
Lemmatization for variation-rich
languages using deep learning
..

Mike Kestemont, Guy de Pauw, Renske van Nie, and

Walter Daelemans

University of Antwerp, Belgium
...

Abstract
In this article, we describe a novel approach to sequence tagging for languages
that are rich in (e.g. orthographic) surface variation. We focus on lemmatization,
a basic step in many processing pipelines in the Digital Humanities. While this
task has long been considered solved for modern languages such as English, there
exist many (e.g. historic) languages for which the problem is harder to solve, due
to a lack of resources and unstable orthography. Our approach is based on recent
advances in the field of ‘deep’ representation learning, where neural networks
have led to a dramatic increase in performance across several domains. The
proposed system combines two approaches: on the one hand, we apply temporal
convolutions to model the orthography of input words at the character level;
secondly, we use distributional word embeddings to represent the lexical context
surrounding the input words. We demonstrate how this system reaches state-of-
the-art performance on a number of representative Middle Dutch data sets, even
without corpus-specific parameter tuning.

...

1 Introduction

Sequence tagging is a central problem in Natural
Language Processing (NLP) Jurafsky and Martin
(2009). It includes well-known applications such
as part-of-speech (PoS) tagging or lemmatization
Chrupala et al., 2008 and Toutanova et al., 2003,
which are basic, yet foundational stages in many
text processing pipelines in the Digital
Humanities. Lemmatization offers a form of nor-
malization which helps to more efficiently process
historic text corpora such as newspaper databases,
ranging from plain searching Manning et al. (2008)
to advanced text categorization tasks in e.g. stylom-
etry Van Dalen-Oskam and Van Zundert, 2007. For
present-day resource-rich languages, such as
English, the task of lemmatization is often con-
sidered solved. However, there exist many languages
for which these tasks are much more difficult.

First, there are the historic precursors of modern
languages. Most historic stages of present-day lan-
guages are characterized by the absence of a generally
accepted standard language and orthography. In pre-
modern times, language users typically enjoyed a rela-
tively larger freedom with respect to spelling and spa-
cing, since there onlyexisted local (orat most regional)
orthographical conventions (Piotrowski, 2012).
Therefore, the same word could appear in multiple,
roughly equivalent spellings—even within the same
text—which obviously presents major challenges to
computational applications when it comes to word
identification. The recent, dramatic growth in the
availability of historic text corpora in electronic form
has only increased users’ needs to be able to efficiently
deal with this kind of data in computer applications
(Ernst-Gerlach and Fuhr, 2006). Most systems de-
veloped for the lemmatization of present-day lan-
guages are not equipped to deal with large amounts

Correspondence:

Mike Kestemont, University

of Antwerp, Prinstraat 13

(S.D. 118), 2000 Antwerp,

Belgium.

E-mail:

mike.kestemont@uantwerp.be

Digital Scholarship in the Humanities � The Author 2016. Published by Oxford University Press on behalf of EADH.
All rights reserved. For Permissions, please email: journals.permissions@oup.com

1 of 19

doi:10.1093/llc/fqw034

 Digital Scholarship in the Humanities Advance Access published August 26, 2016
 by guest on January 3, 2017

http://dsh.oxfordjournals.org/
D

ow
nloaded from

Deleted Text: ly
Deleted Text: free
Deleted Text: --
Deleted Text: --
http://dsh.oxfordjournals.org/

of orthographic variation in the input and struggle to
reliably identify unknown words in unseen texts.
Naturally, this results in a considerable percolation
of errors to higher-end layers in a more complex pro-
cessing pipeline (e.g. full syntactic parsers).

Secondly, there exist many present-day resource-
scarce languages, for which far fewer resources are
available, e.g. in the form of annotated corpora.
Both historic and resource-scarce languages make
up the focus of many Digital Humanities projects,
targeting the better exploitation or preservation of
(specific cultural artefacts in) these languages. For
these too, however, many of the available lemma-
tizers are not sufficiently equipped to deal with the
advanced sub-word level variation, nor to optimally
exploit the few resources that are available.

Needless to say, the availability of efficient lemma-
tizers for historic and/or low-resource languages is
therefore a desideratum across various fields in huma-
nities computing. In this article, we describe a novel,
language-independent approach to sequence tagging
for variation-rich languages. To this end, we applya set
of techniques from the field of ‘Deep’ Representation
learning, a family of algorithms from Machine
Learning basedon neural networks, whichhas recently
led to a dramatic increase in performance across vari-
ous domains. In this article, we will first survey some of
the most relevant related research, before we go on to
introduce the field of deep learning. We then describe
the architecture of our lemmatizer and discuss the
Middle Dutch data sets on which we will evaluate
our system. After presenting the results, we offer an
interpretative exploration of our trained models. We
conclude with a set of pointers for future research,
stressing the considerable potential of representation
learning for the Humanities at large.

2 Related Research

Lemmatization is closely related to morphological ana-
lysis and PoS tagging, which are a popular research
domain in computational linguistics, with recent stu-
dies especially focusing on unsupervised learning and
on(low-resource) languages witha rich morphologyor
inflectional system (e.g. Mitankin et al., 2014). An im-
portant boost in NLP research for such languages has

been inspired by the increase in computer-mediated
communication (CMC: Crystal, 2001), including re-
search into the normalization of Instant Messaging or
posts on online blogging platforms, such as the popular
micro-blogging service Twitter. In CMC too, we find a
wildproliferationof language variationinwritten com-
munication, especially affecting surface phenomena
such as spelling. A common solution to the problem
of spelling variants in CMC is to apply some form of
spelling normalization before subsequent processing.
Similar research has been reported in the field of post-
Optical Character Recognition(OCR) error correction
(Reynaert et al., 2012). Spelling normalization essen-
tially involves replacing a non-canonical surface token
by a standard form (e.g. Beaufort et al., 2010, Chrupala,
2014), as would be done with spelling correctors in
modern word processing applications. In social
media, a variety of approaches have been suggested
(Schulz et al., 2016), including e.g. transliteration
approaches borrowed from Machine Translation (e.g.
Ljubešić et al., 2014).

The field of NLP for Historical Languages has re-
cently been surveyed in a dedicated monograph
(Piotrowski, 2012). The problem of orthographical
variation naturally plays a major role in this over-
view. Recent representative contributions in this
field include Hendrickx and Marquilhas (2011) and
Reynaert et al. (2012) for historical Portuguese,
Scherrer and Erjavec (2013) for historical Slovene,
Bollmann (2012) for Early New High German, or
Bouma and Hermans (2012) on the automated syl-
labification of Middle Dutch. One characteristic fea-
ture that sets this kind of research into present-day
languages apart from historical language research, is
that for modern languages, researchers typically are
able to normalize noisy language data into an exist-
ing, canonical standard form. Nevertheless, the ma-
jority of historical languages lack such a canonical
orthographic variant, and therefore, this solution
can rarely be applied (Souvay and Pierrel, 2009): in
the absence of a standard language, words simply do
not have a single, canonical spelling by which other
non-standard spellings can be replaced. It is therefore
also common to annotate words with other sorts of
labels, instead of attempting an explicit respelling.
Lemmas are often used in this respect Van der
Voort van der Kleij, 2005: a lemma is a normalized

M. Kestemont et al.

2 of 19 Digital Scholarship in the Humanities, 2016

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: i
Deleted Text: s
Deleted Text: s
Deleted Text: paper
Deleted Text: ``
Deleted Text: ''
Deleted Text: paper
Deleted Text: s
Deleted Text: Research
Deleted Text: part-of-speech
Deleted Text: Natural Language Processing
http://dsh.oxfordjournals.org/

label, which unambiguously links words to the same
entry (headword) in a lexical resource, such as a dic-
tionary, if they only differ in inflection or spelling
(Knowles and Mohd Don, 2004).

In the present article, we conceive of lemmatiza-
tion as a high-dimensional classification task, where
lemmas are assigned to tokens as class labels (i.e.
dictionary headwords are the system’s output).
Therefore, our lemmatizer does not perform any ex-
plicit PoS disambiguation (although the system could
easily be trained on PoS labels too). Because of this
classification setting, the proposed lemmatizer will
not be able to predict new, unseen lemmas at test
time because it has not seen these labels during trai-
ning(cf. Chrupala et al., 2008). However, this also pre-
vents the lemmatizer from outputting non-existent,
‘gibberish’ labels, which is desirable, given the limited
size of our data sets. Lemmatization too has been an
active area of research in computational linguistics,
especially for languages with a rich inflectional
system (Daelemans et al., 2009; Scherrer and Erjavec,
2013; De Pauw and De Schryver, 2008; Lyras et al.,
2008). Many studies apply a combination of existing
taggers (for contextual disambiguation) with an opti-
mized spelling normalization component to better
deal with unknown words.

