wj
���; (3)

where wi þ 1 ranges over all words following wi or wj in the training corpus. Identical words have an
MVDM of zero.

2.3. The modified value distance metric, semantic similarity, and word associations

A fundamental idea in computational semantics, first proposed by Harris (1954), is the distributional
hypothesis, i.e., the hypothesis that words appearing in similar linguistic contexts tend to have similar
meanings. This idea has inspired a wide range of distributional semantic models, the best-known being
Latent Semantic Analysis (LSA) (Landauer&Dumais,1997) andHyperspace Analogue to Language (HAL) (Lund
& Burgess, 1996). As Harris (1954) pointed out, semantic differences between adjectives correlate with
differences in their head noun distributions. Because attributively used adjectives are usually immediately
followed by their head nouns, MVDM based on the conditional probability distributions of wi þ 1 givenwi

should be a good semantic similarity measure for adjectives. In other words, to a great extent, the nearest
neighbors of adjectives according to MVDM should be semantically similar adjectives.

Because MVDM with wi þ 1 distributions can be considered a semantic metric, it can be applied to
any task that requires judging the semantic similarity between adjectives, such as Kemmerer et al.’s
(2009) Task 3. With a small modification to Equation 3, we can calculate the smoothed distance dSM
between nearest neighbor sets instead of the distance between specific words, so as to simulate the
effect of online abstraction on the semantic similarity judgments,

dSM
�
wi;wj

� ¼
X
wiþ1

��PSMðwiþ1jwiÞ � PSM
�
wiþ1

��wj
���; (4)

with PSM(wi þ 1rwi) given by the conditional probability ofwi þ 1 conditioned on the set of neighbors of
wi at the k nearest distances of wiðNk

wi
Þ,

PSMðwiþ1jwiÞ ¼
P

w0
i˛N

k
wi
count

�
w0

1;wiþ1
�

P
w0

i˛N
k
wi
count

�
w0

i

� ; (5)

and the distance between wi and a neighborw0
i given by MVDM (Equation 3).

Another, simpler approach to Task 3, however, is not to pick the adjective that is most similar to the
cue adjective from among the target and distractor adjectives, with similarity defined as the extent to
which the adjectives’ nearest neighbor sets share post-adjectival context, but to pick the adjective that
has the strongest direct word-to-word associationwith the cue adjective. One simple yet effective way
to capture the association strength between words is pointwise mutual information (PMI) (Church &
Hanks, 1990):

PMI
�
wi;wj

� ¼ log
P
�
wi;wj

�

PðwiÞP
�
wj

� : (6)

PMI measures how much the probability of two words wi and wj occurring together (their joint
probability), P(wi, wj), differs from the expected probability of their co-occurrence if they were
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independent, which is the product of their individual probabilities P(wi) P(wj). The higher the PMI of
two words is, the more the presence of one word entails the presence of the other, and so the stronger
their association. The PMI equation does not contain any parameters to vary online abstraction, which
means this method is not affected by overeager abstraction.

3. Testing the overeager abstraction hypothesis

Because the level of abstraction is a parameter in our model, it can be set to a level that is higher
than optimal given the task requirements, resulting in overeager abstraction, which we claim to
explain the finding of Kemmerer et al. (2009) that the selectively impaired patients failed Task 1 but
showed relatively unimpaired performance on Task 2. We hypothesize that the greater robustness to
overeager abstraction of the Task 2 items in comparison to the Task 1 items accounts for the dissoci-
ation in performance of the selectively impaired patients on those two tasks. This differs with the
account of Kemmerer et al., in which the semantic and purely syntactic constraints on adjective order
are clearly separable. We also hypothesize that the selectively impaired patients should be more
vulnerable to the items’ robustness to overeager abstraction than the unimpaired participants within
Task 1 itself. More particularly, in the impaired patients’ performance, items that are not robust to
overeager abstraction should suffer more than items that are robust to a high degree of abstraction.
Because the account of Kemmerer et al. relies on abstractions that are predetermined linguistic cate-
gories, it predicts no such effect.

A logical concomitant of the overeager abstraction hypothesis is that Task 3 performance, which
caused no problems for the impaired participants, did not rely on abstractions, which contrasts with
Kemmerer et al.’s (2009) claim that it was based on the use of stable abstract semantic categories (see
Introduction). We hypothesize instead that Task 3 can be solved through the use of direct associations
between the cue and target adjectives, and that this explains the dissociation in performance of the
selectively impaired patients between Task 1 and Task 3.

In the next two sections, we provide evidence supporting the above hypotheses, using the algo-
rithms described in Section 2. The proof-of-concept simulations in Section 3.1 show how the overeager
abstraction and direct association hypotheses can account for the dissociations between tasks. The
reanalysis of the Task 1 data in Section 3.2 shows how the overeager abstraction hypothesis can
account for the dissociation in Task 1 performance between the selectively impaired patients and the
unimpaired participants.

3.1. Proof-of-concept: simulating the selective impairment of the semantic constraints on prenominal
adjective order constraints

In this section, we investigate the hypotheses (a) that overeager abstraction can explain the
selectively impaired patients’ dissociation in performance between Tasks 1 and 2 of Kemmerer et al.
(2009), and (b) that those patients could solve Task 3 by relying on direct word associations
between the stimulus adjectives. In the first two tasks, participants had to choose between differently
ordered word sequences. In the third task, they had to indicate which of two adjectives was most
similar to a cue adjective. We tested the overeager abstraction and direct association hypotheses by
trying to simulate both the behavioral pattern of the selectively impaired patients and that of the
unimpaired participants on all three tasks, using the models described in Section 2.

Regarding the effect of overeager abstraction on Task 1 and Task 2 performance, the basic reasoning
goes as follows. If a specific word order is supported by the nearest neighbors of the target itemwords,
up to a certain level similarity-based smoothing will confirm or even strengthen the preference for that
word order, unless it is exceptional, i.e., very much tied to the specific words involved, such as the
atypical order of big bad in the big bad wolf (which is not in line with the VALUE 3 SIZE constraint), or
creatures and great in the phrase all creatures great and small (which is not in line with the
adjective 3 noun constraint). Because similarity is based on bigram distributions (see Section 2), the
words most similar to the words in the target item should have similar positional preferences. Due to
data sparseness, items in the preferred/correct order condition might contain word bigrams that are
not attested in the corpus on which the model was trained and so have a zero probability at
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a neighborhood size of 1, although at the same time bigrams containing very similar words are in effect
part of the training data. This means that increasing the neighborhood size should initially have
a positive effect on the model’s performance for both Task 1 and Task 2, as measured by its accuracy
(i.e., the percentage of items for which the model chooses the preferred/correct order). A concrete
example, using an item from Kemmerer et al. (2009), makes this clearer. A nice small cup has a prob-
ability of zero at a neighborhood size of 1, solely due to the fact that nice small is not attested in the data
onwhich themodel was trained (see Section 3.1.1). The other bigrams, a nice and small cup, are attested
in the training data. However, the bigram nice large is attested, and large is actually the word that is
closest to small. This leads to a non-zero probability at a neighborhood size of 2. For the dispreferred
order a small nice cup, on the other hand, a non-zero probability does not occur until the neighborhood
size reaches 30.

However, further increasing the neighborhood size allows words into the neighbor sets that have
positional preferences differing considerably from those of the input words, so that noise seeps into the
probability distributions, possibly turning the model’s choices around or making both orders equally
likely. Because the difference between the conditions of Task 2 involves a higher level of abstraction
than the difference between the conditions of Task 1, performance on the former task should be more
robust for this noise than performance on the latter task. In other words, the model’s performance on
Task 1 should start decreasing at a lower neighborhood size than its performance on Task 2. After all,
the constraints that are involved in Task 2 can be described at the level of the words’ parts of speech.
For the similarity-smoothed bigrammodel to support the correct word order over the reversed order in
that task, it basically only matters that the majority of neighbors of the adjectives in the test items are
premodifiers and that the majority of neighbors of the test item’s noun are nouns. As long as that is the
case, the model should assign a higher probability to the correctly ordered noun phrase. It will take
a very high level of abstraction before other parts of speech dominate the nearest neighbor set. To solve
Task 1, on the other hand, summary representations as abstract as parts of speech are not helpful. More
fine-grained distinctions within the category of adjectives need to be made, such as distinctions
between (implicit) semantic classes. In order to do so, the model not only needs to be sensitive to the
differences in positional preferences between adjectives and nouns, but it should also be sensitive to
the differences in positional preferences between adjectives in relation to other adjectives and nouns.
Whereas the most similar adjective and noun neighbors will share the positional preferences of the
stimulus words to a great extent, once the level of abstraction is increased (i.e., when the neighborhood
size is set to a higher value) and neighbors that are less similar to the words in the input are taken into
account as well, the model is oversmoothed: it becomes blind for the fine-grained differences between
the members of the same lexical category, resulting in a performance drop on a task that requires
sensitivity to these differences, such as Task 1.6

