
Proceedings of the Sixth Workshop on Cognitive Aspects of Computational Language Learning, pages 28–32,
Lisbon, Portugal, 18 September 2015. c©2015 Association for Computational Linguistics.

Towards a Model of Prediction-based Syntactic Category Acquisition:
First Steps with Word Embeddings

Robert Grimm Giovanni Cassani Walter Daelemans Steven Gillis
University of Antwerp, CLiPS

{name.surname}@uantwerpen.be

Abstract

We present a prototype model, based
on a combination of count-based distri-
butional semantics and prediction-based
neural word embeddings, which learns
about syntactic categories as a function of
(1) writing contextual, phonological, and
lexical-stress-related information to mem-
ory and (2) predicting upcoming context
words based on memorized information.
The system is a first step towards utiliz-
ing recently popular methods from Natu-
ral Language Processing for exploring the
role of prediction in childrens’ acquisition
of syntactic categories.1

1 Introduction

Evidence is mounting that during language pro-
cessing, the brain is predicting upcoming elements
at different levels of granularity (Huettig, 2015).
This could serve at least two purposes: (1) to facil-
itate understanding in dialogue and (2) to acquire
abstract syntactic structure.

With respect to (1), Pickering and Garrod
(2007) review evidence suggesting that people
predict upcoming elements in their interlocutors’
speech streams using the production system. This
is thought to facilitate understanding in dialogue.
One reason to postulate (2) is that length of mem-
ory span for syntactically well-formed sequences
is positively correlated with an individual’s abil-
ity to predict upcoming words (Conway, 2010; see
Huettig, 2015, for further arguments).

We thus have evidence that people predict lin-
guistic elements, and there is reason to suspect that
this could be linked to the acquisition of syntactic

1The work reported here was implemented in the
Theano framework (Bastien et al., 2012; Bergstra
et al., 2010). The code is freely available at:
https://github.com/RobGrimm/prediction based (commit
ID: 6d60222)

structure. Models of prediction in language pro-
cessing should therefore aim to demonstrate the
emergence of such structure as a function of learn-
ing to predict upcoming elements.

Perhaps the most explicit account of such a pro-
cess can be found in the work of Chang et al.
(2006), who use a recurrent neural network in
combination with an event semantics, in order to
generate sentences with unseen bindings between
words and semantic roles – i.e., the types of novel
sentential constructions that could be afforded by
abstract syntactic structure.

It is noteworthy, given this line of work, that
prediction is central to recently popular meth-
ods from Natural Language Processing (NLP)
for obtaining distributional representations of
words (Mikolov et al., 2013; Pennington et al.,
2014). Vector representations (often called word
embeddings) obtained using these methods cluster
closely in terms of semantic and syntactic types –
an achievement due to engineering efforts, with-
out emphasis on psychological constraints. Thus,
if these methods are to be used for modelling as-
pects of human language processing, they should
be modified to reflect such constraints.

Here, we attempt to take a first step into this di-
rection: we modify the skipgram model from the
word2vec family of models (Mikolov et al., 2013)
– which predicts both the left and right context of
a word – to predict only the righ context. Word
counts from the left context form the basis for pre-
diction and are tuned to maximize the likelihood
of correctly predicting words from the right con-
text. Throughout, we measure the organization of
word embeddings in terms of syntactic categories
– and find that embeddings of the same category
cluster more closely after each training stage.

In addition to word frequencies from the left
context, we experiment with phonological infor-
mation and features related to lexical stress as the
basis of predicting words from the right context.

28

2 Language Model

The model is trained in two consecutive stages: (1)
for each word in the vocabulary, create a vector
of frequency counts for words from its left con-
text. Concatenate this with phonological and / or
lexical stress features, and project the result into
a joint dimensionality-reduced space. (2) Use the
embeddings obtained in stage 1 to predict words
from the right context, and modify the input em-
beddings via the backpropagation algorithm.

Stage 1 is meant to correspond to a memory
component which tracks backward statistical reg-
ularities, while stage 2 is meant to correspond
to a forward-looking predictive mechanism. On
the NLP side, the model is a combination of
count-based distributional semantics (stage 1) and
prediction-based neural word embeddings (stage
2). While count-based and prediction-based ap-
proaches can produce similar results, provided the
parameters are tweaked in a certain way, (Levy et
al., 2015), it seems intuitively that adding counts is
more like memorizing context, whereas an explic-
itly predictive component is more suited for mod-
elling prediction in language processing.

To the best of our knowledge, there exists no
other work which combines counting and predict-
ing to derive word embeddings, nor work which
attempts to relate this to language acquisition. The
current model, being a result of preliminary ex-
plorations, is only loosely based on possible prin-
ciples of cognitive processing; it may, neverthe-
less, have the potential to move currently success-
ful methods from NLP closer to language acquisi-
tion research.