One rough distinction which could be made, is be-
tween ‘online’ and ‘offline’ approaches. In ‘online’
approaches, when confronted with an unknown
word at the testing stage, systems will explicitly at-
tempt to identify the unknown word as a spelling vari-
ant of a known token (i.e. a token which was seen
during training) before applying any disambiguation
routines. To this end, researchers typically apply a
combination of (weighted) string distance measures
(e.g. Levenshtein distance: Levenshtein, 1966). While
the online strategy might result in a high recall, it can
also be expensive to apply because the unknown token
has to be matched with all known tokens and some
string distance measures can be costly to apply. The
offline strategy follows a different road: at training
time, it will attempt to generate new plausible spelling
variants of known tokens, through aligning words and
applyingcommoneditpatternstogeneratenewforms.
At the testing stage, new words can simply be matched
against the newly generated forms. Interestingly, this
approach will be fast to apply during testing (and

might result in a high precision), but it might also
suffer from the noise being introduced in the variant
generation phase (e.g. overlapping variants).1 Van
Halteren and Rem (2013) have reported the successful
application of such an approach, which is in many
ways reminiscent of the generation of search query
variants in Information Retrieval research.

3 ‘Deep’ Representation Learning

In this article, we describe a novel system for
lemmatization using ‘deep’ representation learning,
which has barely been applied to the problem of
lemmatization for historic and/or low-resource lan-
guages specifically. Importantly, we will show that a
single system reaches state-of-the-art tagging per-
formance across a variety of data sets, even without
the problem-specific fine-tuning of hyper-param-
eters. Deep learning is a popular paradigm in ma-
chine learning (LeCun et al., 2015). It is based on
the general idea of multi-layer neural networks, soft-
ware systems in which information is propagated
through a layered architecture of inter-connected
neurons (or information units) that iteratively
transform the input information and feed it to sub-
sequent layers in the networks. While theoretically,
the idea of neural networks has been around for a
long time, it has only recently become feasible to
train more complex architectures because of the
millions of parameters that typically have to be opti-
mized during training.

Deep learning is part of a broader field called
representation learning or feature learning (Bengio
et al., 2013). Deep learning can indeed be contrasted
with more traditional approaches in machine learn-
ing, in that it is very much geared towards finding
good representations in the input data or extract
‘features’ from it. Roughly put, traditional learning
algorithms would be very much dependent on a
researcher’s representation of the input data and
would try to solve a task on the basis of the particu-
lar features suggested and manually engineered by
the researchers. In Deep Learning, the process of
feature engineering is to a larger extent outsourced
to the learning algorithm itself. Instead of solely
relying on the pre-specified features in the input

Lemmatization for variation-rich languages

Digital Scholarship in the Humanities, 2016 3 of 19

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: paper
Deleted Text: ,
Deleted Text: ,
Deleted Text: '
Deleted Text: s
Deleted Text: ,
Deleted Text: ``
Deleted Text: ''
Deleted Text: paper
Deleted Text: ``
Deleted Text: ''
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: ,
Deleted Text: ``
Deleted Text: ''
http://dsh.oxfordjournals.org/

data (i.e. hand-crafted by humans), deep neural net-
works will attempt to independently recombine the
existing input features into new combinations of
features, which typically offer a better representation
of the input data. It does so by iteratively projecting
the input onto subsequent layers of information
units, which are typically said to increasingly cap-
ture more abstract and complex patterns in the
input data (Bengio et al., 2013).

The intuition behind deep learning is typically
illustrated using an example from computer
vision, the field where some of the earliest break-
throughs in Deep Learning have been reported (e.g.
handwritten digit recognition: LeCun et al., 1990).
In computer vision, images are typically represented
as a two-dimensional raster of pixels, which can take
certain values across a series of input channels (e.g.
one for every color in the RGB spectrum). When
propagating an input image through a layered
neural network, it has been shown that the earliest
layers in the network will be receptive to very raw,
primitive shapes in the data, such as a corner, parts
of a curve, or a stark light-dark contrast called
‘edges’ (LeCun et al., 2015). Only at subsequent
layers in the network, these primitive forms are
recombined into higher-level units, such as an eye
or ear. At still higher layers, the network will even-
tually become sensible to complex units such as
faces. It can therefore be said that such neural net-
works are able to learn increasingly abstract
(re)combinations of the original features in the
input (Bengio et al., 2013). Interestingly, it has
been shown that visual perception in mammals
works in a highly similar, hierarchical fashion
(Cahieu et al., 2014). Because of its hierarchical
nature, this form of learning is commonly called
‘deep’, since it increasingly captures ‘deeper’ aspects
of the problem it is working on.

4 Architecture

The system architecture we describe here primarily
builds upon two basic components derived from
recent studies in Deep Learning for NLP: (i) one-
dimensional, or ‘temporal’ ‘convolutions’, to
model the orthography of input words at the

character-level; and (ii) word ‘embeddings’, to
model the lexical context surrounding the input
tokens, for the purpose of disambiguation. We will
first introduce the type of ‘subnets’ associated with
both components, before we go on to discuss how
our architecture eventually combines these subnets.

4.1 Convolutions
Convolutions are a popular approach in computer
vision to battle the problem of ‘translations’ in
images (LeCun et al., 1990, 2015). Consider an
object classification system, whose task it is to
detect the presence of certain objects in an image.
If during training, the system has come across e.g. a
banana in the upper-left corner of a picture, we
would like the system to be able to detect the
same object in new images, even if the exact location
of that object has shifted (e.g. towards the lower-
right corner of the image). Convolutions can be
thought of as a fixed size window (e.g. 5�5 pixels)
which gets slided over the entire input image in a
stepwise fashion. Convolutions are therefore also
said to learn ‘filters’, in that they learn a filtering
mechanism to detect the presence of certain fea-
tures, irrespective of the exact position in which
these features occur in the image. Importantly,
each filter will scan the entire image for the local
presence of a particular low-level feature (e.g. the
yellow-coloured, curved edge of the banana), and
detect it irrespective of the exact position of the
feature (e.g. lower-right corner versus upper-left
corner). Typically, convolutions are applied as the
initial layers in a neural network, before passing on
the activation of filters to subsequent layers in the
network, where the detected features can be recom-
bined into more complex features (e.g. an entire
banana). Whereas convolutions in vision research
are typically two-dimensional (cf. raster of pixels),
here we apply convolutions over a single dimension,
namely the sequence of characters in an input word.
The idea to apply convolutions to character series in
NLP has recently been pioneered by Zhang et al.
(2015), reporting strong results across a variety of
higher-end text classification tasks. Such convolu-
tions have also been called ‘temporal’ convolutions
because they model a linear sequence of items.

M. Kestemont et al.

4 of 19 Digital Scholarship in the Humanities, 2016

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: x
Deleted Text: ,
http://dsh.oxfordjournals.org/

Representing input words as a sequence of char-
acters (i.e. at the sub-word level) has a considerable
advantage over more traditional approaches in se-
quence tagging. Here, input words are typically rep-
resented using a ‘one-hot vocabulary encoding’:
given an indexed vocabulary of n known tokens,
each token is represented as a long vector of n
values, in which the index of one token is set to 1,
whereas all other values are set to 0. Naturally, this
leads to very sparse, high-dimensional word repre-
sentations. In such a one-hot representation, it is
therefore not uncommon to apply a cut-off and
only encode the more frequent vocabulary items,
to battle the sparsity of the input data. Of course,
a one-hot vector representation (especially with a
severe cut-off) cannot represent new, unseen
tokens at test time, since these do not form part
of the indexed training vocabulary. Most systems
for tasks like PoS tagging would in those cases
back off to additional (largely hand-crafted) features
to represent the target token, such as the final char-
acter trigram of the token to capture the token’s
inflection (e.g. Zavrel and Daelemans 1999).

The character-level system presented here does
not struggle to model out-of-vocabulary words.
This is a worthwhile characteristic with respect to
the present use case: in languages with a rich ortho-
graphical and morphological variation, the dimen-
sionality of word-level one-hot vectors dramatically
increases because the token vocabulary is much
larger, and thus, the effect of applying a cut-off
will also be more dramatic (Kestemont et al.,
2010). Additionally, the proportion of unknown
target tokens at test time is of course much more
prominent than in traditional languages, due to
spelling variation. Therefore, our architecture aims
to complement, or even replace, a conventional
one-hot encoding with a convolutional component.

With respect to the convolutional subnet, our
system models each input token as a sequence of
characters, in which each character is represented
as a one-hot vector at the character level. As the
example in Table 1 shows, this leads to an at-first-
sight primitive, yet much lower-dimensional token
representation compared to a traditional token-level
one-hot encoding, which, additionally, is able to
represent out-of-vocabulary items. We include all

characters in the character index used. We specify
a certain threshold t (e.g. 15 characters): words
longer or shorter than this threshold are, respect-
ively, truncated to the right to length t or are padded
with zero-filled vectors. In an analogy to computer
vision research, this representation models charac-
ters as if they were ‘pixels’, with a channel dedicated
to a single character.