Kemmerer et al. (2009) interpreted the fact that the selectively impaired patients’ performance on
Task 3 was largely unimpaired as evidence that those patients’ semantic class knowledge was still
intact. Our account of Kemmerer et al.’s findings replaces static semantic classes with temporary
“classes” created by online abstraction. Our model’s parallel to intact semantic class knowledge is
therefore an intact capability for the online construction of appropriate abstractions. The overeager
abstraction hypothesis posits that these patients were impaired in their creation of such abstract
representations. Unless one wants to make the claim that those patients’ failure to construct the
appropriate abstractions during processing was for some reason limited to Task 1 and worked perfectly
fine for Task 3, overeager abstraction should also have had an impact on that task. We assessed the
effect of overeager abstraction on the semantic similarity judgments by using the smoothed semantic
metric (Equation 4) to calculate the distances between the cue and the target/distractor adjectives,
increasing the neighborhood size (k parameter) for the calculation of PSM (see Equation 5), and using
MVDMwithwiþ1 distributions (Equation 3) to compile the nearest neighbor sets. If smoothed semantic
6 When the neighborhood size is set to ever higher values, more and more words will become part of the nearest neighbor
set of a target word, until eventually the neighbor set includes all words from the training data. At that point, each set of
conditioned words is a subset of the nearest neighbor set, and the summed conditional probabilities of these neighbors add up
to 1. This results in all sequences having a probability of 1 and the model performing at chance on both tasks.
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distance is used to solve Task 3, we hypothesize that Task 3 performance will suffer more from a large
neighborhood size than Task 2 performance. The reason is the same as why overeager abstraction
predicts the dissociation between Task 1 and Task 2: if Task 3 is solved by relying on implicit semantic
categories, the distinctions one needs to make for its successful execution are more fine-grained, i.e.,
less abstract, than the distinctions required for the successful execution of Task 2.

However, we also hypothesize that Task 3 does not test for knowledge of abstract semantic
representations, either stored or created online, but can be solved by relying on word-to-word
associations. To test this hypothesis, we also used PMI (Equation 6) for the simulation of Task
3. Because calculating the association strength between adjectives in this way does not involve
abstraction (there is no k parameter in the equation), an overeager abstraction deficit has no
bearing on the capacity of the model to tell which of two adjectives is more closely associated
with a third one. If a high score on Task 3 is attained using this approach, it puts considerable
doubt on the assumption of Kemmerer et al. (2009) that Task 3 tests for abstract semantic
knowledge.

3.1.1. Materials and methods
As training material for all algorithms, we used the unannotated 10 million word TASA corpus

(Landauer, Foltz, & Laham, 1998). The corpus was lowercased and tokenized before training. The test
itemswere those used by Kemmerer et al. (2009), with only a fewminor changes. The reader is referred
to that paper for the full list of items. The spelling of a number of items was changed to bring them in
line with the training corpus, and in one item a compound nounwas replaced by its head noun (a black
metal file cabinet was changed to a black metal cabinet).

For Task 1, the test items consisted of 10 sets of 6 noun phrases composed of an article, followed by
two adjectives and a noun, each set combining adjectives from different semantic classes (e.g., a huge
gray elephant vs. a gray huge elephant). Additionally, there were 10 noun phrases with a nominal
modifier in the position of the second adjective, themodifying nouns always beingmaterial nouns (e.g.,
a brown paper bag vs. a paper brown bag). This made 70 test items in total. Kemmerer et al. (2009)
embedded these noun phrases in sentences, but because the sentence contexts were identical across
conditions, we dropped those for our experiments. The probabilities of the word sequences in Task 1
were approximated by the product of the smoothed conditional bigram word probabilities, with the
determiner being the first conditioning word.

The test items of Task 2 comprised 15 items in total. The first five test items consisted of adjective-
noun pairs (e.g., big field vs. field big). The next five items consisted of two adjectives followed by
a noun (e.g., warm sweet air vs. air sweet warm), and the items in the third set consisted of an article
followed by two adjectives and a noun (e.g., a hilly bumpy road vs. road bumpy hilly a). In the items
containing two adjectives, those two adjectives were both from the same semantic class, so that
according to class-based linguistic accounts such as that of Dixon (1982), there should be no semantic
constraints on their order. Because the word sequences started with different words across condi-
tions, the products of the conditional word probabilities were multiplied by the unigram probabilities
of the first words.

For Tasks 1 and 2, the similarity-smoothed bigram model chose the sequence containing the most
probable order from each word sequence pair using the minimal neighborhood size at which both
orders had a non-zero probability, which we will call the decision neighborhood size.7 The model made
a random choice if the two orderings were equally probable. In practice, however, this only happened
when the neighbor set exhausted the conditional word distribution. Overeager abstraction was
simulated by increasing the lower limit neighborhood size. As long as the lower limit neighborhood size
was lower than the decision neighborhood size, the model used the latter. However, the lower limit
neighborhood size replaced the decision neighborhood size if the former was higher than the latter. For
7 This strategy makes the model more vulnerable to overeager abstraction than if the decision neighborhood size were at the
point where at least one of the orders has a non-zero probability. However, earlier experiments showed that the vulnerability to
anecdotal evidence of that alternative approach has a more significant negative impact on model performance than the
vulnerability to overeager abstraction of our strategy.
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these experiments, the lower limit neighborhood size ranged between 1 and 124,793.8 Because it was
not feasible to test all neighborhood sizes, we increased the neighborhood size values at which the
model was tested by a factor of 10 at each power of 10. The model scores significantly higher than
chance (50%) on Task 1 if it attains an accuracy (percentage of preferred/correct order choices) of 63%
(44 out of 70 correct), p (two-tailed in a binomial test)¼ .041.9 For Task 2, themodel scores significantly
higher than chance with an accuracy of 80% (12 out of 15 correct), p (two-tailed) ¼ .035.

The test items for Task 3 consisted of 25 cue–target–distractor triples (e.g., wide vs. narrow or blue).
For the smoothed semantic distance simulation, the model chose the adjective that was closest to the
cue, making a random decision if the target and distractor were equally distant from the cue and target.
Neighborhood size values increased by a factor of 10 at each power of 10, For the PMI simulation, the
model simply chose the adjective that was most strongly associated with the cue, and made a random
decision if the PMI values were the same. On this task, performance is significantly higher than chance
if the model reaches an accuracy of 72% (18 out of 25 correct), p (two-tailed) ¼ .043. For the calculation
of PMI, two word tokens were counted as co-occurring if they appeared in the same sentence.

To compile the nearest neighbor sets and calculate the smoothed conditional bigram probabilities,
we used the IB1 memory-based learning algorithm as implemented in the Tilburg Memory-Based
Learner (TiMBL) machine learning package (Daelemans, Zavrel, van der Sloot, & van den Bosch,
2010), with MVDM as the distance metric, no feature weighting (because the exemplars consisted of
only one feature-value pair), random tie resolution and default settings for the other options.10

3.1.2. Results and discussion
The results of our simulations with the test items of Kemmerer et al. (2009) are visualized in Fig. 1.

For Tasks 1 and 2, all items exhausted the set of neighbor candidates at a neighborhood size of 50,000.
From that point on, increasing the neighborhood size had no effect on scores anymore for these tasks.
For the items of Task 3, the set of neighbor candidates was exhausted at 40,000. All stimulus words of
the three tasks were attested in the training data.

Fig. 1 shows a marked divergence between the similarity-smoothed bigram model’s performance
on Task 1 and its performance on Task 2 as the lower limit neighborhood size increases. For Task 1, the
model had a mean accuracy of 87% at a lower limit neighborhood size of 1, which is also its peak mean
accuracy. Performance stayed more or less stable until the lower limit neighborhood size was 7. After
that point, performance on this task more or less steadily decreased, until it reached a low point of 43%
at a lower limit neighborhood size of 20,000 and was at chance when the lower limit neighborhood
size reached 50,000. The model’s performance profile on Task 2 differed noticeably from that on Task 1.
The model started off with a mean accuracy of 100% at a lower limit neighborhood size of 1. Although
performance dropped to 87% at a lower limit neighborhood size of 200, and more or less stayed at that
low until a lower limit neighborhood size of 700, it was back at 100% when the lower limit neigh-
borhood size was at 3,000, and only started declining again from a lower limit neighborhood size of
20,000. Performance on Task 2 reached a low point of 44% at a lower limit neighborhood size of 40,000,
and then stabilized at chance level at a lower limit neighborhood size of 50,000.

To check if model performance indeed broke down at smaller values of the lower limit neighbor-
hood size for Task 1 than for Task 2, we compared the items’ breakdown k values between the two tasks.
An item’s breakdown k is that item’s smallest value of the lower limit neighborhood size at which the
model assigned either the largest probability to the condition with the dispreferred/incorrect order, or
an equal non-zero probability to both conditions. AWilcoxon rank sum test shows that the breakdown
k distributions differed significantly between the two tasks, with breakdown k generally being lower
for Task 1 (Mdn¼ 600) than for Task 2 (Mdn¼ 30,000),W¼ 205, n1 ¼70, n2 ¼ 15, p (two-tailed)< .001.

