
61

Multimodular Text Normalization of Dutch User-Generated Content

SARAH SCHULZ, Ghent University
GUY DE PAUW, University of Antwerp
ORPHÉE DE CLERCQ, BART DESMET, and VÉRONIQUE HOSTE,
Ghent University
WALTER DAELEMANS, University of Antwerp
LIEVE MACKEN, Ghent University

As social media constitutes a valuable source for data analysis for a wide range of applications, the need
for handling such data arises. However, the nonstandard language used on social media poses problems
for natural language processing (NLP) tools, as these are typically trained on standard language material.
We propose a text normalization approach to tackle this problem. More specifically, we investigate the
usefulness of a multimodular approach to account for the diversity of normalization issues encountered in
user-generated content (UGC). We consider three different types of UGC written in Dutch (SNS, SMS, and
tweets) and provide a detailed analysis of the performance of the different modules and the overall system.
We also apply an extrinsic evaluation by evaluating the performance of a part-of-speech tagger, lemmatizer,
and named-entity recognizer before and after normalization.

CCS Concepts: � General and reference → Evaluation; � Information systems → Social network-
ing sites; Data cleaning; � Human-centered computing → Social networking sites; � Computing
methodologies → Natural language processing; Machine translation; Phonology / morphology;
Information extraction; Language resources; � Applied computing → Language translation;

Additional Key Words and Phrases: Social media, text normalization, user-generated content

ACM Reference Format:
Sarah Schulz, Guy De Pauw, Orphée De Clercq, Bart Desmet, Véronique Hoste, Walter Daelemans, and
Lieve Macken. 2016. Multimodular text normalization of Dutch user-generated content. ACM Trans. Intell.
Syst. Technol. 7, 4, Article 61 (July 2016), 22 pages.
DOI: http://dx.doi.org/10.1145/2850422

1. INTRODUCTION

With the advent of Web 2.0, user interaction on the Internet has become common
practice. According to Murugesan [2007], Web 2.0 is a conglomerate of technologies and
strategies aimed at online user participation: it is highly dynamic and characterized
by a productive user community. The online content that these users produce is called

The research described in this article was funded by IWT-SBO grant 120007 (AMiCA (http://www.
amicaproject.be) and IWT-SBO grant 110067 (PARIS (http://www.parisproject.be).
Authors’ addresses: S. Schulz, O. De Clercq, B. Desmet, V. Hoste, and L. Macken, Department of Translation,
Interpreting, and Communication, Ghent University, Groot-Brittanniëlaan 45, 9000 Gent, Belgium; emails:
{orphee.declercq, bart.desmet, veronique.hoste, lieve.macken}@ugent.be; G. De Pauw and W. Daelemans,
Computational Linguistics and Psycholinguistics Research Center, University of Antwerp, Prinsstraat 13,
2000 Antwerp, Belgium; emails: {guy.depauw, walter.daelemans}@uantwerpen.be.
Author’s current address: Sarah Schulz, Institute for Natural Language Processing, University of Stuttgart,
Pfaffenwaldring 5B, 70569 Stuttgart, Germany; email: sarah.schulz@ims.uni-stuttgart.de.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 2157-6904/2016/07-ART61 $15.00
DOI: http://dx.doi.org/10.1145/2850422

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

http://dx.doi.org/10.1145/2850422
http://www.amicaproject.be
http://www.amicaproject.be
http://www.parisproject.be
http://dx.doi.org/10.1145/2850422

61:2 S. Schulz et al.

user-generated content (UGC). Van Dijk [2009] discusses this new concept of user and
his or her role and participation mechanisms in the virtual world. Phenomena known
from face-to-face interaction are taken over into the virtual space and adjusted to it.
Riegner [2007], for example, describes how the concept of word-of-mouth is adopted in
cyberspace.

Since data generated in a variety of new online media holds potential for commercial
and sociological applications, a need has emerged to automatically analyze it. From
a commercial perspective, UGC has attracted the interest of research in a variety of
text mining applications [Cortizo et al. 2012], including sentiment and opinion mining
[Paltoglou and Thelwall 2012], which is used, for example, in user-tailored advertising
[Aven et al. 2009]. But similar methods can also be used to automatically trace harmful
content on social media [Peersman et al. 2011; Desmet and Hoste 2014; Van Hee et al.
2015]. This is especially important for the protection of teenagers and fits an urgent
need. Royen et al. [2015] describe the harmfulness of cyberbullying on social network
sites and state the need for prevention methods. It goes without saying that solving
these tasks requires a deep linguistic processing of the text at hand.