Our model now slides convolutional filters over
this two-dimensional representation, with a length
of 3 and a stride (or ‘step size’) of 1. In practice, this
will mean that the convolutional layer will itera-
tively inspect partially overlapping, consecutive
character trigrams in the input string. This repre-
sentation is inspired by the generic approach to se-
quence modelling in NLP followed by Zhang et al.
(2015: character-level convolutions), as well as
Dieleman and Schrauwen (2014: one-dimensional
convolutions for music) and Kalchbrenner et al.
(2014: word-level convolutions on the basis of pre-
trained embeddings). At the input stage, each target
token is represented by a n � t matrix, where n
represents the number of distinct characters in a
data set and t is the uniform length to which each
target token is normalized through padding with
trailing zeroes or through cutting characters.

We motivate the choice for a convolution ap-
proach to model orthography on the basis of the
following considerations. When using a filter size
of e.g. 3, the receptive field size of the learned filters
roughly corresponds to that of syllable-like groups
in many languages (e.g. consonant-vowel-consonant
groups). One would therefore expect the filters to
become sensitive morpheme-like characteristics.
The most interesting aspect of convolutions seems
that the learned filters are being detected across all
positions in the input string, which is likely to
render the detection of morphemes less sensitive
to their exact position in a word. This is a valuable
property for our corpora, since the non-standard
orthography often allows the introduction of silent
characters (e.g. ‘gh’ for ‘h’), causing local character
shifts in the input, or the kind of ‘translations’ in
computer vision, to which we know convolutions
are fairly robust (‘gelik’ vs ‘ghelik’).2 Finally, it
should be stressed that the learned filters can be
expected to offer a flexible string representation: a

Lemmatization for variation-rich languages

Digital Scholarship in the Humanities, 2016 5 of 19

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: ``
Deleted Text: ''
Deleted Text: in order
Deleted Text: part-of-speech
Deleted Text:
Deleted Text:
Deleted Text: ,
Deleted Text: and shorter words
Deleted Text: x
http://dsh.oxfordjournals.org/

filter which learned to detect the pattern ‘dae’ might
still be responsive to the pattern ‘dai’, which is
useful since ‘i’ and ‘e’ were often used interchange-
ably as vowel lengthening graphemes in the medi-
eval language considered here.

4.2 Embeddings
Many sequence taggers crucially depend on context-
ual information for disambiguating tokens. In the
classic example ‘The old man the boat’, contextual
information is needed to determine that ‘man’ in
this sentence should be tagged as ‘verb’, instead of
the more common ‘noun’ tag for this token. Most
modern taggers therefore integrate a lexical repre-
sentation of the immediate context of an input
token, e.g. the two tokens preceding the input
token to the left and a single token to the right.
Roughly put, traditional architectures will typically
represent this context using a one-hot encoder at
the token-level: for each token in the positional skel-
eton surrounding the input token, a high-dimen-
sional vector will record the presence using the
index of the previously indexed training tokens
(e.g. Zavrel and Daelemans 1999). To battle sparsity
in the contextual representation too, it is again not
uncommon to apply a frequency-based cut-off here,
or even only record the presence of a small set of
functors surrounding the input token or even hand-
crafted features (such as the last two characters of
the word preceding the input string as they often
coincide with morphological suffixes).

Because of the sparsity associated with one-hot
encodings, research in NLP has stressed the need for
smoother, distributional representations of lexical
contexts in this respect. As the size of the context

windows considered increases, it becomes increas-
ingly difficult to obtain good, dense representations
of contexts, especially if one restricts the model to
strict n-gram matching (Bengio et al., 2003). A
simple example: in a word sequence like ‘the black
fat cat’ or ‘the cute white cat’, the PoS category of
‘cat’ can be partially inferred from the fact that two
adjectives precede the target token. When presented
with the new examples ‘the fat white cat’ or ‘the cute
fat cat’, the left contexts ‘fat white’ and ‘cute fat’ will
fail to find a hard match to one of the training
contexts in the case of a strict matching process.
Naturally, we would like a model to be robust in
the face of such naive transpositions.

An important line of research in current NLP
therefore concerns the development of models
which can represent words not in terms of a
simple one-hot encoder, but by using smooth,
lower-dimensional word representations. Much of
this research can be situated in the field of distribu-
tional semantics, being guided by the so-called
‘Distributional Hypothesis’ that words in themselves
do not have real meaning in isolation, but that
words primarily derive meaning from the words
they tend to co-occur with, i.e. their lexical context
(Harris, 1954; Firth, 1957). While �blarf is a non-
existing word, its use in the following sentences sug-
gests that it refers to some sort of domestic animal,
perhaps a dog: ‘I’m letting the �blarf out’, ‘I’m feed-
ing the �blarf’, ‘The �blarf ate my homework’. Thus,
by modelling patterns of word co-occurrences in
large corpora, research has demonstrated that vari-
ous unsupervised techniques can yield numeric
word representations that offer useful approxima-
tions of the meaning of words (Baroni and Lenci,

Table 1 Illustration of the character-level representation of input tokens. Dummy example with length threshold t set

at 15 and a restricted character vocabulary of size 7, for the Middle Dutch word coninghinne (‘queen’)

char c o n i n g h i n n e - - - -

c 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

g 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

h 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

i 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

n 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0

o 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

M. Kestemont et al.

6 of 19 Digital Scholarship in the Humanities, 2016

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: Zavrel et al., 1999
Deleted Text: part-of-speech
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
http://dsh.oxfordjournals.org/

2010). The vectors which make up such word rep-
resentations are also called ‘word embeddings’ be-
cause they reflect how words are contextually
‘embedded’ in corpora.

The past years have witnessed a clear increase in
the interest in distributional semantics, in particular
in the field of deep learning for NLP. Mikolov et al.
(2013) have introduced an influential ‘skipgram’
method to obtain word vectors, commonly known
as ‘word2vec’. Because the underlying method at-
tempts to optimize a fairly simple training criterion,
it can be easily applied to vast quantities of text,
yielding vectors which have shown excellent per-
formance in a variety of tasks. In one popular ex-
ample, Mikolov et al. (2013) even showed that is
possible to solve relatively advanced analogical
problems applying plain vector arithmetic to the
word embeddings obtained from large corpora.
The result of the arithmetic expression ‘vec-
tor(king)-vector(man)þvector(woman)’, for in-
stance, yielded a vector which was closest to that
of the word ‘queen’. Other illustrative examples in-
clude: ‘vector(russia)þvector(river) � vector
(wolga)’ and ‘vector(paris)-vector(france)þvector
(belgium) � vector(brussels)’.

Follow-up studies have stressed that other tech-
niques can yield similar results and that the theor-
etical foundations of the word2vec algorithm still
need some clarification (Levy and Golberg, 2014).
Nevertheless, the fact that Mikolov et al. published a
highly efficient open-source implementation of the
algorithm has greatly contributed to the state of the
art in the field of word representation learning.3 An
increasing number of applications in NLP include
some form of word embedding strategy in their
pipeline as a ‘secret sauce’ (Manning, 2015). An es-
sential quality of modern word embeddings is that it
has been shown that they are not restricted to se-
mantic aspects of words but that they also model
morpho-syntactic qualities of words, illustrated by
the fact that purely syntactic analogies often can also
be solved ‘vector(her)-vector(she)þvector(he) �
vector(his)’.

The number of recent studies using word embed-
dings in NLP research is vast. A relevant example for
the present research includes, for instance, the type
of word embeddings used in the Twitter taggerT

ab
le

2
O

ve
rv

ie
w

o
f

so
m

e
o

f
th

e
m

et
ad

at
a

an
d

ch
ar

ac
te

ri
st

ic
s

o
f

th
e

M
id

d
le

D
u

tc
h

co
rp

o
ra

u
se

d
in

th
is

st
u

d
y

N
am

e
C

o
rp

u
s-

G
ys

se
li

n
g:

L
it

er
ar

y
te

xt
s

C
o

rp
u

s-
G

ys
se

li
n

g:

A
d

m
in

is
tr

at
iv

e
te

xt
s

M
is

ce
ll

an
eo

u
s

re
li

gi
o

u
s

te
xt

s
V

an
R

ee
n

en
-M

u
ld

er
-

A
d

el
h

ei
d

-c
o

rp
u

s

A
b

b
re

vi
at

io
n

C
G

-L
IT

C
G

-A
D

M
IN

R
E

L
IG

A
D

E
L

H
E

ID

O
ri

gi
n

In
st

it
u

te
fo

r
D

u
tc

h
L

ex
ic

o
gr

ap
h

y
In

st
it

u
te

fo
r

D
u

tc
h

L
ex

ic
o

gr
ap

h
y

C
L

iP
S

C
o

m
p

u
ta

ti
o

n
al

L
in

gu
is

ti
cs

G
ro

u
p

an
d

R
u

u
sb

ro
ec

In
st

it
u

te
,

U
n

iv
er

si
ty

o
f

A
n

tw
er

p

R
ad

b
o

u
d

U
n

iv
er

si
ty

N
ij

m
eg

en
et

c.