The mean accuracy on Task 3 (i.e., the percentage of adjective triads for which the model selected
the target adjective as most similar to the cue adjective) of the smoothed semantic distance model (dSM
8 124,793 is the number of types in the training corpus, and so the theoretical upper bound for the neighborhood size
parameter.

9 An a of .05 is used for all statistical hypothesis tests in this paper.
10 See the TiMBL manual for more information on these options.
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Fig. 1. Effects of varying the lower limit neighborhood size on the two-alternative forced-choice decision accuracy for adjective
ordering (Task 1), the ordering of adjectives with respect to other parts of speech in the noun phrase (Task 2), and the semantic
similarity judgment task (Task 3 dSM). For comparison, the accuracy of the model using PMI to solve Task 3 is also plotted (Task 3
PMI). Note that this accuracy cannot be affected by neighborhood size as the formula for calculating the PMI value does not contain
k. Note also that the x-axis uses a logarithmic scale.
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in Fig. 1) started at 76% (it selected the target adjective as most similar to the cue adjective for 19 of the
25 items) for a lower limit neighborhood size of 1. The model reached its peak mean accuracy of 88%
(22 out of 25 items correct) at a lower limit neighborhood size of 2. Performance steadily declined with
increasing lower limit neighborhood size until the model reached chance performance (50%) at a lower
limit neighborhood size of 30,000.

Fig. 1 clearly shows that the performance profile of the smoothed distance model on Task 3 is closer
to the performance profile of the similarity-smoothed bigram model on Task 1 than to the profile of
that latter model on Task 2. This is to be expected if Task 3 is solved on the basis of the online generation
of abstract summary representations, as this task (like Task 1) involves more fine-grained distinctions
than a task that involves the ordering of syntactic classes (Task 2) and is hence more vulnerable to the
addition of distant neighbors. Comparisons of the items’ breakdown k values between tasks confirm
these profile differences. For Task 3, an item’s breakdown k is the smallest value of the lower limit
neighborhood size at which the smoothed semantic distance between the cue and distractor adjectives
is either higher than or equal to the distance between cue and target. Wilcoxon rank sum tests show
there was a significant difference in the distribution of breakdown k between Task 3 (Mdn ¼ 800) and
Task 2 (W¼ 284, n1¼25, n2¼15, p (two-tailed)¼ .006), but that the breakdown k distributions for Task
3 and Task 1 did not differ significantly, W ¼ 858, n1 ¼ 25, n2 ¼ 70, p (two-tailed) ¼ .889.

As an alternative to smoothed semantic distance, we also investigated an approach to Task 3 that
compared the PMI of the cue and target adjectives with that of the cue and distractor adjectives. This
approach resulted in a mean accuracy of 90%: 22 of the 25 test items were solved correctly, and for one
item the model had to make a random decision because target nor distractor appeared in the same
sentence as the cue in the training corpus.

Our simulations illustrate the benefits of abstracting away from the input. Because it alleviates the
effects of data sparseness, abstraction initially had a positive effect on accuracy for all three tasks. For



B. Vandekerckhove et al. / Journal of Neurolinguistics 26 (2013) 46–72 57
Task 1, 69 out of 70 items had a decision neighborhood size larger than 1, for Task 2, all 15 items had
a decision neighborhood size above 1. Additionally, for Task 3, the similarity-smoothed approach
attained its highest mean accuracy of 88% at a lower limit neighborhood size of 2.

However, too much abstraction is eventually detrimental for task performance, but not to the same
extent for all tasks. Model performance on Task 1 started to break down at lower neighborhood sizes
than performance on Task 2. This supports the overeager abstraction explanation for the selectively
impaired patients’ dissociation between these two tasks. Overeager abstraction is very harmful for
aword order task that requires the language processor to be sensitive to the fine-grained distributional
differences between words, such as Task 1. Performance on a word order task that requires the
processor to correctly discriminate between the positional preferences of words with different parts of
speech, such as Task 2, does not suffer that dramatically from overeager abstraction, because the
distributional differences between those words are less subtle. As is shown by our simulations, only
when the level of abstraction was so high that the neighbor set taken into account for extrapolation
encompassed almost the entire training set of words, performance on this type of task dropped. It
seems as if it is almost impossible to have the model break down on this task. Interestingly, this is
reminiscent of the finding that canonical word order is actually almost always preserved in aphasia
(Bates, Friederici, Wulfeck, & Juarez, 1988).

If successfully solving Task 3 requires the online creation of temporary abstract summary repre-
sentations, overeager abstractors should bemore or less equally impaired on that task as on Task 1. This
is shown by the closely aligning performance profiles of the similarity-smoothedmodels on these tasks
in Fig. 1 and was confirmed by the non-significant outcome of the breakdown k comparison. However,
our simulation results also illustrate that an approach that does not rely on abstractions but simply on
word associations scores at least as well as the similarity-smoothed model at its best neighborhood
size setting. This simulation outcome resembles the high performance of the selectively impaired
patients in this task, suggesting that those patients did not behave as overeager abstractors when
selecting a semantically similar adjective, but relied on word associations instead. This strongly
supports our claim that Task 3 does not test for abstract semantic knowledge, neither in the form of
stored abstract categories nor in the form of temporary abstractions generated online.

Table 1 shows a systematic comparison between the model and the participant scores. The close
correspondence between these scores directly supports the hypothesis that the impaired performance
of the patients studied by Kemmerer et al. (2009) on Task 1 was caused by a processing deficit that lead
them to overabstract when they extrapolated from stored representations of previous experience, and
that the spared performance of the selectively impaired patients on Task 3 was the result of their
reliance on associations between largely unimpaired word representations in memory.

Together, the simulations in this section provide empirical support for the hypothesis that overeager
abstraction accounts for the dissociation in the selectively impaired patients’ performance between
Task 1 and Task 2, and for the claim that the relatively unimpaired performance of those patients on
Task 3 can be explained by the fact that this task was solved on the basis of word associations in the
mental lexicon rather than a comparison of abstract semantic categories (either temporary or
Table 1
Mean accuracy scores (in percentage correct) of the unimpaired and the selectively impaired participants on the three 2AFC tasks
of Kemmerer et al. (2009), and the corresponding model scores for the neighborhood sizes at which the model best approxi-
mates the participants’ performance. The values for Task 3 within parentheses are the scores of the PMI approach. Note that the
participant groups do not entirely coincide with those of Kemmerer et al. (2009), but are based on an automatic repartitioning of
the participant scores (see Section 3.2.1).

Group Task 1 Task 2 Task 3

a big brown dog vs.
a brown big dog

a cool light rain vs.
rain light cool a

cue: big, target:
little, distractor: good

Unimpaired Participants 94.77 99.7 99.23
Model (k ¼ 1) 87.14 100 76 (90)

Impaired Participants 69.71 97.32 95.2
Model (k ¼ 4000) 67.14 100 72 (90)

Cells indicate mean accuracy (in %).
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permanent ones). The reanalysis of the Task 1 data in the next section tests the hypothesis that
overeager abstraction can also account for the performance dissociation between impaired and
unimpaired participants on that task.

3.2. Predicting the adjective order choices of the selectively impaired patients

According to Kemmerer et al. (2009), their findings showed that the selectively impaired patients
still had knowledge of the adjectives’ semantic classes, but were unable to apply that knowledge to the
adjective order problem. In their account, abstracting from the input words required access to
persistent abstract representations (i.e., the adjectives’ semantic class features) and did not involve
online summarization of more concrete representations. There is a way to distinguish that explanation
from the overeager abstraction hypothesis. If Kemmerer et al.’s view is correct, there should be no
systematic relationship between each experimental item’s robustness to overeager abstraction, i.e., the
neighborhood size at which the model selects the dispreferred adjective order, and the probability that
the patients chose the preferred adjective order for that item (i.e., the adjective order that was chosen
by the majority of the control group). If, on the other hand, the selectively impaired patients were
indeed overeager abstractors, their adjective order preferences should have leaned more toward the
preferred adjective order for those items that are more robust to overeager abstraction. Items of the
latter kind have a preferred adjective order that is less dependent on the specific words in the noun
phrase or their nearest neighbors, but is still supported (i.e., has the highest similarity-smoothed
bigram probability of the two response alternatives) when also taking less similar neighbors into
account. In other words, in the group of selectively impaired patients, the per-item probability that the
preferred adjective order was selected should have been higher for items with a high robustness to
overeager abstraction. In the group of unimpaired, i.e., normally abstracting participants, the proba-
bility that an item’s preferred adjective orderwas selected should have been influenced less or not at all
by how robust the item is to overeager abstraction.We investigated that hypothesis by operationalizing
robustness to overeager abstraction as a variable in a reanalysis of the Task 1 data.11

3.2.1. Materials and methods
The items of Kemmerer et al.’s (2009) Task 1 differ in the strength with which they lean toward

a preferred adjective order, as shown by their preference biases (the per-item percentages of preferred
order responses) among the control participants. For most items, this preference bias was very high,
M(70) ¼ 0.95, SD ¼ 0.086. Of the 70 test items, 44 had a preference bias of 100%; all 19 control
participants chose the same adjective order for those items. Twenty-three items had a weaker but still
significant preference bias, ranging from 95% (c2(1, n ¼ 19) ¼ 15.21, p < .001) to 74% (c2(1,
n¼ 19)¼ 4.26, p¼ .039). Only for the three items with the smallest preference bias in the control group
data did that preference bias not prove significant. These items are a good big table and a yellow plastic
toy, both with 68% agreement on the preferred order (c2(1, n ¼ 19) ¼ 2.58, p ¼ .108), and a long slow
train, with a preference bias of 63% in the control group (c2(1, n ¼ 19) ¼ 1.32, p ¼ .251).