However, the automatic analysis of UGC poses a problem for natural language pro-
cessing (NLP), as the kind of language used in social media highly differs from standard
language. Eisenstein [2013] even goes as far as to call it bad language. The noisy na-
ture of UGC complicates the task of automatically processing this valuable data source,
because the performance of standard NLP tools significantly decreases on social media
data [Melero et al. 2012; Eisenstein 2013]. This is because these tools have originally
been developed for standard language and, as a consequence, cannot deal with many
of the peculiarities encountered in UGC.

Two different computational approaches have been suggested to tackle this problem
[Han et al. 2013]: tool adaptation and text normalization. Tool adaptation aims at
including UGC data into the training process. As such, tools are made robust with
respect to the text type at hand. Work in this field has been performed by, among
others, Ritter et al. [2011] for named entity recognition (NER), Gimpel et al. [2011] for
part-of-speech (POS) tagging, and Foster et al. [2011] for parsing. A disadvantage of this
approach is that it is nontransferable, which means that every single tool would have
to be adapted individually. The other approach is text normalization, which envisages
to first bring nonstandard language closer to the “norm” (i.e., better conforming to the
standard rules of spelling, grammar, and punctuation of a particular language). In this
way, standard NLP tools can be applied in a next step.

In this article, we follow the latter approach and introduce a multimodular system
for text normalization. We have developed several task-specific modules to solve the
different normalization problems that can be encountered in UGC (see the following),
and more general modules, that try to tackle all normalization issues in one step. To
assess the suitability of the different modules, we evaluated the performance of each
module separately. As we assume that text normalization with a multimodular system
covering a variety of approaches can outperform simple individual approaches, we
combine the output of the different modules in several ways and analyze the overall
performance of our system. We furthermore reveal the impact of text normalization on
different NLP tools by comparing the output of NER, POS tagging, and lemmatization
on UGC before and after normalizing.

The remainder of this article is structured as follows. Section 2 discusses the charac-
teristics of UGC, and Section 3 gives an overview of related work on text normalization.
Section 4 presents our modular approach to text normalization. In Section 5, we intro-
duce the datasets that were used for the experiments, analyze the experimental results,
and illustrate the usefulness of text normalization on three NLP tasks. In Section 6,
we give concluding remarks and directions for future research.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

Multimodular Text Normalization of Dutch User-Generated Content 61:3

2. UGC: A CHALLENGE FOR NLP

What started as online chatting on a PC and text messaging on cell phones has now
evolved into a continuous stream of content that is being produced online using a
variety of devices. This evolution has led to the creation of a language that often
strongly deviates from standard language, characterized by abbreviations, omissions,
spelling mistakes, and grammatically incorrect utterances.

Eisenstein [2013] relates these phenomena to text input affordance, which might
vary depending on the input method used (e.g., mobile phone keyboard vs. touch
screen keyboard vs. computer keyboard). He also notes that the type of social media
application (e.g., online chat, Internet forum, or social network status updates)
influences the language used. In addition, social variables, such as age [Rosenthal and
McKeown 2011], ethnicity [Eisenstein et al. 2011], and location [Wing and Baldridge
2011; Eisenstein et al. 2010] can influence wording and writing style. VandeKerckhove
and Nobels [2010], for example, observe regional variation in UGC and discuss the
example of different graphemic realizations of words ending with -en in Flemish
(-en, -n, or -e) and attribute these to different phonetic realizations depending on the
regional dialect. They conclude that the large variety of dialects in Flanders leads to
a strong variation in the graphemic realization of words in UGC.