2.1 Memory Component: Auto Encoder

During the first stage, we use a denoising Auto En-
coder to (a) reduce the dimensionality of the fea-
ture vectors and (b) project concatenated feature
vectors (e.g. contextual and phonological) into a
shared space. As a result, we see some first im-
provements of the vectors’ clustering in terms of
syntactic categories.

An Auto Encoder is a neural network that learns
to transform a given input x(i) into an intermediate
representation h(x(i)) = s(W · x(i) + bv), so that
a faithful reconstruction y(i) = s(W ′ · h(x(i)) +
bh) can be recovered from h(x(i)) (Bengio, 2009),
where s is a non-linear activation function. We
set s(z) = max(0,min(1, z)) and W ′ = W T ,
i.e. we use a truncated linear rectified activation

function and work with tied weights.

The parameters of the network are the weight
matrix W , the visible bias bv and the hidden bias
bh. The Auto Encoder is trained via gradient de-
scent to produce faithful reconstructions of a set
of input vectors {x(1), ...x(n)} by minimizing the
average, across training examples, of the recon-
struction error ||x(i) − y(i)||2.

After training, the latent representation h(x(i))
is often used for some other task. One strategy to
force h(xi)) to retain useful features is to train on a
partially corrupted version x̃(i) of x(i). This is the
idea behind the denoising Auto Encoder (dAE),
where part of the input vector x̃(i) is set to 0.0 with
probability v (the corruption level). The dAE is
then trained to reconstruct the uncorrupted input.

2.2 Predictive Component: Softmax Model

In stage 2, the model learns to predict words from
the embeddings obtained in stage 1. This is done
by maximizing the probability p(c|w; θ) of con-
text word c given target word w, for all pairs of
target and context words (w, c) ∈ D. To obtain
D, we first define an integer t > 0 as the con-
text window. Considering each sentence S from
the training corpus, for each target word wn ∈ S
at position n ≤ length(S), we sample an integer
tn from the uniform distribution {1, ...t}. We then
add the target-context word pairs {(wn, wn+j) :
0 < j ≤ tn, wi ∈ S} to D. Note that we only
sample words from the right context, instead of
from both left and right context. Aside from this
difference, stage 2 is comparable to the word2vec
skipgram model (Mikolov et al., 2013).

Here as there, the probability of a context word
given its target word can be defined as:

p(c|w; θ) =
evc·Tw∗∑

c′∈V e
vc′ ·Tw∗ (1)

where the embedding Tw∗ of target word w is a
row in the embeddings matrix T , vc is a vector
representation for context word c, and V is the vo-
cabulary. (1) is computed by a neural network with
a softmax output layer and weight matrix W , such
that vc is a row in W , and the parameters θ are W
and T . The training objective is the minimization
of the negative sum of log probabilities across all
target word – context word pairs.

29

3 Data

3.1 Corpus and Vocabulary

Training data are based on a concatenation of 18
POS-tagged English corpora2 from the CHILDES
database (MacWhinney, 2000). We only consider
utterances from the father and mother, i.e. utter-
ances whose speaker was coded with either FAT
or MOT (child-directed speech, or CDS). The con-
catenated North American and English corpora
contain 1.555.311 and 1.575.548 words of CDS,
respectively (3.130.859 words).

The vocabulary consists of the 2000 most fre-
quent nouns, verbs, adjectives, and closed class
words (words that are tagged as adverbs, commu-
nicators, conjunctions, determiners, infinitival to,
numerals, particles, prepositions, pronouns, quan-
tifiers, auxiliaries, wh-words, or modifiers), with
homophones disambiguated by POS tags. In to-
tal, we end up with 1010 nouns, 522 closed class
words, 302 verbs, and 166 adjectives.

3.2 Phonology and Lexical Stress

For each word from the vocabulary, we con-
struct a phonological feature vector by first ex-
tracting its sequence of phonemes from the
CELEX database (Baayen et al., 1995). Each
phoneme is then placed on a trisyllabic consonant-
vowel-grid, which is transformed into a 114-
dimensional binary vector by concatenating the
phonemes’ vector-representations, as given by Li
and MacWhinney (2002) (empty consonant-vowel
slots are assigned a vector of zeros). Once done
for every word, embeddings of similar-sounding
words tend to be close to one another in the em-
beddings space. Finally, in order to learn more
abstract phonological representations, the feature
vectors are reduced to 30 dimensions, using a dAE
trained for 200 epochs, with a learning rate of 0.1
and a corruption level of 0.1.

For each word, we also extract a lexical stress
component from the CELEX database, which we
transform into a binary vector of length three.
Each index corresponds to one of three possible
syllables, such that a one signifies the presence of
primary stress and a zero indicates its absence.