To test our hypothesis that an item’s robustness to overeager abstraction had a positive effect on the
probability that the selectively impaired patients chose the preferred adjective order, we employed
mixed logit models with crossed random effects for items and participants (Breslow & Clayton, 1993;
Jaeger, 2008), using the R package lme4 (Bates, Mächler, & Bolker, 2011). Themixed logit model is a type
of generalized linear mixed model for binary (i.e., binomially distributed) response variables. Basically,
it is an extension of the ordinary logit model that includes both fixed and random effects terms. The
decision to use mixed effects models was motivated by the need to account for the non-independence
of observations in Task 1, which were grouped within items and participants (see Baayen, Davidson, &
Bates, 2008).

Our response variable is selected adjective order, with the levels preferred (the order that had the
majority of votes in the control group) and dispreferred. The predictors of primary interest are the
11 This analysis was necessarily limited to the Task 1 data, because both the selectively impaired and the unimpaired
participants’ performance on the other two tasks was near or at ceiling.
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continuous variable breakdown k, which is our operationalization of robustness to overeager
abstraction (see Section 3.1.2), and the interaction of breakdown kwith participant group (impaired vs.
unimpaired). Additional covariates included in the model are class distance, which is the distance
between the items’ adjective classes on a linear precedence scale, rating difference, which is the
difference between the naturalness ratings for the preferred and the dispreferred orders, and their
interaction with participant group. The inclusion of these covariates is motivated below. The random
effects predictors are item and participant. The model contained the maximal random effects structure
justified by the data, based on model comparison. Formally, the log odds of participant p selecting the
preferred order for item i, logit (SelectedOrderpi ¼ Preferred), is given by the following linear combi-
nation of predictors:

logit
�
SelectedOrderpi ¼ Preferred

�

¼ b0 þ b1Group½Unimpaired�p þ b2RatingDifferencei þ b3ClassDistancei

þ b4logBreakdownki þ b5RatingDifferenceiGroup½Unimpaired�p þ bp0

þ bi0; bp0wN
�
0; s2bp0

�
; bi0wN

�
0; s2bi0

�
:

(7)

In this equation, b0 is the mean log odds of the preferred adjective order being selected by the
selectively impaired patients at the mean values of rating difference, class distance, and log-
transformed breakdown k; b1 through b5 are the parameters for the fixed effects variables. bp0 and
bi0 are the deviations from b0 for participant p and item i, respectively (random intercepts). The
predictors are summarized in Table 2. In the next paragraphs, we describe them in more detail.

The breakdown k values were taken from the simulations reported in Section 3. The higher an item’s
breakdown k, the more robust the item is to overeager abstraction. For items with a high breakdown k,
the model still chooses the preferred order when taking into account neighbor words that are very
dissimilar from the words in the test item. For items with a low breakdown k, the preferred order is
supported only when restricting the neighbors to those words that are most similar to the words in the
test item. The breakdown k values of the Task 1 items included in the analysis range from 2 to 40,000.
As discussed in Section 3, not all neighborhood sizes within that range were tested. Instead they were
increased by a factor of 10 at each power of 10. Except for items with a breakdown k value not higher
than 10, the breakdown k values are therefore always upper limit estimates, with the possible
difference between an item’s actual breakdown k and its estimated breakdown k being higher for items
with high breakdown k values. However, most of the Task 1 items included in the analysis have low
breakdown k values (Mdn ¼ 600), so that the deviance between the estimated breakdown k and the
actual breakdown k should be relatively small in the majority of cases. Hence, we do not expect our
approach to suffer much from the inaccuracy at higher breakdown k values. On the other hand, this
predominance of low values for breakdown k also means the variable is positively skewed. In order to
Table 2
Predictors in the mixed logit model of selected adjective order, their measurement scale, and associated quantitative
information.

Predictor Scale Description

Fixed effects:
Selected order Dichotomous n (preferred) ¼ 2817, n (dispreferred) ¼ 199
Participant group Dichotomous n (impaired) ¼ 290, n (unimpaired) ¼ 2726
Breakdown k Ratio M ¼ 6327, SD ¼ 10,949.08, min ¼ 2, max ¼ 40,000
Class distance Ratio M ¼ 1.03, SD ¼ 1, min ¼ 0, max ¼ 3
Rating difference Ratio M ¼ 2.84, SD ¼ 0.49, min ¼ 1.3, max ¼ 3.5
Random effects:
Participant Nominal 52 levels
Item Nominal 58 levels

Of the 70 items in the data, naturalness ratings (fromwhich the variable rating difference is derived) were available for 58 items.
The regression analysis and the descriptive statistics in this table are therefore based on this subset.
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normalize the data, we used the natural logarithms of breakdown k in the model instead of its raw
values.

Participant group is a two-level factor with the categories impaired and unimpaired. Kemmerer
et al. (2009) isolated six selectively impaired patients, based on the criteria that the patients’ scores
on Task 1, i.e., their percentage of preferred order responses, had to be more than two standard
deviations below the mean score of the control participants, and that the patients had to score more
than 90% on Tasks 2 and 3. However, the density plots of the patient and control participant scores for
Task 1 in Fig. 2 show that the criterion of Kemmerer et al. fails to create the most natural groupings for
that task.

Because of the clear dichotomy in the data (see Fig. 2) that is not captured by the division Kemmerer
et al. (2009) made, and because the majority of patients did not perform any worse than the control
group, we decided not to use the groups of Kemmerer et al. (i.e., 6 selectively impaired patients vs. 19
control participants), but to take all 53 participant scores for Task 1 together (both patients and control
participants) and to apply k-means clustering with k ¼ 2 for the automatic repartitioning of the scores
into two groups. K-means clustering (MacQueen, 1967) is an unsupervised clustering algorithm that
partitions a set of observations into k clusters.12 The standard algorithm starts by randomly selecting k
observations as initial cluster means, and assigning each observation to the group of the nearest mean.
The algorithm then iteratively uses the cluster centroids as newmeans and reassigns the observations,
until it converges. By using this objective method for group assignment, no researcher bias is intro-
duced. As shown in Fig. 2, k-means clustering does a much better job at identifying those participants
that scored exceptionally low on Task 1. Excluding participant 3297, who showed impaired perfor-
mance on all three tasks and for this reason does not count as selectively impaired, the thus obtained
group of impaired patients consists of five participants (M ¼ 70%, SD ¼ 7%), all of whom are among the
six patients Kemmerer et al. reported as selectively impaired. One participant that Kemmerer et al.
identified as selectively impaired, patient 3273, moves to the unimpaired group, which now consists of
47 participants (M¼ 95%, SD¼ 4%). Themean score of the patients in that group (M¼ 95%, SD¼ 4%) did
not differ significantly from that of the control participants (M¼ 95%, SD¼ 4%), t(42.04)¼ 0.16, p (two-
tailed) ¼ .872.

Note that the participant group variable is not independent from selected adjective order. On the
contrary, the groups are created on the basis of the mean participant scores. This means that the
response variable selected adjective order (the values of which are the participants’ responses)
contains information on the participant group predictor, so that we expect to find a trivial positive
effect of participant group on selected adjective order: the probability that any item is assigned the
preferred orderwill be higher in the groupwith the highest mean participant scores. However, because
of the fact that we are interested in the interaction of breakdown kwith participant group, we included
the participant group variable in the model.

To obtain more reliable estimates for the effects of the main predictors, we also included two
covariates and their interactions with the participant group variable in the model. The first covariate,
class distance, is derived from the linguistic literature on adjective order. The adjective pairs in the
stimuli of Kemmerer et al. are always combinations of two different semantic classes (e.g., PHYSICAL

PROPERTY and COLOR for a soft brown sweater). As we discussed in the Introduction, these classes interact
with adjective order according to a linear precedence relation. Kemmerer et al. used the class prece-
dence scheme VALUE 3 SIZE 3 DIMENSION 3 PHYSICAL PROPERTY 3 COLOR, which is largely based on the analysis
of Bache (1978). Class distance is the number of semantic classes that lies between the classes of the
adjectives in the stimulus according to this ordering system. The scheme adopted by Kemmerer et al.
uses five classes, which means there are four class distances (0–3). The class distance of a soft brown
sweater is zero, for instance, because PHYSICAL PROPERTY and COLOR are adjacent on the above scale.