#
in

d
iv

id
u

al
te

xt
s

30
1,

57
4

33
6,

79
2

T
ex

t
va

ri
et

y
M

is
ce

ll
an

eo
u

s
li

te
ra

ry
te

xt
s

(m
o

st
ly

rh
ym

ed
)

w
h

ic
h

su
rv

iv
e

fr
o

m
o

ri
gi

n
al

m
an

u
sc

ri
p

ts

d
at

ed
b

ef
o

re
13

00
A

D

13
th

ce
n

tu
ry

ch
ar

te
rs

M
is

ce
ll

an
eo

u
s

re
li

gi
o

u
s

te
xt

s

(e
.g

.
B

ib
le

tr
an

sl
at

io
n

s,
m

ys
ti

ca
l

vi
si

o
n

s,
se

rm
o

n
s)

sp
an

n
in

g
m

u
lt

ip
le

ce
n

tu
ri

es
an

d
re

gi
o

n
s

14
th

ce
n

tu
ry

ch
ar

te
rs

Lemmatization for variation-rich languages

Digital Scholarship in the Humanities, 2016 7 of 19

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: ``
Deleted Text: '',
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
http://dsh.oxfordjournals.org/

described by Godin et al. (2014), but the literature
abounds in other examples. In our system, we train
a vanilla word2vec model, using a popular imple-
mentation of the original skipgram model.4 This
model learns to project the tokens in our training
data in a vector space consisting of 150 dimensions.
The general intuition underlying the embeddings
subnet in our architecture, is that the underlying
skipgram model will have learned similar embed-
dings for words that have certain similar qualities,
both at the semantic and morpho-syntactic level—
in the ‘cat’ example above, we might expect that a
model would learn similar embeddings for the
‘white’ or ‘black’ because they are both adjectives
referring to colours. Additionally, an interesting
aspect for our medieval data, is that the word
embeddings learned might also be sensitive to
orthographic or dialectical variation, providing
similar embeddings from words that are spelling
variants of each other, or words that are typical of
specific dialects.

For the subnets representing the lexical context
on either side, we first construct a simple one-hot
encoding of the context tokens with a traditional,
minimum frequency-based token cut-off of two oc-
currences. We then project these tokens onto a
standard dense layer which has the same dimension-
ality as our skipgram model—here and elsewhere,

taking the form of a simple matrix multiplication,
the addition of a bias, and a nonlinearity (a ‘recti-
fied linear unit’: Nair and Hinton, 2010).
Importantly, this implies that we can initialize the
weights of this layer using the pretrained embed-
dings from the skipgram model, but that these
weights can be further refined during the training
phase (see below). This initialization strategy can be
expected to speed up the convergence of the model.
We simply concatenate the dense vectors obtained
for each context word on either side of the target
token into a left-context subnet and a right context
subnet. The number of context words is of course a
hyper-parameter which can be further tuned.

4.3 Combining the subnets
In our system (see Figure 1 for an overview), we
again use a networked strategy to combine the con-
volutional subnet, used to represent the focus token,
with the subnets representing the left and right con-
text of the focus token. Next, we feed the output of
the convolutional net forward in the network using
a plain dense layer that has a dimensionality of size
k ¼ 1024). At this point, the concatenated embed-
dings of the left and right context subnets have also
been propagated to two vectors of size k. We can
also include a one-hot encoding of the target
tokens, which is propagated through a dense layer

Table 3 Tabular overview of some the main token counts etc. of the Middle Dutch corpora used in this study. The

‘upperbound unknown’ column refers the proportion of tokens that have lemmata which also occur in the corres-

ponding training data set; this is the theoretically maximal score which a lemmatizer could achieve for the unknown

tokens

Corpus Split Number

of words

Unique

tokens

Unique

lemmas

Number of tokens

per lemma

Perc. unknown

tokens

Upperbound

unknown

relig train 129,144 14,668 6,103 2.65 NA NA

dev 16,143 3,686 2,031 1.93 6.93 68.78

test 16,143 3,767 1,999 2.01 7.44 72.86

crm-adelheid train 575,721 41,668 11,163 4.1 NA NA

dev 165,883 17,466 5,547 3.42 6.46 78.05

test 80,015 11,645 4,057 3.1 6.07 79.07

cg-lit train 464,706 47,460 15,454 3.38 NA NA

dev 58,661 11,557 5,004 2.48 6.46 74.38

test 58,903 11,692 5,001 2.51 6.65 74.94

cg-admin train 518,017 42,694 13,129 3.42 NA NA

dev 54,290 8,753 3,527 2.57 6.39 74.76

test 65,936 11,318 4,954 2.39 9.18 64.31

M. Kestemont et al.

8 of 19 Digital Scholarship in the Humanities, 2016

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: --
Deleted Text: ,
Deleted Text: 2
Deleted Text: --
http://dsh.oxfordjournals.org/

of size k. This final layer might be important to have
the network obtain a good fit of known tokens: below
we will explore whether the convolutional layer alone
has sufficient capacity to reliably represent the entire
vocabulary of training tokens.

At this point, we have four subnets in the network,
each of dimensionality k: one resulting from the one-
hot encoding of the input token, one resulting from
the convolutional encoding of the input token, and
two resulting from the embeddings subnets for the
left and right context. Finally, we concatenate the
output of these subnets into a vector of size 4 � k
and project it onto an output layer which for each
class in the sequence modelling task has a unique
output neuron. A standard ‘softmax’ normalization
is applied to normalize the activations of these
output neurons, as if they were probabilities (sum-
ming to 1). All the parameter weights in this architec-
ture are first initialized using a random distribution,
except for the contextual subnets, which are initialized
using the word2vec weights. We train the neural net-
work using gradient descent. Briefly put, this learning
algorithm will start predicting a batch of the training
examples using the randomly initialized weights. It will
then calculate the prediction loss in which this results
with respect to the correct labels, which will initially be
extremely high. Then, it will determine how each
weight individually contributed to this loss and sub-
sequently apply a small update to this weight, which

would have decreased the prediction error which it
caused.

During a fixed number of epochs (100 in our
case), we feed the training data through this net-
work, divided in a number of randomly jumbled
mini-batches, each time tightening the fit of the
network with respect to the correct class labels.
During training (see Figure 2), the loss of the net-
work is not measured in terms of accuracy, but in
terms of cross-entropy, a common loss measure for
classification tasks. We adopt a mini-batch size of
50: this is a fairly small batch size compared to the
literature, but this restricted batch size proved ne-
cessary to avoid the higher-frequency items from
dominating the gradient updates. We use the adap-
tive, so-called Adadelta optimization mechanism
(Zeiler, 2012). Importantly, the Adadelta routine
prevents the need to empirically set a learning rate
at the beginning of training, since the algorithm will
independently re-adapt this rate, keeping track of
the loss history on a per-weight basis.

4.4 General comments
All dense connections in this network take the form
of a matrix multiplication and the addition of a bias
(X � Wþ b) and make use of a ‘relu’ activation
(‘rectified linear unit’), which will ignore negative
weights outputted by the dense layer by setting them
to zero. Additionally, all dense layers make use of

Fig. 1 Schematic visualization of the network architecture evaluated in this article. Embedding layers are used on both
sides of the focus token as ‘subnets’ to model the lexical context surrounding a token. The token itself is primarily
represented using a convolutional subnet at the character-level (and potentially also an embedding layer). The results of
these subnets are concatenated into a single hidden representation, which is used to predict the correct lemma at the top
layer of the network

Lemmatization for variation-rich languages

Digital Scholarship in the Humanities, 2016 9 of 19

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: x
Deleted Text: ``
Deleted Text: ''
Deleted Text: ``
Deleted Text: ''
http://dsh.oxfordjournals.org/

the so-called dropout procedure during training
(with p¼ 0.50), meaning that in each mini-batch,
half of the connections in the dense layers are ran-
domly dropped (Srivastava et al., 2014). This tech-
nique has various beneficial effects on training, the
most important one being that it forces the network
to be less dependent on the specific presence of cer-
tain features in the input, thereby avoiding over-
fitting on specific instances in the training data.
An implementation of the proposed architecture is
freely available from the public software repository
associated with this paper.5 Where possible, this re-
pository also holds the data used below. Our system
is implemented in Python, using the keras library
built on top of theano (Bastien et al., 2012); the
latter library provides automatic differentiation for
arbitrary graphs and allows to execute code on the
Graphics Processing Unit (GPU).6 Other major
dependencies of our code include scikit-learn
(Pedregosa et al., 2011) and gensim.