VandeKerckhove and Nobels [2010] relate the language phenomena in UGC to two
writing principles: write as you speak and write as fast as possible. Along the same line,
De Clercq et al. [2013] divide the language deviations of UGC into three linguistically
motivated categories, namely abbreviations and orthographic and phonetic variants.
Very typical of UGC is the large number of abbreviations, which can be explained by dif-
ferent factors: space limitations (e.g., in Twitter posts or SMS) and time limitations. As
VandeKerckhove and Nobels [2010] point out, the Internet is a medium in which com-
munication is fast. Nevertheless, most abbreviations are easy to understand, as they
occur either frequently or are straightforward in a specific context. Social media users
most commonly abbreviate facebook as fb, react to funny content with lol (laughing out
loud), or talk about their bf (boyfriend) or gf (girlfriend). Quickly produced text also
leads to typos and other orthographic issues. Uppercasing is often ignored, or unconven-
tionally used to emphasize something or to convey a specific emotion. Letter transposi-
tions can be observed due to fast typing and a lack of correction. Again, the frequency
of these error types varies strongly depending on the social media application used.

The tendency to “write as you speak” can be observed across languages. It seems as
if users mimic direct social interaction online by using phonetically motivated realiza-
tions of words. In English, this is largely realized by using homophonous graphemic
variants of a word like r for are or dey for they. In Dutch, words are often transformed or
even fused on the basis of the regional pronunciation of the user. This leads to variants
such as zoiso instead of sowieso (in any case) or kheb instead of ik heb (I have). Very
typical of UGC is also that emotions are often orthographically expressed. This can be
done in the form of flooding (i.e., the repetition of characters), capitalization, and the
productive use of emoticons.

Each of these characteristics contributes to the challenge of linguistically processing
this type of text using standard NLP tools. In the next section, we overview some re-
search efforts that have attempted to automatically normalize such nonstandard data.

3. TEXT NORMALIZATION: RELATED WORK

Originally, text normalization referred to a preprocessing step for text-to-speech syn-
thesis. It dealt with domain-specific problems that were often solved using handcrafted
rules. As such, the expected input was limited to a few a priori known patterns [Taylor
et al. 1998], and the normalization problems were often restricted to words without

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

61:4 S. Schulz et al.

context, which could therefore easily be solved at the token level using rules. Sproat
et al. [2001] were the first to extend this technique by treating normalization as a
language modeling problem and to propose a taxonomy of normalization types. This
was done based on four rather distinct text types, newspaper articles, real estate ads,
daily digests from a mailing list, and recipes. Their work marked the beginning of more
intricate text normalization research.

In more recent years, text normalization has been studied in the framework of UGC.
As previously explained, this genre can be characterized by many issues that are not
limited to the word level, and very often context is needed to normalize correctly.
Moreover, UGC is an umbrella term that covers different text types, such as SMS,
tweets, and chat logs. As a consequence, the frequency and density of normalization
problems also varies strongly depending on the social media application used. Han and
Baldwin [2011] and Baldwin et al. [2013], for example, observe that English Twitter is
more dissimilar compared to other forms of social media, such as blogs and comments.

Previous research on UGC normalization has been performed on diverse languages
using different techniques. Kobus et al. [2008b] introduced three metaphors to refer to
these normalization approaches: the spell checking, translation, and automatic speech
recognition (ASR) metaphor.

The spell checking metaphor leaves correct words untouched and only performs nor-
malization on the incorrect words. Choudhury et al. [2007] use a hidden Markov model
trained on SMS data to find the most probable mapping from an erroneous word to
its standard equivalent, thus treating UGC as a noisy version of standard language.
Closely related is the use of a dictionary containing both standard and out-of-vocabulary
(OOV) entries to this purpose. In this respect, Gouws et al. [2011] suggest a method for
the extraction of frequent domain-specific lexical variants, which can serve as a basis
for rule-based normalization systems. Such a system is described in Clark and Araki
[2011]. They normalize English tweets as a preprocessing step for machine translation
from English to Japanese, based on a database of frequent erroneous words in Twitter
posts and pattern matching rules. Since the coverage of these dictionaries often poses
a problem, Han et al. [2012] introduces a method to automatically compile a large
dictionary.

The translation metaphor treats social media language as the source language and
standard language as the target language. As in general statistical machine translation
(SMT), a translation model is trained on parallel data. This model is then combined
with a language model to transform a noisy input string into a string that is closer to
the standard. The advantage of using SMT is that it directly makes use of contextual
information during translation. This approach is described in Aw et al. [2006], who use
phrase-based machine translation to normalize English SMS data, and by Kaufmann
and Kalita [2010] to normalize English tweets.