We mentioned in the Introduction that the linear ordering of semantic classes correlates with
abstract semantic variables such as degree of objectivity. Hetzron (1978) noted that adjectives at the
same level of objectivity are interchangeable (p. 181). From this, it is only a small and arguably
12 The k in the name of the algorithm k-means clustering should not be confused with the k parameter specifying the
neighborhood size in memory-based learning models.
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threshold for separating out the impaired patients (note that applying their criterion identifies nine impaired patients, as
opposed to the seven patients they reported). The black and gray symbols represent the two clusters that the k-means clustering
algorithm identified. The black plus signs form the group of selectively impaired participants in our analysis.

B. Vandekerckhove et al. / Journal of Neurolinguistics 26 (2013) 46–72 61
uncontroversial step to predict that adjectives that are more distant from each other on these continua
will also have stronger ordering preferences (e.g., the more subjective the first adjective is, and the
more objective the second, the stronger the preference for adjective 1 3 adjective 2). Because
Kemmerer et al. (2009) provided the semantic classes for all the adjectives in their study, the most
straightforward way to approach the underlying continuum is to use those classes.

If semantic classes are good approximations of the level of abstraction used by normal language
users to constrain adjective order, the strength with which two prenominal adjectives will tend toward
a specific order should correlate positively with their class distance, at least in the unimpaired group.
We therefore predict that there will be a positive effect of class distance on selected adjective order in
that group, i.e., the higher the class distance, the higher the preference bias for the preferred order. If
the selectively impaired patients overabstracted, the online generated temporary representations that
determined which adjective order they preferred were more abstract than the temporary represen-
tations used by the unimpaired participants, which are well-approximated by semantic classes. This
suggests that the distances between semantic classes on the linear precedence scale will be worse
predictors of selected adjective order for the selectively impaired participants. Hence, we included an
interaction term between participant group and class distance in the model. Class distance was treated
as a ratio variable.

The items’ class distances correlate strongly enough with their breakdown k values, s ¼ 0.35,
p < .001, to raise worries about multicollinearity. As breakdown k is the variable of main interest, we
want to ensure that it explains variation in selected adjective order that cannot be accounted for by
class distance. Therefore, we actually did not use the values of breakdown k itself in the model but the
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residuals of a general linear model with breakdown k as the primary variable and class distance as the
explanatory variable.

The second covariate included in the model, rating difference, was directly taken from Kemmerer
et al. (2009). An item’s rating difference is the difference between the average naturalness rating (on
a scale from one to five) for the sequence containing the preferred adjective order and the average
naturalness rating for the dispreferred sequence. The ratings were provided by 72 college students.
Rating difference has no theoretical value in the context of our hypothesis, but because it is a fine-
grained measure of order preference strength, it might account for a large part of the variance in
selected adjective order that is not explained by the other predictors (as a matter of fact, because
a naturalness rating reflects the participants’ global assessment of their perceived quality of a particular
adjective order, it could be considered as a measure of the impact of all factors that they implicitly take
into account when making this assessment). Including it in the analysis could therefore help in
obtaining better estimates for the critical predictors, by removing part of the error variance. However,
rating difference correlates considerably with both breakdown k, s ¼ 0.24, p ¼ .01, and class distance,
s ¼ 0.44, p < .001, which could give rise to problems interpreting the contributions of the latter two
predictors. Because we do not want rating difference to absorb any variation that the other, theoret-
ically more interesting variables can explain, we did not use the raw values in our model, but the
residual errors of rating difference regressed on breakdown k and class distance.13 Of the 70 items in
the data, naturalness ratings were available for 58 items. Accordingly, that is the number of items
included in the analysis. As there were 52 participants, the analysis was performed on 3016
observations.

Kemmerer et al. (2009) found that rating differences correlatedwith the per-item preference biases,
but this correlation was weaker for the seven impaired patients they isolated than for the 19 control
participants (pp. 97–98). For that reason, we not only expect to find a positive effect of rating difference
on selected adjective order, but also an interaction effect between rating difference and participant
group, with the effect of rating difference being stronger in the group of unimpaired participants than
in the group of impaired participants.

Before we discuss the results of the regression analysis in the next section, we summarize our
hypotheses. Taking the impaired group as the reference level, we expect a positive effect of breakdown
k on the probability that the selected adjective order is the preferred order, and a negative interaction
effect between breakdown k and participant group; the effect of breakdown k should at least be smaller
for the unimpaired participants, although it might still have a positive effect on selected adjective order
in that group. We expect to find a (trivial) positive effect of participant group on selected adjective
order; the probability that the selected adjective order is the preferred order should be higher in the
unimpaired group. Apart from expecting positive effects of class distance and rating difference on
selected adjective order in the unimpaired group, we hypothesize that the effect of these predictors
will be stronger in that group than in the impaired group, which should manifest itself as positive
interaction effects of participant group with class distance and rating difference. We do not have any
specific hypotheses as to the questionwhether class distance and rating difference will have significant
effects in the impaired group.

3.2.2. Results and discussion
The results of the mixed logistic regression analysis are summarized in Table 3. We found both

a significant positive effect of breakdown k on selected adjective order in the impaired group and
a significant negative interaction between the effect of breakdown k and the effect of participant group,
whichmeans that the effect of breakdown kon selected adjective orderwas larger in the impaired group
than in the unimpaired group. Additionally, there was a strong, significant effect of participant group,
13 Note that this is a different problem than the strong correlation between breakdown k and class distance, where the unique
contribution of breakdown k had to be assessed by using its residuals after regressing it on class distance. The difference is that
naturalness ratings are global quality assessments reflecting the simultaneous impact of different variables, among which quite
likely breakdown k and class distance. Accordingly, the variance in rating differences that can be explained by these two
variables needs to be removed in order to be able to quantify the independent contribution of these variables.



Table 3
Estimated fixed effects of a mixed logit model predicting selected adjective order from breakdown k, rating difference, class
distance, and participant group.

Parameter B SE (B) z p

Intercept 0.92 0.37 2.51 .012
Participant group 2.97 0.41 7.25 <.001
Rating difference �0.19 0.33 �0.59 .554
Class distance 0.32 0.14 2.25 .025
Breakdown k 0.15 0.05 2.79 .005
Rating Difference � Participant Group 1.14 0.38 3.02 .003
Class Distance � Participant Group 0.63 0.21 3.00 .003
Breakdown k � Participant Group �0.16 0.07 �2.10 .036

The p-values of significant effects are indicated in bold. All ratio variables in the model are mean-centered.
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the probability of choosing the preferred order being higher for the unimpaired participants than for the
impaired participants. However, as mentioned in the previous section, this is a rather trivial finding,
because the response variable (selected adjective order) was used to create the two levels of participant
group.We also found that of the two covariates class distance and rating difference, only the former had
a significant positive effect on selected adjective order in the group of impaired participants. Addi-
tionally, we found significant positive interactions of both these predictors with participant group. This
means that both class distance and rating difference had a stronger effect on selected adjective order in
the group of unimpaired participants than in the group of impaired participants.

We ran a likelihood ratio test to find out whether adding the breakdown k predictor to a model that
only included the covariates and their interactions with the participant group variable had a significant
added value in terms of explanatory power. It did not (c2(1)¼ 3.35, p¼ .068), due to the fact that there
was no effect of breakdown k in the unimpaired group (see below), which is much larger than the
impaired group (47 participants vs. 5 participants). However, adding the interaction effect between
participant group and breakdown k resulted in a model that had significantly more explanatory value
than a model without the interaction term (c2(1) ¼ 4.47, p ¼ .035). Fig. 3 shows the predicted partial
effect of breakdown k on selected adjective order and its interaction with participant group.

To verify the effects of the main predictor breakdown k and the two covariates class distance and
rating difference on selected adjective order for the unimpaired participants, we fitted a separate
mixed logit model for that group. This analysis showed there was no significant effect of breakdown k
on selected adjective order, B ¼ 0.01 (SE ¼ 0.05), p ¼ .799. On the other hand, selected adjective order
was strongly correlated with the items’ class distance, B ¼ 0.95 (SE ¼ 0.18), p < .001, and rating
difference, B ¼ 0.99 (SE ¼ 0.27), p < .001.

The reanalysis of the Task 1 data confirmed the overeager abstraction hypothesis: the selectively
impairedparticipantsweremore likely to choose thepreferred adjective order for those itemswith ahigher
robustness to overeager abstraction, and this behavior distinguished them from the unimpaired partici-
pants: only the selectively impaired patientswere sensitive to neighborhood interference on their adjective
order judgments. Apparently, their restrictions onwhich word representations were similar enough to the
input words to reliably influence their judgments were too lenient. This made them activate mental
representations thatwere toodistant from the stimuli andprovided support for the adjective order thatwas
dispreferred by the majority of unimpaired participants. For those items with a preferred adjective order
that is supported by a large majority of their neighbors, however, this robustness of the positional prefer-
ences in the neighbor setmade the effect of overeager abstraction less severe, i.e., the impaired participants’
decisions were more in line with those of normal, non-overabstracting language users.