5 Data Sets

In this article we report results on four different
Middle Dutch data sets (see Table 2), which offer
a representative example of a medieval European
language Van Kerckvoorde (1992). We should
stress that our system is fairly language independent,
and could easily be retrained on other types of cor-
pora, as long as they use a character alphabet. In this
article, we first of all use two administrative data
sets, representing charter collections. The CG-ADMIN

contains the charter collection edited by Gysseling
(1977) which has been digitized and annotated by
the Institute for Dutch Lexicography (1998). These
charters all survive in originals predating ca. 1300
AD. Secondly, we use the CRM-ADELHEID collection, a
comparable collection of fourteenth century Middle
Dutch charters, which has been the subject of a
study comparable to ours (Van Halteren and Rem,
2013). As literary materials, we first of all use the
literary counterpart of CG-ADMIN in the Corpus-
Gysseling, a collection of Middle Dutch literary
texts that all survive in manuscript copies predating
ca. 1300 AD (Gysseling, 1980-1987; Institute Dutch
for Lexicography, 1998; Kestemont et al., 2010).

Thirdly, we also use a newly created smaller
corpus of Middle Dutch religious texts (e.g. ser-
mons, bible translation, visions, . . .), most of
which are at least semi-literary in nature. This last
data set (RELIG) is contained in our code repository.

These data sets have all been annotated using
common annotation guidelines, although they
each show a number of important idiosyncrasies.
Table 4 shows an example of the data. Generally
speaking, we adopt the annotation practice which
has been developed by Piet van Reenen et al. and
which has been carefully documented in the context
of the release of the Adelheid tagger-lemmatizer for
Middle Dutch charters (Van Halteren and Rem,
2013).7

Each token in the corpora has been annotated
with a normalized dictionary headform or lemma
in a present-day spelling. Broadly speaking, lemma-
tization allows us to abstract over individual in-
stances of tokens which only differ in inflection or
orthography (Knowles and Mohd Don, 2004). For
historical corpora, this has interesting applications
in the context of database searching, (diachronic)
topic modelling or stylometry. The lemmas used
in our corpora all correspond to entries in the
Integrated Language Database (GTB) for the

Table 4 Example of some training data from the RELIG

corpus, from the Seven Manieren van Heilige Minnen

(‘Seven Ways of Holy Love’) by the mystical poetess

Beatrice of Nazareth (‘These are seven ways of loving,

which come from the highest.’). The first column shows

the original input token, the second the lemma label. Note

that some forms require a composite lemma, e.g. uitþ de

for uten)

Token Lemma

seuen zeven

maniren manier

sin zijn

van van

minnen minne

; ;

die die

comen komen

uten uitþde

hoegsten hoogste

M. Kestemont et al.

10 of 19 Digital Scholarship in the Humanities, 2016

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: paper
Deleted Text: paper
Deleted Text: 1998
Deleted Text: s
Deleted Text: s
http://dsh.oxfordjournals.org/

Dutch language, which can be consulted online and
which is maintained by the Institute for Dutch
Lexicography.8 The major advantage of using a pre-
sent-day lemma in this context, is that this allows
scholars to normalize texts from multiple historic
stages of Dutch to the same variant. This in turn
allows interesting diachronic analyses of Dutch cor-
pora, such as the ones currently prepared in the
large-scale Nederlab project.9

6 Evaluation

To train and evaluate our system, we apply a con-
ventional split of the available data into a training
set (80%), a development set (10%) and a held-out
test set (10%) see Table 3. While we report the per-
formance and loss for the training and development
data, the final performance of our system is reported
by evaluating a system on the held-out test data (the
system trained on the training data only, i.e. not
including the development data). We evaluate the
system’s performance on the development and test
data in terms of overall accuracy, as well as the ac-
curacy for known and unknown words (at test time)
separately.

For the literary and administrative data, we
follow two different strategies to divide the available
data into training, development and test sets. For
the administrative data (the charter collections CG-
ADMIN and CRM-ADELHEID), we follow the approach by
Van Halteren and Rem. (2013) to make our splitting
as comparable as possible to theirs.10 Each charter in
these collections is associated with a historic date:
we first sort all the available charters in each corpus
according to their date and assign a rank to each
charter. We then divide the material by assigning to
the development set all charters which have a rank
index ending in 9, and to the held-out test set all
those with an index ending in 0. The training ma-
terial consists of the rest of the charters. The advan-
tage of this splitting approach is that charters from
various time periods and regions are evenly distrib-
uted over the sets.

For the literary data sets (CG-LIT and RELIG), the
situation is more complex, since we only have at our
disposal a limited set of texts that greatly vary in

length (especially for CG-LIT). To handle this situ-
ation, we adopt the approach suggested by
Kestemont et al. (2010). We first assign an index
to each item in the texts and normalize these to
the range 0.00–1.00. In the development set, we
put all items with an index between 0.60 and 0.70,
and in the test set all items with an index between
0.70 and 0.80. The remaining items are appended to
the training material. These splits are not ideal, in
the sense that the system operates more ‘in domain’
than would be the case with truly free text.
Unfortunately, the enormous divergence between
the length of the literary texts renders other splitting
approaches (e.g. leave-one-text-out validation) even
less interesting. A clear advantage of the evaluation
strategy is nevertheless that it allows to assess how
well the system is able to generalize to other por-
tions in a text, given annotated material from the
same text. This is a valuable property of the evalu-
ation procedure because medieval texts also display
a significant amount of intra-text variation (i.e. the
same text often uses many different spellings for the
same word). Moreover, this strategy is insightful
when it comes to incremental or active learning,
whereby scholars would first tag a part of the text
and retrain the system before tackling the rest of a
text.

7 Results

In Tables 5–8 we report the results of variants of our
full architecture on all four data sets. As a baseline,
we also report scores for the ‘Memory-Based
Tagger’ (MBT), a popular sequence tagger (espe-
cially for modern Dutch) which is based on a near-
est-neighbour reasoning approach. While this tagger
is typically used for PoS tagging, it is equally useful
for lemmatization in the classification framework
we adopt here. We left most of the parameter set-
tings at their default values, except for the following:
we set the global matching algorithm to a brute
nearest neighbour search and for unknown words,
we set the global metric to the Levenshtein distance.
Additionally, to account for the spelling variation in
the material, we allowed a set of 1000 high-fre-
quency function words to be included in the

Lemmatization for variation-rich languages

Digital Scholarship in the Humanities, 2016 11 of 19

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: ``
Deleted Text: ''
Deleted Text: ,
Deleted Text: u
Deleted Text: part-of-speech
Deleted Text: u
http://dsh.oxfordjournals.org/

features used for the contextual disambiguation.
Because of the experimental setup using a separate
train, development and test split of the available
data, our results are not directly comparable to pre-
vious studies in this topic, which typically used

10-fold cross validation. This is a computationally
intensive setup which is not realistic for our neural
approach, given the considerable time required for
training. Finally, our training data only covers ca.
90% of the training data that other systems have
available in a 10-fold cross validation setup without
a separate development set. This means that our
system can be expected to have a slightly worse lex-
ical coverage, so that a minor drop in overall accur-
acy can be expected here.

The main results are reported in Table 5 and 6,
where we list the results for the train, development
and test splits for all four corpora. In Figure 2, we
have added a visualization of the typical training
progress of the neural network (for the training on
the CG-LIT corpus), showing how the prediction loss
steadily decreases over epochs, whereas the lemma-
tization accuracy gradually increases. For the test

Fig. 2 Visualization of the typical training progress of the neural network (CG-LIT), showing how the prediction loss
steadily decreasing over epochs, whereas the lemmatization accuracy gradually increases

Table 5 Training and development results (lemmatiza-

tion accuracy for all, known, and unknown words) of

the full systems for each of the four data sets. Note that

for the training data, we cannot differentiate between

known and unknown tokens

Corpus/Phase Train Dev

SUBSET All (%) All (%) Known (%) Unknown (%)

RELIG 97.63 91.26 94.67 45.44

CG-LIT 96.88 91.78 94.56 51.45

CRM-ADELHEID 98.38 93.61 96.17 56.59

CG-ADMIN 98.89 95.44 97.89 59.48

M. Kestemont et al.

12 of 19 Digital Scholarship in the Humanities, 2016

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

http://dsh.oxfordjournals.org/

results, we include the results for MBT. As can be
seen, the algorithm obtains a reasonably good fit of
the training data with overall scores above 96%.
Naturally, there is a considerable drop when apply-
ing the trained system to the development and test
splits. Importantly, there is no large difference be-
tween the development and test scores, with the ex-
ception of the CG-ADMIN test split, which does seem
to be much more difficult than the development
split. Overall, the RELIG and CG-LIT appear to be the
most difficult corpora—the former arguably be-
cause of its limited size; the latter because of the
rich diversity in text varieties which it includes.
Both charter corpora yield similar scores, with
CRM-ADELHEID being slightly more difficult than CG-
ADMIN. The scores for known word accuracies are
fairly solid and always above 94% (in the case of
CG-ADMIN even almost 98%). As can be expected,
the unknown word accuracies are much lower, ran-
ging from 45.55% for the smaller RELIG corpus, to
the encouraging 59.48% which we can report for the
CG-ADMIN corpus. All in all, this suggests that for
large enough corpora, the present system can accur-
ately lemmatize over half of the unknown words in
unseen material.