Pennell and Liu [2011] were the first to also perform machine translation at the
character level, as well as Tiedemann [2012], who uses this technique to translate
between closely related languages. Applied to abbreviation normalization, they find
that character-based machine translation is more robust to new abbreviations. Li and
Liu [2012] likewise describe a character-level machine translation approach to nor-
malizing tweets and extend it to also work with character blocks to improve on the
automatic alignments. They also suggest a two-step MT approach that converts tokens
into phonemes and phonemes into dictionary words, thereby incorporating the sensibil-
ity that people write as they speak. De Clercq et al. [2013] show an improvement using
character-based over token-based models for text normalization when applying this
technique to the entire range of normalization problems and not only to abbreviations.
At the same time, Ling et al. [2013] introduce an approach based on paraphrasing by
also building two translation models: one on the token- and one on the character level.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

Multimodular Text Normalization of Dutch User-Generated Content 61:5

Combining these two in a subsequent decoding step proved beneficial for normalizing
English tweets.

Text found in social media also shares features with spoken language, and the
metaphor of ASR utilizes this similarity. Here, text encountered in social media is
treated as an alphabetic approximation of a phonetic string and is brought to a stan-
dardized written form using techniques from ASR. Kobus et al. [2008a] propose an ASR-
like system for text normalization based on this idea and, like Li and Liu [2012], com-
bine it with SMT-like approaches to normalize French SMS messages. This metaphor
has mostly been merged with other techniques to boost performance. Xue et al. [2011]
show that combining phonetic with orthographic and contextual information, together
with acronym expansion, works well for microtext normalization when combined in a
multichannel model. For their automatic dictionary construction, Baldwin et al. [2013]
similarly rely on the morphophonemic similarity between standard and ill-formed to-
kens, which leads them to use both edit distance and phonemic transcription to create
word candidates, which are subsequently ranked by a trigram language model.

Some approaches fall beyond the scope of these metaphors, such as the character-
level sequence labeling technique described in Li and Liu [2012, 2014], which uses a
variety of phonetic, syllabic, and orthographic features to construct likely abbreviations
for words in a dictionary. This information is then used during testing as a reverse
lookup table to suggest expansions of observed OOV words. A similar approach is
suggested in Liu et al. [2012] that learns character transformations on the basis of
token-word pairs that were collected in an unsupervised fashion. Liu et al. [2012] also
suggest a cognitive-sensitive visual priming technique that favors candidate words
that are frequently used and bear an orthographic similarity to the token.

A log-linear model is proposed by Yang and Eisenstein [2013] that scores the con-
ditional probability of a source and target sequence by means of language modeling
of the latter and log-likelihood maximization of the former. They report state-of-the-
art F-scores that improve on previous research efforts on the same dataset [Han and
Baldwin 2011; Liu et al. 2012]. Another log-linear approach, albeit over a series of
replacement generators on the character level, is presented in Zhang et al. [2013], who
evaluate the technique extrinsically by comparing the performance of a dependency
parser on nonnormalized, gold standard, and automatically normalized data.

With such a wide variety of techniques at our disposal, system combination seems
promising for text normalization. Yvon [2010] describes a normalization device based
on finite state transducers using a phonetic representation as an intermediate step. He
concludes that the two systems perform better on different aspects of the task and that
combining these two modules works best. A similar method is presented in Beaufort
et al. [2010], who combine both spell checking and machine translation approaches
on French data, which leads to good results. They conclude, however, that including
phonetic information into the system is crucial.

Li and Liu [2012] demonstrate state-of-the-art performance using a rule-based com-
bination of a variety of techniques. In later work [Li and Liu 2014], the rule-based
approach is abandoned for a discriminative reranking technique that operates on the
word level, as well as on the sentence level. Similar to Liu et al. [2012], they also report
good results when performing sentence-level Viterbi decoding through the incorpora-
tion of a language model. Finally, Wang and Ng [2013] report good results using a
novel beam-search decoder that iteratively produces normalized sentence candidates
according to several hypothesis producers and consequently evaluates these sentences
on the basis of language model scores and a set of count feature functions.