Apart from the difference between the selectively impaired and the unimpaired participants con-
cerning the effect of breakdown k, we also found that the effect of class distance was smaller for the
former participants than for the latter. This finding provides additional support for the overeager
abstraction hypothesis. The impaired participants’ adjective order preferences were determined by
temporary summary representations that were more abstract than the representations normal
language users employ. Therefore, the semantic classes that are good predictors of normal language
users’ adjective order preferences (and which closely correspond to their temporary summary
representations, as shown in Section 4.1) were less predictive of the impaired patients’ preferences.
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Because rating difference and selected adjective order could be said to be bothmeasures of adjective
order preference strength (hence their strong correlation in the unimpaired group) it is not surprising
that therewas only an effect of rating difference in the group of unimpaired participants. If we compare
the preference biases (the per-item proportions of preferred order responses) between both groups, we
see that there was no significant positive correlation between the preferred order choices of the
impaired participants and those of the unimpaired participants, s ¼ 0.11, p (one-tailed) ¼ .159. This
suggests that the patients’ impairments did not merely result in a less pronounced tendency toward
the same preferred adjective orders, but that the adjective orders that were preferred by the impaired
participants were often strongly different from the orders preferred by normal language users. It is
therefore no surprise that the differences in naturalness ratings provided by normal language users
failed to be good predictors of the impaired patients’ adjective order choices. Explained in terms of
overeager abstraction, the rating differences and the preference biases in the control group are both
measures of the adjective order preferences among non-overabstracting language users. Overeager
abstraction results in deviating adjective order preferences. This means that differences in naturalness
ratings provided by non-overabstracting language users are poor predictors of the preference biases of
overeager abstractors. If this interpretation is correct, we should find that the differences in naturalness
ratings of the two adjective orders provided by overeager abstractors not only are good predictors of
the impaired patients’ preference biases, but also, and more importantly, that breakdown k is a good
predictor of these rating differences: the higher breakdown k, the larger the rating differences would
be. It would be interesting to investigate this hypothesis in future research.
4. General discussion

We provided empirical evidence that the findings which Kemmerer et al. (2009) described as
resulting from impaired knowledge of the semantic constraints governing prenominal adjective order
can be explained as resulting from an overeager abstraction impairment: the patients in question
created temporary summary representations during language processing that were too abstract to be
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informative for the adjective order task. In a proof-of-concept simulation study, we showed how
oversmoothing a similarity-based bigram language model that used a similarity metric based on word
distributions resulted in a behavioral pattern that matched that of the selectively impaired patients of
Kemmerer et al. The similarity-smoothed model failed dramatically on Task 1 when abstracting too
eagerly, i.e., generalizing too aggressively through its similarity metric, while performance on Task 2
was very robust for overeager abstraction. Apart from that, a simple word association measure ach-
ieved a score on Task 3 that came close to the participants’ score. This demonstrates that, unlike the
other tasks and contrary to the assumption of Kemmerer et al., Task 3 does not require reliance on
abstract representations, neither in the form of persistent semantic classes stored in long-term
memory, nor in the form of temporary class-like clusters created online. Instead, this task can be
solved on the basis of associations between the stimulus words in the mental lexicon.

In the reanalysis of Kemmerer et al.’s (2009) Task 1 data, we found that the strength with which the
selectively impaired patients preferred a specific order for two prenominal adjectives in a noun phrase
was predicted by that noun phrase’s robustness to overeager abstraction (as measured by the noun
phrase’s breakdown k) and that this effect of robustness to overeager abstraction on adjective order
preference strength was not shared by the other participants of Kemmerer et al., i.e., the control
participants and the non-impaired patients. This is also strong evidence that the selectively impaired
patients can be characterized as overeager abstractors. In the remainder of this section, we discuss how
our account of Kemmerer et al.’s findings relates to theirs and other linguistic accounts of the adjective
order constraints (Section 4.1), and how the account fits the neuroanatomical data (Section 4.2).

4.1. Overeager abstraction and linguistic accounts of adjective order preferences

The bigram language model with similarity-based smoothing we presented in this paper is a general
statistical learning model without hard-coded linguistic rules. Nevertheless, to the extent that the model
implements the abstract linguistic principles that correlatewith adjective order (see Introduction), and that
the nearest neighbor sets of adjectives can be summarized as semantic classes, it can be seen as incorpo-
rating a computationally explicit implementation of the construction approach to adjective order that was
proposed by Kemmerer et al. (2009). However, the crucial difference between our model and Kemmerer
et al.’s adjective order account is the way participants are hypothesized to abstract away from the input. In
the model of Kemmerer et al., abstraction requires access to persistent abstract classes that are features of
the individual adjectives. In effect, their adjective order construction neatly distinguishes three groups of
separable adjective features: (a) thepartof speech feature (Adj),which interactswith syntactic constraints to
determine the placement of the adjective among other parts of speech in the noun phrase, (b) syntactically
relevant categorical semantic features (VALUE, SIZE, COLOR, etc.), which interact with abstract semantic princi-
ples to determine the place of the adjective vis-à-vis other adjectives, and (c) syntactically irrelevant word-
specific semantic features (GOOD, BIG, RED, etc.). According toKemmerer et al., knowledgeof the abstract part of
speech features is required for Task 2, and knowledge of the abstract semantic category features for Tasks 1
and 3. In contrast, our model makes no qualitative distinction between lexical items, semantic classes, or
parts of speech; these are just implemented as increasingly larger and therefore increasingly abstract
clusters of exemplars. The model posits a single online abstraction mechanism that takes word-level
features as input and creates task-appropriate temporary classes that explain adjective order preferences
at all threeof the lexical, semantic, and syntactic levels,with the caveat that the temporaryclasses formedby
our model’s neighbor sets do not necessarily match the linguistic categories (but see below). So whereas
Kemmerer et al.’s construction cannot account for “exceptions” such as the big badwolf or all creatures great
and small, in our account these phrases are fully licensed by the “grammar”; they just require minimal
abstraction for correct generalization. Thus, our model is more akin to the construction grammar concep-
tualization of grammar as a continuum of constructions that are linked through a network of constructional
schemas (Langacker, 2005) than the adjective order construction that Kemmerer et al. proposed. Translated
into construction grammar terms, our explanation for the selectively impaired patients failing Task 1would
be that they employed high-level schemas where more concrete schemas would have been more
appropriate.

As opposed to Kemmerer et al.’s (2009) account, our model posits that Task 1 and Task 2 are not pro-
cessed differently because of a qualitative difference in the order violation (syntactic vs. semantic
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constraints), but because of a quantitative difference. In our model, constraints on word order are on
a continuum from lexical constraints over grammatical-semantic constraints to purely syntactic constraints,
which is reflected in the level of abstraction that is necessary for correct generalization. In the first case, the
so-called “syntactically irrelevant” (Kemmerer et al., 2009, p. 93) lexical features turn out to be very
important, because even the slightest abstraction beyond the specific input words will make the processor
prefer the alternate order. This is reflected in the breakdown k values. For example, because the big badwolf
has an idiosyncratic order very much tied to the specific words involveddVALUE adjectives usually precede
SIZE adjectivesdthememory-basedmodel can correctly distinguish between the preferred and dispreferred
orders at a neighborhood size of 4, but already chooses the dispreferred, reversed order at a neighborhood
size of 5. The preferred order of this phrase goes against order preferences of bigrams containing near
neighbors of big such as bad little and bad old. In other words, the preferred order at the lexical level is no
longer the preferred order at a more abstract level, where SIZE adjectives tend to stand closer to the head
noun than VALUE adjectives. In comparison, the phrase the good little wolf, containing semantically similar
words, but with a non-idiosyncratic order according to the semantic class precedence, has a decision
neighborhood size of 7, but a breakdown k between20 and30. Finally, it takes a neighborhood size between
100 and 200 for themodel to lose its “purely syntactic” (Kemmerer et al., 2009, p. 96) preference for the big
bad wolf overwolf big bad the. In this context, it is worth pointing out that the dissociation between Task 1
and Task 2 of the selectively impaired patients was not that clear-cut at all (a fact acknowledged by Kem-
merer et al.). Of thefive patients thatwere automatically categorized as selectively impaired for the purpose
of this paper (see Section 3.2.1), two patients stillmade amistake inTask 2,which contrastswith the perfect
scores achieved by all control participants. This is hard to explain in a model that firmly distinguishes
between types of representational features, such as the adjective order construction of Kemmerer et al.
Indeed, if a particular type of representational feature is left intact, a task requiring the use of this feature
should give rise to error-free performance. In contrast, this finding is very straightforward to explain in
amodel that acknowledges a continuum between representational levels. This point is nicely illustrated by
the performance profile in Fig. 1.