As can be gleaned from Table 6, MBT yields a
very strong baseline for the known words in the
evaluation splits, and for this category, the new
system only marginally outperforms the baseline.
It is of course especially for the unknown words
that the present, optimized system yields superior
results, where the improvement spans dozens of
percentage points. In comparison to other studies,
the results appear to be strong: Kestemont et al.

(2010) report a lemmatization of 45.52% for the
unknown words in the CG-LIT corpus, which the pre-
sent approach clearly improves upon (52.65%), not-
withstanding the fact that it has access to less
training data. Van Halteren and Rem (2013) use
10-fold cross-validation on the CRM-ADELHEID and
report an overall lemmatization accuracy of
94.97%; the present system is just below that score
(93.95%). Van Halteren and Rem (2013) do not
report scores for known and unknown words sep-
arately, which makes it difficult to speculate about
this issue but, apart from the validation procedure
itself, the fact that the present system has less train-
ing data available might be responsible for this drop.
Additionally, their tagger is in fact based on a meta-
learner which combines the output of several inde-
pendent taggers, an approach which will almost
always outperform the performance of a single
system.

The present article placed a lot of emphasis on
the use of character-level convolutions as a replace-
ment for the traditional one-hot encoding. For un-
known tokens, such an approach seems
advantageous, but the danger of course exists that
such a modelling strategy will lack the capacity to
effectively model known words, for which a one-hot
encoding does seem a viable approach. In Tables 7
and 8, we present the results of two version of the
system: the first version only includes a convolu-
tional model of the focus tokens, whereas the
second version adds a one-hot embedding of the
focus tokens. Both versions use 5,000 filters, but
leave out any contextual features, to be able to
zoom in on the convolutional aspects of the

Table 6 Final test results (lemmatization accuracy for all, known, and unknown words) of the full systems for each of

the four data sets. We included the baseline offered by the Memory-Based Tagger, which is especially competitive in the

case of known tokens

Corpus/method MBT Our system

Subset All Known Unknown All Known Unknown

RELIG 88.50 94.03 19.65 90.97% 94.50% 47.04%

CG-LIT 88.72 93.93 15.64 91.67% 94.45% 52.65%

CRM-ADELHEID 91.87 95.90 29.44 93.95% 96.15% 59.86%

CG-ADMIN 88.35 95.03 22.30 90.91% 95.35% 46.99%

Lemmatization for variation-rich languages

Digital Scholarship in the Humanities, 2016 13 of 19

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: --
Deleted Text: paper
http://dsh.oxfordjournals.org/

model only. The results are somewhat surprising in
that it appears that the first, convolutional-only ver-
sion consistently outperforms the system that in-
cludes a one-hot embedding. Interestingly, the
drop in performance across all corpora comes
from the unknown words: it seems that the presence
of the one-hot embeddings dominates the optimiza-
tion process, so that much less information is able
to be backpropagated to the convolutional subnet,
leading to a much looser fit of the unknown vo-
cabulary in the test data.

8 Discussion

What does the presented architecture learn? To ad-
dress this interpretative question, we offer two in-
tuitive visualizations. In Figure 3, we plot the
embeddings which are learned by the initial word2-
vec model (Mikolov et al., 2013) which is fed into

the embedding layers of the networks before train-
ing commences (here for the CG-LIT corpus). We use
the t-SNE algorithm (Van der Maaten and Hinton,
2008) which is commonly used to visualize such
embeddings in two-dimensional scatterplots. We
have performed a conventional agglomerative clus-
ter analysis on top of the scatterplot, and we added
colours to the word labels according to this cluster
analysis as an aid in reading. This visualization
strongly suggests that morpho-syntactic, ortho-
graphic as well as semantic qualities of words
appear to be captured by the initial embeddings
model. In purple to the right, we find the names
of the biblical evangelists (mattheus, marcus, . . .)
which clearly cluster together on the basis of seman-
tic qualities. In light-blue (top-left), we find a se-
mantic grouping of the synonyms seide and sprac
(‘[he] said’). Orthographic similarity is also cap-
tured, which is remarkable because the embeddings
model does not have access to sub-word level

Table 7 Developments results for two variants of the system: both variants have a convolutional subnet (5,000 filters)

but no contextual subnets. Importantly, the second system adds an embeddings layer which might allow a tighter fit of

the known words than the convolutional-only variant

Corpus/method Only convolutions (5,000 filters) Convolutions (5,000 filters) and a

one-hot encoding of the focus token

Subset All (%) Known (%) Unknown (%) All (%) Known (%) Unknown (%)

RELIG 89.45 92.69 45.97 87.59 91.67 32.83

CG-LIT 88.46 91.20 48.79 82.86 87.42 16.86

CRM-ADELHEID 89.58 92.28 50.57 87.96 91.73 33.38

CG-ADMIN 91.85 94.45 53.76 89.62 93.28 36.03

Table 8 Test results for two variants of the system: both variants have a convolutional subnet (5,000 filters) but no

contextual subnets. Importantly, the second system adds an embeddings layer which might allow a tighter fit of the

known words than the convolutional-only variant

Corpus/Method Only convolutions (5,000 filters) Convolutions (5,000 filters) and a

one-hot encoding of the focus token

Subset All (%) Known (%) Unknown (%) All (%) Known (%) Unknown (%)

RELIG 88.95 92.38 46.38 87.37 91.53 35.55

CG-LIT 88.25 91.03 49.21 82.46 87.11 17.28

CRM-ADELHEID 89.91 92.24 53.88 88.63 92.00 36.40

CG-ADMIN 86.54 90.91 43.39 83.27 88.81 28.46

M. Kestemont et al.

14 of 19 Digital Scholarship in the Humanities, 2016

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

http://dsh.oxfordjournals.org/

information: the spelling variants als and alse (‘if’)
are for instance grouped. At the morpho-syntactic
level, we see that the subordinating conjunctions
want and maer cluster (light-blue). Even colloca-
tional patterns are present, e.g. ict, wi, and las,
which cluster together in green), a clustering
which seems to stem from the collocation ‘as I/we
read’.

At the subword level, it is equally interesting to
attempt to inspect the filters which have been
learned at the character level. In Table 9, we offer
a representation of a number of interesting filters
which have been learned. For each position in the
convolutional slots, we record the three characters
which had the highest activation with respect to this
specific filter. While this discussion is necessarily
anecdotal, these results do suggest that the

convolutional filters have indeed become sensitive
to both morphemic and orthographic information.
Filter 17, for instance, is clearly sensitive to the com-
bination of the vowel i and a velar stop c, k, or ck.
This filter would be useful to detect the frequent
pronoun ‘ick’ (‘I’) but might be equally useful for
similar morphemes inside words (e.g. sticke, ‘piece’).
Filter 40, on the other hand, would be sensitive to
the presence of these velar stops in combinations
with the front vowel a (potentially long aa). Here
too, we clearly notice a certain flexibility in the filter
as to the exact spelling of the velar stop or the length
of the vowel. Filter 8, finally, does not seem sensitive
to a particular consonant-vowel combination, but
rather seems to pick up the mere presence of the
labio-dental fricative f or v in the final slot of the fil-
ter, including the allographic spelling u for the latter

Fig. 3 Two-dimensional scatterplot created by the t-SNE algorithm, representing the embeddings learned by the
word2vec pretrainer (for the CG-LIT corpus). These embeddings are eventually fed into the embedding layers of the
network before training commences (so that they can be further optimized in the light of a given task). Both morpho-
syntactic, orthographic and semantic qualities of words appear to captured by the model

Lemmatization for variation-rich languages

Digital Scholarship in the Humanities, 2016 15 of 19

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

http://dsh.oxfordjournals.org/

consonant. Here too, the filters allow these charac-
ters to some extent to be detected in various slots in
the filters, thereby illustrating how the filters have
obtained a certain translational invariance as is typ-
ically achieved in image recognition.