For our approach, we assume that to find a way to automatically normalize highly
diverse texts containing a wide variety of normalization issues, a multimodular system
is needed. Moreover, we utilize different techniques to interpret the metaphors (e.g., we

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

61:6 S. Schulz et al.

include three techniques focusing on different spelling errors and implement different
MT approaches both on the token and character level). As such, we end up with a
multimodular system that should be able to tackle the full normalization task. Other
than the approaches described earlier, we do not just combine two of the metaphors but
apply all three of them. In addition, in contrast to research efforts such as Yang and
Eisenstein [2013] or Li and Liu [2014], we do not consider the nonstandard tokens to
be known in advance and consider their identification an integral and nontrivial part
of the normalization task. We are the first to apply such an exhaustive approach on
diverse genres of Dutch UGC.1

4. A MULTIMODULAR APPROACH TOWARD NORMALIZATION

Our multimodular UGC normalization system relies on a partly cascaded, partly par-
allelized architecture and consists of three main layers:

(1) A preprocessing layer, in which the input text is split into sentences, is tokenized,
and flooding (word lengthening) is corrected.

(2) A suggestion layer, in which each module generates suggestions either for tokens
(i.e., the token-based modules) or for a sentence as a whole (i.e., the context-based
modules). Most of the token-based modules focus on well-understood normalization
issues (e.g., abbreviations, compounds, split words). Context-based modules can
operate on the word level, as well as the character level, and differ from token-
based modules in that they can look beyond word boundaries to make normalization
decisions.

(3) A decision layer, in which the best combination of suggestions is chosen from the
pool of suggestions.

By combining token-based and context-based modules, we try to combine the best of
different methods. The architecture of the multimodular UGC normalization system is
depicted in Figure 1.

4.1. Preprocessing Layer

The preprocessing layer consists of two modules. A first module splits the text into sen-
tences and tokens, a task for which we adapted the rule-based tokenizer of Treetagger
[Schmid 1994] to cope with UGC-specific phenomena such as e-mail addresses, hyper-
links, and emoticons. Whereas previous work focused on the tokenization of Twitter
posts [O’Connor et al. 2010; Bontcheva et al. 2013], we investigate different genres of
UGC, requiring us to build a more general tokenizer, covering a wider range of smileys,
emoticons, and other tokenization issues.

A second phenomenon dealt with in the preprocessing layer is character flooding
(i.e., the repetition of the same character or character sequences), which is often used
in UGC to express emotion, as illustrated in the following example. To reduce the
number of OOV words in subsequent modules, we limit the number of repetitions to
maximally two for all characters except for the vowel “e,” where a maximum of three
is allowed. The flooding correction module makes use of the Hunspell spell checker2

to generate the most probable correction and to ensure that correct words are not
overcorrected. The module corrects repeated characters and character combinations in
the following way:

1Since our system works on Dutch text, we will illustrate various parts using Dutch examples with an
English translation.
2http://hunspell.sourceforge.net/.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

http://hunspell.sourceforge.net/

Multimodular Text Normalization of Dutch User-Generated Content 61:7

Fig. 1. Multilayer architecture of the UGC normalization system with the preprocessing layer on top, the
context-based modules on the left-hand side, the token-based modules on the right-hand side, and the
decision module on the bottom.

jij hebt egggggt zooooooooooooooooooo onwijse mooie lipjes ...
jij hebt eggt zoo onwijse mooie lipjes ...
En: you have really such incredibly beautiful little lips ...

Note that the flooding-corrected version still contains normalization problems. The
flooding o is incorrectly substituted by zoo (zoo) and not by zo (such), as both words do
exist in Dutch. The Dutch adverb echt (really) should be spelled with ch instead of g.

4.2. Suggestion Layer

The suggestion layer comprises a variety of modules that have been conceived to ac-
count for the different normalization issues encountered in UGC (compare to Section 3).
The included modules can be divided into two main groups. The first group contains
the token-based modules, which are responsible for a specific type of issues. The second
group comprises context-based modules, which can correct a variety of normalization
problems.

The token-based modules are designed to solve specific normalization problems.
They are not expected to return normalized sentences but to find a solution to just one
problem—more specifically, to tackle abbreviations and various misspellings.

—ABBREVIATION module: Language used in UGC often shares certain abbreviations and
uniform ways of reference, such as hash tags in Twitter posts. Therefore, lookup
approaches can cover a reasonable number of issues. The ABBREVIATION module relies
on a dictionary of about 350 frequent abbreviations appearing in social media texts,
such as lol (laughing out loud) and aub for alstublieft (thank you).3

3This dictionary is available for download at http://www.lt3.ugent.be/amica/chat_abbreviations_dutch.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

http://www.lt3.ugent.be/amica/chat_abbreviations_dutch

61:8 S. Schulz et al.