Focusing on adjectives, a bigram language model implements the linguistic principles relying on
abstract semantic variables that we discussed briefly in the Introduction and whose selective
impairment is the source of the patients’ adjective ordering problems according to Kemmerer et al.
(2009). The key to understand this link is the fact that those linguistic principles can at least
partially be derived from correlations between the order of the adjectives and the differences between
their respective adjective-noun co-occurrence distributions. In case of the semantic principle that
relates the adjectives’ degrees of objectivity to their order, the link with the bigram language modeling
approach is straightforward. Subjective adjectives have wider ranges of applicability than objective
adjectives.14 The former can be applied to a larger set of nouns, because their felicitousness depends
more on the opinion of the speaker than on their fit with the head noun. Adjectives denoting inherent,
objective properties of certain noun referents will occur more often with those specific nouns and less
oftenwith other nouns. If an adjective can occur with a wide range of nouns, the total probability mass
of P(nounradjective) will be distributed over more nouns, which lowers the probability of any single
noun co-occurring with the adjective. If an adjective co-occurs with a limited number of nouns, the
probability that it occurs with any of those nouns will be relatively high. All other things being equal,
this means that the bigram-approximated probability of a felicitous sequence containing an objective
adjective immediately followed by a noun will in general be higher than that of a sequence containing
a subjective adjective immediately followed by the same noun. Hence, the linguistic principle that
objective adjectives occur closer to the noun automatically follows from the model.

Other semantic principles put forward in the linguistic literature on adjective order can also be
related to distributional facts. Although a semantic variable such as degree of absoluteness (see
Introduction), for instance, is in itself not a distributional measure, this variable is indirectly related to
adjective–noun co-occurrence distributions. After all, an adjective that can co-occur with a large range
of nouns will be less specific in its meaning and more flexible in its interpretations than an adjective
14 Range of applicability itself has been proposed as a principle underlying prenominal adjective order by Ziff (1960), who
called it privilege of occurrence, and Seiler (1978).
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that can only be used felicitously with a restricted set of nouns. Hence, the model predicts higher co-
occurrence probabilities with the noun for absolute adjectives, which is in line with the linguistic
principle regarding absoluteness.

Likewise, the fact that MVDM with wi þ 1 distributions can be considered a measure of adjective
similarity (see Section 2.3) relates this metric to the adjective order model of Kemmerer et al. (2009)
and theoretical-linguistic accounts of adjective order in general. First, because MVDM is a distribu-
tional measure, the nearest neighbors of adjectives given MVDM with wi þ 1 distributions will have
similar ranges of applicability. This means that the metric respects the linguistic principles that rely on
abstract semantic variables such as degree of objectivity and degree of absoluteness, and can be framed
in terms of distributional properties. Secondly, because the nearest neighbors of adjectives according to
MVDM with wi þ 1 distributions are semantically similar adjectives, the nearest neighbor sets created
with this metric should at least partially overlap with sets formed on the basis of the adjectives’
semantic classes, which are adjective order determinants in class-based accounts such as that of
Kemmerer et al.

What sets our approach apart from class precedence accounts of adjective order preferences such as
the one by Kemmerer et al. (2009) is that the “classes” formed by the nearest neighbor sets are not
retrieved as persistent abstract representations, but are created on the spot as a result of online
abstraction. The account we have introduced in this paper hinges on the idea that the processing of
noun phrases involves the ad hoc creation of implicit, temporary summary representations over which
conditional probabilities are computed. These temporary “classes” can be approximated by sets of
words that are similar to the target words according to a distributional similarity metric. The level of
abstraction of these implicit classes is a task-dependent variable, in our memory-based learning
approach implemented as the neighborhood size parameter k. The more lenient the similarity
requirements for class membership are, the more abstract the implicit classes (eventually “coinciding”
with syntactic classes). Due to the fact that these word classes are not persistent cognitive summary
representations, but are created online, cognitive deficits can interfere with this online abstraction
process. One way in which the temporary class creation might go wrong is when the similarity
requirements for class membership are too lenient, resulting in overeager abstraction.

As illustrated in Table 4 for the color adjectives that Kemmerer et al. (2009) used in their stimuli, the
nearest neighbor sets that result from employing the similarity metric at a fairly low level of
abstraction often correspond to or form subclasses of the semantic classes that are used as explanatory
constructs in some adjective order theories. Hence, our observation that the distances between those
semantic classes on a linear precedence scale (class distance) correlate so strongly with the preferred
adjective order biases of Kemmerer et al.’s unimpaired participants (see Section 3.2.2) can be explained
in terms of temporary “semantic classes” that are generated online. Indeed, as we showed in our
reanalysis of their Task 1 data, these findings do not mean that impaired access to stable semantic
classes accounts for the behavior of the selectively impaired patients. The stimuli’s robustness to
overeager abstraction was a significant predictor of the items’ preferred adjective order biases in the
selectively impaired group, and in the same participant group class distance was a worse predictor of
Table 4
Nearest neighbor sets of the color adjectives for Task 1 of Kemmerer et al. (2009), at
a neighborhood size of 5.

Adjective (frequency) Nearest neighbors

Black (4263) Black, white, red, brown, gray
Blue (2309) Blue, red, yellow, gray, brown
Brown (1811) Brown, gray, mother, horse, wife
Gray (1158) Gray, brown, dark, blue, yellow
Green (2910) Green, red, blue, seed, yellow
Orange (520) Orange, grapefruit, fruit, lime, apple
Purple (289) Purple, dress, chair, hat, peace
Red (3752) Red, yellow, blue, white, green
White (5144) White, black, red, yellow, gray
Yellow (1433) Yellow, red, blue, brown, gray

The values between brackets are the adjective counts in the training corpus.
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these preferred order biases. The relation between the strength with which the choices of the selec-
tively impaired patients tended toward a specific adjective order and the level of abstraction it took
before our model lost its preference for that order (breakdown k) suggests an online process of
abstraction to arrive at temporary summary representations, instead of a process that makes use of
persistent abstract representations corresponding to the semantic classes from theoretical linguistics.
Hence, while our account is in line with the linguistic principles behind adjective order, it rejects the
assumption that these principles operate on fixed abstract representations of semantic classes.

Kemmerer et al. (2009) included Task 3 as a test for the participants’ semantic class knowledge. In
Section 3.1, however, we saw that simply applying a measure of word association strength to the task
without abstracting away from the adjective stimuli already resulted in an accuracy of 90%. This finding
seriously puts into doubt that Task 3 tested for the participants’ knowledge of (implicit) semantic
classes. On the basis of their Task 3 findings, Kemmerer et al. proposed that the selectively impaired
patients still had knowledge of semantic adjective classes, but that somehow those patients could not
use that knowledge to guide their adjective order decisions, as opposed to normal language users. If we
apply the same reasoning to our account, we would have to make the contradictory claim that online
abstraction failed for the selectively impaired patients when they had to judge adjective order, as they
could not appropriately create abstract temporary summary representations, but that this creation of
summary representations worked just finewhen they had to judge the similarity between adjectives. A
more straightforward explanation for the performance dissociation betweenTask 1 and Task 3, one that
is in line with our model, is that the selectively impaired patients had an impairment that caused them
to overabstract when a task required abstraction from the input, but that this impairment was less of
a problem for a task that did not require abstraction and could largely be solved through associations
between the cue and target adjectives that are stored in the mental lexicon. This account is largely
compatible with current neurocognitive approaches to semantic knowledge recovery (e.g., Jefferies &
Lambon Ralph, 2006; Wagner, Paré-Blagoev, Clark, & Poldrack, 2001), in which a distinction is made
between top–down controlled access to long-term semantic knowledge and bottom–up association-
based access processes. Tasks requiring access to abstract representations (in our account temporary
summary representations), such as the word order tasks 1 and 2, might rely more on the former route,
while tasks that can be solved through pre-existing associations between words, such as Task 3, might
rely more on the latter route. In the next section, we discuss a way to interpret overeager abstraction as
a selective neurological impairment of the top–down route of controlled memory retrieval.
4.2. Overeager abstraction as a neuropsychological impairment

Overeager abstraction is essentially an impairment of the controlled access to knowledge stored in
memory. It affects the online creation of task-appropriate summary representations, but not the long-
term memory representations of the exemplars that provide input to this summarization process. In
what follows we will show that this cognitive characterization of the patients’ selective impairment is
in line with Kemmerer et al.’s (2009) neuroanatomical findings.

Kemmerer et al. (2009) found that among the patients with unilateral left hemisphere damage, the
most frequently affected regions were the posterior inferior frontal gyrus and the underlying white
matter, and the inferior parietal lobule.15 The left inferior frontal gyrus (LIFG) has been shown to be
important for controlled memory retrieval (e.g., Bunge, Wendelken, Badre, & Wagner, 2005; Wagner
et al., 2001). Importantly, the region has been implicated in the selection of memory information
under competition, or the inhibition of irrelevant alternatives, not only when task demands explicitly
require the selection of appropriate responses from among competitors (e.g., Thompson-Schill,
15 Apart from the six selectively impaired patients Kemmerer et al. (2009) identified as selectively impaired, they also
included six patients from an earlier study by Kemmerer (2000) in their neuroanatomical analysis. Kemmerer (2000) reported
patients with selectively impaired knowledge of adjective order constraints, but did not include a semantic similarity judgment
task like Task 3 of Kemmerer et al. (2009). Kemmerer et al. (2009) conceded that the type of impairments of the patients from
the earlier study might therefore not overlap completely with those of the patients they reported, but maintained that the
deficit both groups of patients shared was functionally still well constrained.
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D’Esposito, Aguirre, & Farah, 1997; Thompson-Schill et al., 1998; Zhang, Feng, Fox, Gao, & Hai Tan,
2004), but also when selection is implicit (Grindrod, Bilenko, Myers, & Blumstein, 2008).