9 Future Research

While our system yields excellent results across all
data sets, a number of interesting issues remain to
be addressed in future research. First of all, our
architecture does not consider any form of recurrent
neural networks, through which recently excellent
results have been obtained in various tasks across
NLP. Of course, it would be well feasible to run
e.g. an Long Short-Term Memory (LSTM) layer
(cf. Hochreiter and Schmidhuber, 1997) over our
convolutions or embeddings, instead of a traditional
dense layer. Preliminary experiments on these spe-
cific data sets did not suggest that dramatic per-
formance increases can be gained here (perhaps
because of the limited length of the sequences con-
sidered here), but further research is needed in this
respect. Additionally, it might be worthwhile to
combine LSTMs with an approach which does not

only slide convolutions over the focus token, but
also over the lexical context, thus making the
system more robust towards unknown tokens in
the focus token’s context as well. Bidirectional
layers are another interesting extension in this re-
spect, since the present model only considers a
straightforward left-to-right strategy. Another pos-
sible extension would be to pre-train certain com-
ponents of the model (e.g. embeddings or character
convolutions) on larger unannotated data sets (pro-
vided these are available). Further research should
also overcome the limitation of the present system
that it cannot predict new, unseen lemmas at test
time. Here too, recurrent network architectures that
are able to generate new strings on the basis of an
input string will prove a valuable approach (LeCun
et al., 2015).

One strong component of the system, is that a
single hyperparameterization yields strong results
across a variety of corpora. This suggests that fur-
ther performance increases can be obtained through
more specific fine-tuning. Additionally, our system
reaches high scores although it is only trained on
80% of the available data: other papers on this field
have used 10-fold cross-validation and thus average
over systems which have available 90% of the train-
ing data in each run. As previously mentioned, how-
ever, the different evaluation procedures make it
difficult to compare these results directly. The
good results obtained are also remarkable in light
of the fact that our system does not have access to
many of the conventional ‘bells and whistles’ which
other taggers offer (such as removing highly uncom-
mon tags for certain tokens). Generally speaking,
one serious drawback is that training this kind of
architecture is extremely time-consuming and is in
reality only feasible on GPUs, which still come with
serious memory limitations.

Acknowledgements
We gratefully acknowledge the support of NVIDIA
Corporation with the donation of the TITAN X
used for this research. Additionally, the authors
would like to thank Dr Sander Dieleman for his
valuable feedback on earlier drafts of this article.

Table 9 Anecdotal representation of a number of inter-

esting convolutional filters learned by the network, after

training on the CG-LIT corpus. For three example filters, we

show for each slot, the three characters with the highest

activation across the alphabet (activation scores shown

between brackets). The patterns suggest that the network

has become sensitive to both morphemic and ortho-

graphic features, but is flexible as to where these patterns

should occur in the filter’s slots

Filter ID Pos 1st char 2nd char 3rd char

Filter 17 (‘ick’?) 1 i (1.08) k (1.06) c (0.81)

2 k (1.71) c (1.47) i (0.67)

3 k (3.46) c (2.48) i (i.17)

Filter 40

(‘ak’, ‘ack’,

‘aak’, ‘aac’,. . .)

1 a (0.69) b (0.33) l (0.30)

2 a (0.61) c (0.59) m (0.56)

3 a (1.18) k (1.17) c (0.90)

Filter 8 (u-v-f as

consonant)

1 u (0.41) a (0.29) k (0.25)

2 s (0.59) v (0.48) u (0.47)

3 f (1.40) v (1.33) u (0.72)

M. Kestemont et al.

16 of 19 Digital Scholarship in the Humanities, 2016

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

Deleted Text: natural language processing
Deleted Text: ,
Deleted Text: '
http://dsh.oxfordjournals.org/

References
Baroni, M. and Lenci, A. (2010). Distributional memory:

a general framework for corpus-based semantics.
Computational Linguistics 36(4): 673–721.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J.,
Goodfellow, I.J., Bergeron, A., Bouchard, N. and
Bengio, Y. (2012). Theano: new features and speed im-
provements. In Deep Learning and Unsupervised Feature
Learning NIPS 2012 Workshop: s.p.

Beaufort, R., Roekhaut, S., Cougnon L. and Fairon, C.
(2010). A Hybrid Rule/Model-based Finite-state
Framework for Normalizing SMS Messages. In Hajič,
J., Sandra Carberry, S., Clark, S. and Nivre, J. (eds), In
Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, Uppsala:
Association for Computational Linguistics, pp. 770–9.

Bengio, Y., Ducharme, R., Vincent, P. and Janvin, C.
(2003). A neural probabilistic language model. Journal
of Machine Learning Research 3(March): 1137–55.

Bengio, Y., Courville, A. and Vincent, P. (2013).
Representation learning: a review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine
Intelligence 35(8), 1798–1828.

Bollmann, M. (2012). (Semi-)Automatic Normalization
of Historical Texts using Distance Measures and the
Norma tool. In Mambrini, F., Passarotti, M. and
Sporleder, C. (eds), In Proceedings of the Second
Workshop on Annotation of Corpora for Research in
the Humanities. Lisbon, Portugal: Edições Colibri,
pp. 3–14.

Bouma, G. and Hermans, B. (2012). Syllabification of
Middle Dutch. In Mambrini, F., Passarotti, M. and
Sporleder, C. (eds), In Proceedings of the Second
Workshop on Annotation of Corpora for Research
in the Humanities. Lisbon, Portugal: Edições Colibri,
pp. 27–38.

Cahieu, C. F., Hong, H., Yamins, D. L. K., Pinto, N.,
Ardila, D., Solomon, E. A., Majaj, N. J. and DiCarlo,
J.J. (2014). Deep neural networks rival the representa-
tion of primate IT cortex for core visual object
recognition. PloS Computational Biology 10(12):
e1003963.

Crystal, D. (2001). Language and the Internet. New York:
Cambridge University Press.

Chrupala, G., Dinu, G., and van Genabith, J. (2008).
Learning morphology with Morfette. In Proceedings of
the International Conference on Language Resources and
Evaluation 2010. Marrakech, Morocco: European
Language Resources Association, pp. 2362–7.

Chrupala, G. (2014). Normalizing Tweets with Edit

Scripts and Recurrent Neural Embeddings. In

Toutanova, K. and Wu H. (eds), In Proceedings of the

52nd Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers).

Baltimore, Maryland: Association for Computational

Linguistics, pp. 680–6, s.p.

Daelemans, W., Groenewald, H. J., and Van Huyssteen,

G. B. (2009). Prototype-based Active Learning for

Lemmatization. In Angelova, G., Bontcheva, K.,

Mitkov, R., and Nicolov, N. (eds), In Proceedings of

the International Conference Recent Advances in

Natural Language Processing (RANLP 2009). Borovets:

Association for Computational Linguistics, pp. 65–70.

De Pauw, G. and De Schryver, G. (2008). Improving the

computational morphological analysis of a Swahili

corpus for lexicographic purposes. Lexikos 18, 303–18.

Dieleman, S. and Schrauwen B. (2014). End-to-end

Learning for Music Audio. In International Conference

on Acoustics, Speech and Signal Processing (ICASSP):

Florence: IEEE, pp. 6964–8.

Ernst-Gerlach, A. and Fuhr, N. (2006). Generating

Search Term Variants for Text Collections with

Historic Spellings. In Lalmas M., MacFarlane A.,

Rüger S., Tombros, A., Tsikrika, T., Yavlinsky, A.

(eds), Advances in Information Retrieval. Vol. 3936.

Berlin: Springer, pp. 49–60.

Firth, J. R. (1957). A Synopsis of Linguistic Theory 1930-

1955. In Studies in Linguistic Analysis. Oxford:

Philological Society: pp. 1–32.

Godin, F., Vandersmissen, B., Jalalvand, A., De Neve W.

and Van de Walle, R. (2014). Alleviating Manual
Feature Engineering for Part-of-speech Tagging of

Twitter Microposts Using Distributed Word

Representations. In Proceedings of the Workshop on

Modern Machine Learning and Natural Language

Processing. Montreal, 2015, s.p.

Gysseling, M. (1977). Corpus van Middelnederlandse tek-

sten (tot en met het jaar 1300). Reeks I. Ambtelijke

bescheiden. 9 vols. Nijhoff, The Hague.

Gysseling, M. (1980-1987). Corpus van Middelnederlandse

teksten (tot en met het jaar 1300). Reeks II. Literaire

teksten. 6 vols. Nijhoff, The Hague.

Harris, Z. (1954). Distributional structure. Word 10(23):

146–62.

Hendrickx, I. and Marquilhas, R. (2011). From old texts

to modern spellings: an experiment in automatic nor-

malisation. Journal for Language Technology and

Computational Linguistics 26(2): 65–76.

Lemmatization for variation-rich languages

Digital Scholarship in the Humanities, 2016 17 of 19

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

http://dsh.oxfordjournals.org/

Hochreiter, S. and Schmidhuber, J. (1997). Long
Short-Term Memory. Neural Computation, 9(8):
1735–80.