—SPELL CHECKING modules: These modules account for normalization problems such as
typos (e.g., the transposition in spelne, which should be spelen (play)) or orthographic
mistakes such as the omission of diacritics (e.g., as in cafe, which should be café).
We include three modules in the suggestion layer that relate to the spell checking
metaphor.

We use a plain SPELL CHECKER,4 which uses Levenshtein distance to suggest the most
probable correction. The SPELL CHECKER can correct minor misspellings in a word like
gzien to gezien (seen) or zowiezo to sowieso (in any case).

The second module that uses the spell checker is the COMPOUND module. It checks
whether words that have been written as two separate words should have been
written together. It verifies all token bigrams and can solve cases such as split verbs
(e.g., langs komen to langskomen (drop in)), a phenomenon that frequently occurs in
Dutch.

The WORD SPLIT module is the opposite of the COMPOUND module and splits words
that have been erroneously written together. In UGC, words are often concatenated to
save space. The WORD SPLIT module is based on the compound-splitter module of Moses
[Koehn et al. 2007] and has been trained on the Corpus Gesproken Netherlands
(CGN) [Oostdijk 2000]. Problems such as misje to mis je (miss you) or perse to per se
(at any price) can be solved.

A problem related to the spell checking approach is the limited coverage of the word
list upon which the spell checker is based. To improve the coverage, we extended
the spell checker’s dictionary with a word list containing about 2.3 million words
compiled from a Dutch Wikipedia corpus. Considering the highly productive nature
of UGC, this partly alleviates the problem of OOV words.

The context-based modules have a wider range of responsibilities. They cover a
variety of normalization issues and can solve phonologically motivated problems, as
well as spelling mistakes and abbreviations. Their main strength is that they use
contextual information during normalization:

—SMT modules: Following previous experiments described in De Clercq et al. [2013],
the SMT models have been trained on the token and character level using Moses
[Koehn et al. 2007]. We include a token-unigram–based module, a character-
unigram–based module, a character-bigram–based module, and a combination of
a token-based– and a character-unigram–based module that is reported to perform
best in De Clercq et al. [2013]. The combination follows a cascaded approach, which
means that we first process a sentence with the token-unigram–based module and
subsequently forward the output of this module to the character-unigram–based
module. The token model can solve problems of rather frequent shortenings, such as
ng to nog (still) or na to naar (to). Character-based models on the other hand, tend
to solve problems such as character transposition, but also problems across tokens
like fusions as in kheb and ik heb (I have). Additionally, they may offer better gener-
alization, as they can learn productive alterations and correct them in words that do
not occur in the training data.

—TRANSLITERATE module: This module approaches the normalization task as a translit-
eration problem to be solved using a discriminative sequence labeler. The normaliza-
tion problem is defined on the level of the grapheme, not unlike the SMT-character-
unigram module. It uses the manually annotated data of the training corpus (see
Section 5) as an information source to build a supervised machine learning classifier
in which each grapheme in the nonnormalized input sequence is associated with a

4Hunspell: http://hunspell.sourceforge.net/.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

http://hunspell.sourceforge.net/

Multimodular Text Normalization of Dutch User-Generated Content 61:9

class in the output sequence. This class can be empty (deletion), the input grapheme
itself, or a sequence of graphemes, potentially also containing word boundaries (in-
sertion). This is illustrated in the following example:

kebda ni gedaan
ik heb dat niet gedaan
En: I did not do that

In preprocessing, we first align these sequences using a dynamic programming script
based on Wagner and Fisher [1974] so that they are of equal length:

+k +eb+da+ ni++ gedaaan
ik heb dat niet gedaa+n

This data is consequently presented as training material to a memory-based learner
[Daelemans and van den Bosch 2005] that learns to associate the individual in-
put graphemes with a contextually appropriate output class (input/output with “-”
indicating a word boundary):

k/ik- e/he b/b- d/d a/at -/- n/n i/iet -/- g/g e/e d/d a/a a/a a/+ n/n

The classifier takes different types of context into account: the input characters on the
left and the right of the current input character, but also the already transliterated
output characters on the left.