The overeager abstraction hypothesis is compatible with the proposed role of LIFG in selection and/
or inhibition. Our model implements the idea that the word categories determining the language
processor’s sensitivity to word order during comprehension are temporary products of an online
abstraction process that is constrained from the top down by the comprehension goal and already
processed context. To create the right categories given the comprehension goal, selection of relevant
and suppression of irrelevant information is crucial. When the neighborhood size parameter in our
model is set to a value that is too high, weeding out irrelevant information or restraining alternatives,
i.e., disregarding irrelevant neighbor words, is exactly what the model fails to do. This is most detri-
mental for phrases with a low breakdown k value, for whichword order preferences are strongly tied to
the specific words involved. Those cases require the model to be very inhibitive in its selection of
relevant neighbors, because even the closest neighbors provide support for the reversed adjective
order. Hence, the evidence that the LIFG is important for the suppression of irrelevant information is
compatible with our concept of an overeager online abstraction process in Kemmerer et al.’s (2009)
patients.

As part of a two-component theory of semantic cognition, the temporoparietal region has also been
postulated to support the task-dependent executive control of semantic activation, together with the
left inferior prefrontal cortex (e.g., Corbett, Jefferies, & Lambon Ralph, 2011; Jefferies & Lambon Ralph,
2006; Noonan, Jefferies, Corbett, & Lambon Ralph, 2010). According to this approach, control processes
subserved by these regions regulate the access and use of amodal semantic representations that are
stored in the anterior temporal lobes (ATL). Damage of the left inferior prefrontal and/or tempor-
oparietal cortex results in semantic aphasia (SA) (Noonan et al., 2010), an impairment that can be
characterized as a deregulation of the task-appropriate activation of semantic knowledge. At least
within the semantic domain, so far no distinction in behavioral profiles has been found between
patients with lesions in one, the other, or both of these regions (Corbett et al., 2011; Jefferies & Lambon
Ralph, 2006). Interestingly, in their discussion of the SA behavioral profile, both Jefferies and Lambon
Ralph (2006) and Crutch andWarrington (2008) refer to Goldstein’s (1948) characterization of aphasia
as a loss of “abstract attitude”. Although this characterization is exactly the opposite of the overeager
abstraction impairment that we claim typifies the selectively impaired patients of Kemmerer et al.
(2009), the shared focus on the lacking capacity to adequately abstract away from concrete knowl-
edge of both our and Goldstein’s accounts is notable. However, our study broadens this view by
showing that a control impairment or impairment of the “abstract attitude” does not need to lead to
lazy abstraction, but can just as well lead to the opposite behavior, i.e., overeager abstraction.

There are a number of interesting correspondences between the behavior of semantic aphasics and
the selectively impaired patients reported by Kemmerer et al. (2009). The performance of SA patients is
typically inconsistent between tasks, dependent on the type of semantic processing required. This is in
line with the performance dissociations reported by Kemmerer et al. Additionally, SA performance
does not seem to correlate with item frequency, as opposed to the performance of patients with
semantic dementia, a semantic memory impairment associated with atrophy of the frontal temporal
lobe. In line with this, Kemmerer et al. reported that the impaired patients’ performance did not
significantly correlate with the means of the first and second adjective frequencies (p. 97). Our claim
that the selectively impaired patients could solve Task 3 by reliance on bottom–up associations also fits
the SA behavioral profile. SA only affects top–down controlled access to semantic knowledge, not the
memory representations themselves or the automatic, bottom–up semantic associations between
those representations. Interestingly, Jefferies and Lambon Ralph (2006) found prepotent associations
to be a frequent cause of errors in SA patients (e.g., responding nuts for squirrel in a picture naming
task), showing that their sensitivity for automatic, bottom–up semantic processing was still intact. The
selectively impaired patients’ reliance on automatic word associations for Task 3 is exactly what we
claimed resulted in their relatively unimpaired performance on that task (see Section 3.1). Moreover, if
Task 3 required the use of semantic category knowledge, the finding that patients with prefrontal and/
or temporoparietal lesions were impaired on category-based similarity judgments (Noonan et al.,
2010) (e.g., is broccoli most similar to cauliflower or to lobster; the relationship in this case being the
category vegetables), would lead one to expect the selectively impaired patients of Kemmerer et al. to
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perform poorly on this task. The fact that this was not the case supports our view that Task 3 did not
require such knowledge and could be solved by using simple word associations.

Apart from patient studies that show the importance of the temporoparietal region for controlled
knowledge retrieval, there is considerable neuroimaging evidence supporting the role of this region in
semantic processing that is particularly relevant in light of the supposed connection between abstract
category knowledge and word order. Based on a meta-analysis of 120 fMRI studies, Binder, Desai,
Graves, and Conant (2009) see an important high-level role for specifically the angular gyrus in
tasks that require the fluent combination and integration of concepts, such as the comprehension of
complex noun phrases. More specifically, Cristescu, Devlin, and Nobre (2006) showed that both left
inferior frontal and left inferior parietal areas were activated when participants were cued with the
semantic categories of upcoming words, and suggested that these regions play a role in the generation
of semantic expectations, a notion that is compatible with our distributional account of how Task 1 is
solved. The view that the sensitivity to word order during comprehension of adjective order sequences
(as in Kemmerer et al.’s (2009) Task 1) relies on the fit between the expected and the actual semantic
categories of the adjectives, either explicit (Kemmerer et al., 2009) or implicit (our model), is in line
with these neuroimaging findings. Moreover, because the lesion patterns of the selectively impaired
patients were primarily in the regions that might be involved in attentional orienting to semantic
category information according to Cristecscu et al.’s (2006) study, their findings provide additional
support against Kemmerer et al.’s view that the selectively impaired patients with damage in those
areas were still capable of directing attention to the semantic categories of the adjectives, and for our
view that Task 3 mainly required automatic, association-based memory access.

Interestingly, posterior LIFG has also been shown to be important for syntactic processing and the
sequencing of both linguistic and non-linguistic stimuli; Thothathiri, Schwartz, and Thompson-Schill
(2010), for instance, reported patients with lesions including the junction of Brodmann areas 44 and
6 who showed erroneous picture-cued production of conjoined noun phrases (e.g., The eye and the
pencil), particularly when the phrases followed a non-canonical order, i.e., when the first noun was
inanimate and the second one animate (e.g., The shoe and the cat). The same patients showed impaired
comprehension of non-canonical reversible sentences, in which subjects did not correspond to agents,
such as passive sentences (e.g., the man is photographed by the woman). The authors suggested that, to
fit task goals, the posterior ventrolateral prefrontal cortex might bias activations between represen-
tations that are activated in long- and short-term memory on the one hand, and bottom–up input
activations on the other. They characterized the impairment of the patients with lesions in those areas
as the inability to override recent experience or prevalent patterns in long-termmemory. Their account
focused on the competition between the information sources, but the findings also support an inter-
pretation in terms of overeager abstraction. The patterns that the patients described by Thothathiri
et al. (2010) had trouble overriding, such as ANIMATE 3 INANIMATE or subject ¼ agent, are abstract
schemas, involving abstract features such as animacy, syntactic functions and thematic roles. In theory,
problems with competition between different information sources can just as well consequently favor
the more concrete bottom–up information, which would not negatively affect the conjoined noun
phrase production task of Thothathiri et al. (2010). The finding that the patients they reported had
trouble ignoring the abstract regularities in favor of the concrete order information in the visual input
makes those patients in fact overeager abstractors.

As we mentioned before, Kemmerer et al.’s (2009) adjective order construction distinguishes
between idiosyncratic features that have no influence on syntax, semantic categories that influence
word order among adjectives, and syntactic categories that determine what position the adjectives
take vis-à-vis nouns and other parts of speech. In our account, on the other hand, all three levels are
syntactically relevant, because order constraints can operate at all levels of abstraction. Thus, online
abstraction might actually provide a general framework for unifying the different linguistic functions
that are subserved by the LIFG, as we have seen above that it underlies both semantic and syntactic
processing. Moreover, the cognitive control function of the (posterior) LIFG extends beyond language
(see Novick, Trueswell, & Thompson-Schill, 2010, for a review).We do not have any information on how
the selectively impaired patients of Kemmerer et al. performed in non-linguistic tasks. However, there
is nothing specifically linguistic about the online abstraction hypothesis, so it might even be relevant
outside of the linguistic domain. We plan on future work to assess whether overeager abstraction has
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validity beyond the linguistic domain and should be considered as a symptom of a general neuro-
psychological impairment.
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