2UK corpora: Belfast, Manchester. US corpora:
Bates, Bliss, Bloom 1973, Bohannon, Brown, Demetras
– Trevor, Demetras – Working, Feldman, Hall, Kuczaj,
MacWhinney, New England, Suppes, Tardif, Valian, Van-
Kleeck. See the CHILDES manuals for references:
http://childes.psy.cmu.edu/manuals/

3.3 Training Set

Given the vocabulary V , we create the embed-
dings matrix T of size |V | × |V |, where each
row Tw∗ is a word embedding corresponding to a
unique target word w ∈ V and each column T∗c
corresponds to a unique context word c ∈ V . A
cell Twc is then the frequency with which c oc-
curs within a sentence-internal window of t = 3
words to the left of w, across all occurrences of w
in CDS. Rows are normalized to unit interval.

The model is trained in three conditions, with
the rows in T constituting the training set: (1) con-
text: T remains unchanged; (2) context + stress:
each row Tw∗ is concatenated with the lexical
stress feature vector of w; (3) context + phonol-
ogy: each row is concatenated with a phonological
feature vector.

4 Training Procedure and Evaluation

While the task is to predict words, we are inter-
ested in a side effect of the learning process: the
induction of representations whose organization in
vector space reflects syntactic categories. To mea-
sure this, we train a 10-NN classifier on the em-
beddings after each training epoch, with embed-
dings labeled by syntactic category, and we stop
training as soon as the micro F1 score does not in-
crease anymore.3 To avoid premature termination
of training due to fluctuations in F1 scores during
stage 1, we keep track of the epoch E at which we
got the best score A. If scores stay smaller than
or equal to A for 10 epochs, we terminate train-
ing and obtain the dimensionality-reduced embed-
dings for further training in stage 2 from the dAE’s
state at E. In stage 2, as there are no such fluctu-
ations, it is safe to terminate as soon as there is
no increase anymore. This procedure allows for as
many training epochs as are necessary for achiev-
ing the best results – between 22 and 30 in the first
and between 4 and 5 epochs in the second stage.

Performance is compared across stages as well
as to a majority vote baseline (each data point
is assigned the most common class) and a strat-
ified sampling baseline (class labels are assigned
in accordance with the class distribution). The ex-
pected pattern is that performance at each training
stage is both above baseline and significantly bet-

3We track the micro instead of the macro F1 measure be-
cause we think it is important for potential models of lan-
guage acquisition to correctly categorize a majority of words,
even at the expense of minority categories.

30

progress category
context context + stress context + phonology

prec. rec. ma. F1 mi. F1 prec. rec. ma. F1 mi. F1 prec. rec. ma. F1 mi. F1

before
stage 1

nouns 89 92

0.746 0.819

88 92

0.751 0.821

72 94

0.566 0.734
verbs 66 92 70 90 67 77
adj. 68 48 68 48 58 4
clos. cl. 82 68 82 70 88 52

after
stage 1

nouns 91 93

0.785 0.847

89 92

0.778 0.840

81 94

0.707 0.804
verbs 73 93 75 91 72 86
adj. 74 54 70 53 70 30
clos. cl. 84 73 83 73 89 66

after
stage 2

nouns 90 96

0.810 0.865

88 96

0.799 0.858

79 97

0.725 0.812
verbs 81 87 81 86 82 83
adj. 76 60 75 54 75 32
clos. cl. 86 77 86 76 90 66

Table 1: Precision and recall (in percent), together with micro and macro F1 scores, based on a 10-NN classifier trained on
the word embeddings at different stages during the training process.

ter than performance at the previous stage. Signif-
icance of differences is computed via approximate
randomization testing (Noreen, 1989),4 a statisti-
cal test suitable for comparing evaluation metrics
such as F-scores (cf. Yeh, 2000).

Results are based on a dAE with 400 hidden
units, trained with a learning rate of 0.01, and a
corruption level of 0.1. The softmax model was
trained with a learning rate of 0.008, with context
words sampled from a sentence-internal window
of t = 3 words to the right. Both models were
optimized via true stochastic gradient descent.