Institute for Dutch Lexicography (1998). Cd-rom
Middelnederlands. In Woordenboek en Teksten. Sdu,
The Hague.

Jurafsky, D. and Martin, J. H. (2009). An Introduction to
Natural Language Processing, Computational Linguistics
and Speech Recognition, 2nd edn. New Jersey: Pearson
Prentice Hall.

Kalchbrenner, N., Grefenstette, E. and Blunsom, P.
(2014). A Convolutional Neural Network for
Modelling Sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics. Baltimore, MD: ACL, pp. 655–5.

Kestemont, M., Daelemans, W., and De Pauw, G.
(2010). Weigh your words—memory-based lemmatiza-
tion for middle Dutch. Literary and Linguistic
Computing, 25(3): 287–301.

Knowles, G. and Mohd Don, Z. (2004). The notion
of a ‘‘lemma’’. Headwords, roots and lexical
sets. International Journal of Corpus Linguistics, 9(1):
69–81.

LeCun, Y., Boser, B., Denker, J. S., Howard, R. E.,
Habbard, W., Jackel, L. D. and Henderson, D.
(1990). Handwritten Digit Recognition with a Back-
propagation Network. In Touretzky, D. S. (ed),
Advances in Neural Information Processing Systems.
San Francisco: Morgan Kaufmann.

LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep
learning. Nature 521(7553): 436–44.

Levenshtein, V. (1966). Binary codes capable of correct-
ing deletions, insertions and reversals. Soviet Physics
Doklady, 10(9): 707–10.

Levy, O. and Golberg, Y. (2014). Linguistic Regularities
in Sparse and Explicit Word Representations. In
Proceedings of the Eighteenth Conference on
Computational Natural Language Learning. Baltimore:
ACL, pp. 171–80.

Ljubešić, N., Erjavec, T. and Fišer, D. (2014).
Standardizing tweets with character-level machine
translation. In Gelbukh, A. (ed.), Computational
Linguistics and Intelligent Text Processing 8404. Berlin:
Springer, pp. 164–75.

Lyras, D. P., Sgarbas, K. N., and Fakotakis, N. D. (2008).
Applying similarity measures for automatic lemmatiza-
tion: a case-study for modern Greek and English.
International Journal on Artificial Intelligence Tools,
17: 1043–64.

Manning, C. D., Prabhaker, P. and Schütze, H. (2008).

Introduction to Information Retrieval. New York:

Cambridge University Press.

Manning, C. D. (2015). Computational linguistics and

deep learning. Computational Linguistics 41(4): 701–7.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. and

Dean J. (2013). Distributed representations of words

and phrases and their compositionality. Neural

Information Processing Systems, 26: 3111–9.

Mitankin, P., Gerjikov, S. and Mihov, S. (2014). An ap-

proach to unsupervised historical text normalisation. In

Antonacopoulos, A. and Schulz, K. (eds), In Proceedings

of the First International Conference on Digital Access to

Textual Cultural Heritage. New York: Association for

Computing Machinery, pp. 29–34.

Nair, V. and Hinton, G. (2010). Rectified Linear Units

Improve Restricted Boltzmann Machines. In Fürnkranz

J. and Joachims T. (eds), In Proceedings of the 27th

International Conference on Machine Learning.

Madison, WI: Omnipress, pp. 807–14.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,

Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M., and

Duchesnay, E. (2011). Scikit-learn: machine learning

in python. Journal of Machine Learning Research, 12:

2825–30.

Piotrowski, M. (2012). Natural Language Processing for

Historical Texts. California: Morgan & Claypool

Publishers.

Reynaert, M., Hendrickx, I. and Marquilhas, R. (2012).

Historical spelling normalization. A comparison of two

statistical methods: TICCL and VARD2. In Mambrini,

F., Passarotti, M. and Sporleder, C. (eds), In Proceedings

of the Second Workshop on Annotation of Corpora for

Research in the Humanities. Lisbon, Portugal: Edições

Colibri, pp. 87–98.

Scherrer, Y. and Erjavec, T. (2013). Modernizing histor-

ical Slovene words with character-based SMT. In:

Piskorski, J., Pivovarova, L., Tanev, H. and Yangarber,

R. (eds), In Proceedings of the 4th Biennial Workshop on

Balto-Slavic Natural Language Processing. Sofia,

Bulgaria: Association for Computational Linguistics,

pp. 58–62.

Schulz, S., De Pauw, G., De Clerq, O., Desmet, B., Hoste, V.,

Daelemans, W. and Macken, L. (2016). Multi-modular

text normalization of dutch user-generated content.

ACM Transactions on Intelligent Systems and Technology,

forthcoming, NewYork, NY, USA: ACM, 7(4):1–22.

M. Kestemont et al.

18 of 19 Digital Scholarship in the Humanities, 2016

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

http://dsh.oxfordjournals.org/

Souvay, G. and Pierrel, J.-M. (2009). LGeRM.
Lemmatisation des Mots en Moyen Français.
Traitement Automatique des Langues, 50(2): 149–72.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: a simple way
to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15: 1929–58.

Toutanova, K., Klein, D., Manning, C. and Singer, Y.
(2003). Feature-rich Part-of-speech Tagging with
a Cyclic Dependency Network. In Proceedings
of the 2003 Conference of the North American
Chapter of the Association for Computational
Linguistics on Human Language Technology, Vol. 1.
Stroudsburg: Association for Computational
Linguistics, pp. 173–80.

Van Dalen-Oskam, K. and Van Zundert, J. (2007). Delta
for Middle Dutch – author and copyist distinction in
Walewein. Literary and Linguistic Computing, 22(3):
345–62.

Van der Maaten, L. and Hinton, G. (2008). Visualizing
high-dimensional data using t-SNE. Journal of Machine
Learning Research, 92579–605.

Van der Voort van der Kleij, J. (2005). Reverse
Lemmatization of the Dictionary of Middle Dutch
(1885-1929) Using Pattern Matching. In Kiefer, F.,
Kiss, G., and Pajzs, J. (eds), Papers in Computational
Lexicography. Budapest: Hungarian Academy of
Sciences, pp. 203–10.

Van Halteren, H. and Rem, M. (2013). Dealing with
orthographic variation in a tagger-lemmatizer for four-
teenth century Dutch charters. Language Resources and
Evaluation, 47(4): 1233–59.

Van Kerckvoorde, C. (1992). An Introduction to Middle
Dutch. The Hague: Mouton de Gruyter.

Zavrel, J. and Daelemans, W. (1999). Recent Advances in
Memory-Based Part-of-Speech Tagging. In Actas del VI

Simposio Internacional de Comunicacion Social. Centro
de lingüı́stica Aplicada, Santiago de Cuba, pp. 590–7.

Zeiler, M.D. (2012). Adadelta: an adaptive learning rate
method. ArXiv, 1212.5701v1.

Zhang, X., Zhao, J. and LeCun, Y. (2015). Character-level
convolutional networks for text classification. Neural
Information Processing Systems, 28: s.p.

Notes
1 An example of over-eager expansion might for instance

create confusion in the case of minimal pairs: hoer and
haer are both allowed under the lemma ‘haar’ (‘her’),
but applying the same vowel transition (‘oe’ > ‘ae’) to
the token maer under the lemma ‘maar’ (‘but’) would
yield the token moer, which is primarily attested under
lemmas such as ‘muur’ (‘wall’), ‘moeder’ (‘mother’), or
‘modder’ (‘mud’).

2 In computer vision, convolutional layers are tradition-
ally alternated with max-pooling layers, although the
surplus value of max-pooling is increasingly ques-
tioned. In preliminary experiments, max-pooling did
not yield a clear beneficial effect, nor did the introduc-
tion of stacked convolutions.

3 https://code.google.com/archive/p/word2vec/.
4 https://radimrehurek.com/gensim/.
5 https://github.com/mikekestemont/tag.
6 http://keras.io/.
7 The most comprehensive discussion of the annotation

guidelines has been provided in the Adelheid project
and can be consulted online: http://adelheid.ruhost
ing.nl/ (last accessed 6 November 2014).

8 Online at: http://gtb.inl.nl/ (last accessed 6 November
2014).

9 See: https://www.nederlab.nl/home (last accessed 6
November 2014).

10 Based on personal communication with the authors.

Lemmatization for variation-rich languages

Digital Scholarship in the Humanities, 2016 19 of 19

 by guest on January 3, 2017
http://dsh.oxfordjournals.org/

D
ow

nloaded from

https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/
https://github.com/mikekestemont/tag
http://keras.io/
http://adelheid.ruhosting.nl/
http://adelheid.ruhosting.nl/
http://gtb.inl.nl/
https://www.nederlab.nl/home
http://dsh.oxfordjournals.org/