5 Results and Discussion

Table 1 shows precision, recall and F1 scores
based on a 10-NN classifier trained on the word
embeddings at three different points in time: (a)
before training begins, with scores based on the
input embeddings, (b) after stage 1, with embed-
dings projected into a lower-dimensional space,
and (c) after stage 2, with embeddings modified as
a result of predicting words from the right context.
F1 scores at every stage are highly significantly

different (p ≤ 0.001) from both the majority vote
baseline (macro F1 = 0.168, micro F1 = 0.505)
and the stratified sampling baseline (macro F1 =
0.247, micro F1 = 0.354). Across conditions, F1

scores after stage 1 are very significantly differ-
ent (p ≤ 0.01) from scores obtained before stage
1. Scores calculated after stage 2 are still signif-
icantly different (p ≤ 0.05) from scores at the
previous stage in the context and context + stress

4We used an implementation by Vincent Van Asch, avail-
able at: http://www.clips.uantwerpen.be/scripts/art

conditions, although there is no such significant
difference in the context + phonology condition
(but p ≈ 0.07 for the difference between micro
F1 scores). There is no significant difference be-
tween the context and context + stress conditions
at any stage, whereas the within-stage differences
between F1 scores in the context and context +
phonology conditions are all highly significant.

We can make at least three observations. (1)
The model performs as expected, in that there is
a significant increase in performance after every
stage – i.e., the induced word representations clus-
ter more closely in terms of syntactic categories
as training progresses. (2) The phonological com-
ponent does not improve on the context condition,
likely because phonological similarity often con-
flicts with syntactic similarity – most notably with
homophones, but also with words such as the verb
tickle and the noun pickle. (3) The lexical stress
features do not seem to help, as there is no signifi-
cant difference between the context and context +
stress conditions.

6 Conclusions and Future Work

In general, the model demonstrates that it is pos-
sible to augment prediction-based word embed-
dings with a count based component, such that
frequency counts serve as the basis of prediction
and are further refined as a result of predicting
right context. This can serve as a first step to-
wards utilizing prediction-based methods in order
to model childrens’ acquisition of syntactic cate-
gories through a process of (1) tracking backward
statistical regularities by writing to memory and

31

(2) tracking forward regularities via prediction
Apart from that, the model can be used to com-

pare the utility of different types of features. It
makes explicit the distinction, identified by Huet-
tig (2015), between cue of prediction (what is used
as the basis of prediction) and content of predic-
tion (what is predicted). Neither of the two possi-
ble cues of prediction we investigated turned out to
be helpful for the induction of syntactic categories.

The initial experiments described in this paper
emphasize different cues of prediction. In the fu-
ture, we plan to also predict different kinds of fea-
tures. Moreover, we plan to replace the psycholog-
ically implausible stage-like organization of the
model with a more incremental architecture.

Acknowledgments

The present research was supported by a
BOF/TOP grant (ID 29072) of the Research Coun-
cil of the University of Antwerp.

References
Alexander Yeh. 2000. More accurate tests for the sta-

tistical significance of result differences. Proceed-
ings of the 18th conference on Computational Lin-
guistics. Volume 2 (947–953).

Brian MacWhinney. 2000. The CHILDES project:
Tools for analyzing talk: Volume I: Transcription
format and programs, volume II: The database.
Computational Linguistics, 26(4):657–657.

Christopher M. Conway, Althea Baurnschmidt, Sean
Huang, and David B. Pisoni. 2010. Implicit sta-
tistical learning in language processing: word pre-
dictability is the key. Cognition, 114(3):356–371.

Eric W. Noreen. 1989. Computer Intensive Methods
for Testing Hypotheses: An Introduction. Wiley,
Hoboken, New Jersey.

Falk Huettig (in press). 2015. Four central questions
about prediction in language processing. Brain Re-
search, doi:10.1016/j.brainres.2015.02.014.

Franklin Chang, Gary S. Dell, and Kathryn Bock.
2006. Becoming Syntactic. Psychological Review,
113(2):234–272.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, David Warde-Farley, Yoshua
Bengio. 2012. Theano: new features and speed im-
provements. NIPS 2012 deep learning workshop.

Harald Baayen, Richard Piepenbrock, and Leon Gulik-
ers. 1995. The CELEX lexical database (CD-ROM
release 2). Linguistic Data Consortium, University
of Pennsylvania, Philadelphia, PA.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar,
October. Association for Computational Linguistics.

James Bergstra, Olivier Breuleux, Frédéric Bastien,
Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, Yoshua
Bengio 2010. Theano: A CPU and GPU Math
Compiler in Python. Proceedings of the Python
for Scientific Computing Conference (SciPy) 2010.
Austin, Texas.

Martin J. Pickering and Simon Garrod. 2007. Do
people use language production to make predictions
during comprehension? Trends in cognitive sci-
ences, 11(3):105–110.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3.

Ping Li and Brian MacWhinney. 2002. PatPho: A
phonological pattern generator for neural networks.
Behavior Research Methods, Instruments, & Com-
puters, 34(3):408–415.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. arXiv:1301.3781 [Compu-
tation and Language (cs.CL)]

Yoshua Bengio. 2009. Learning Deep Architectures
for AI. Foundations and Trends in Machine Learn-
ing, 2(1):1–127.

32