—WAYS module: The WAYS module (write as you speak) attempts to model idiosyncrasies
of UGC in which users write words as they speak, such as kep as the contracted rep-
resentation of the expression ik heb, or ma instead of maar. The module is built
as two machine learning classifiers: a grapheme-to-phoneme converter (G2P) and a
consecutive phoneme-to-grapheme converter (P2G). We used the phonetic transcrip-
tions of the CGN corpus [Oostdijk 2000] to train our machine learning classifiers.
CGN contains 136,000 transcribed sentences using graphemes and phonemes, as
illustrated in the following example:

die net daar in de zee ligt zeg maar
di nEt tAr In d ze lIxt sEx mar
En: which is lying there in the sea say

Similar to the TRANSLITERATE module, preprocessing involves aligning the sequences
of graphemes so that the input and output sequence are of equal length:

die net daar in de zee ligt zeg maar
di+ nEt tA+r In d@ ze+ lIxt sEx ma+r

This is used as training material for the aforementioned memory-based learner,
which now converts a sequence of graphemes into phonemes as follows:

d/d i/i e/+ -/- n/n e/E t/t -/- d/t a/A a/+ r/r -/- i/I n/n -/- d/d e/@
-/- z/z e/e e/+ -/- l/l i/I g/X t/t -/- z/s e/E g/x -/- m/m a

Likewise, a memory-based learner was built that converts a sequence of phonemes
back into graphemes.

Finally, as a high percentage of tokens do not contain normalization problems and
should therefore not be changed, we also include the ORIGINAL input token in the word
candidate list to ensure that we do not lose correct tokens in the input text. Therefore,
the original module just adds the original token to the list of suggestions.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

61:10 S. Schulz et al.

Table I. Number of Tokens of the Training, Development, and Test
Sets Listed by Subgenre

Subgenre Train Dev1 Dev2 Test All
SMS balanced 6,665 1,137 1,138 2,150 11,090
SMS all 9,689 1,137 1,138 2,150 14,114
SNS balanced 5,706 929 829 1,701 9,165
SNS all 40,363 929 829 1,701 41,875
TWE 6,471 1,008 1,054 2,119 10,652

Total balanced 18,842 3,074 3,021 5,970 30,907
Total all 56,523 3,074 3,021 5,970 68,588

4.3. Decision Layer

Since we have no a priori knowledge about the nature of a normalization problem, each
sentence is sent to all modules of the suggestion layer. Each module is allowed to output
only one suggestion. It is the task of the decision module to choose the most probable
combination of suggestions to build a well-formed sentence. To tackle this combinatorial
problem, the decision module makes use of the Moses decoder [Koehn et al. 2007], whose
task it is to find the highest scoring normalized sentence corresponding to a given UGC
input sentence.

As in general SMT, the decoder makes use of a language model and a phrase table.
The language model has been built from a combination of four corpora using KenLM
[Heafield 2011] (see Section 5.2 for more details). The phrase table is a lookup table
containing words and word sequences along with the normalization suggestions gen-
erated by the modules. The decoder can be tuned by allocating weights to the language
model and phrase table, setting penalties for phrase reordering and sentence length.
We also included features in the phrase table that indicated which module(s) generated
a specific normalization suggestion. These features can be tuned as well. We assume
that the normalization suggestions of certain modules are more reliable than others
and expect their feature weights to be higher after tuning. All tuning was performed
on the development data (see Section 5 for a description of the datasets).

5. EVALUATION

5.1. Dataset

The language encountered in UGC differs among different social media applications
[Baldwin et al. 2013]. To account for this variety, we include three different types of
social media content in our corpus, namely texts from Twitter (TWE) accompanying
a Flemish TV show,5 texts from the social networking site Netlog6 (SNS), and short
messages (SMS) from the Flemish part of SoNaR [Reynaert et al. 2010].

Table I gives an overview of the size of our experimental corpus. To measure the cross-
genre performance of our normalization system, we also compiled a genre-balanced
dataset, which includes an approximately equal number of tokens from each of the
subgenres.

We split our corpus into a training, development, and test set, setting aside about 60%
for training, 20% for development, and 20% for testing. We use half of the development
set for tuning the individual modules (Dev1) and the other for tuning the overall system
(Dev2).

5The Voice of Flanders.
6http://nl.netlog.com/; the SNS data is a combination of the Netlog datasets of De Clercq et al. [2013] and
Kestemont et al. [2012].

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

http://nl.netlog.com/

Multimodular Text Normalization of Dutch User-Generated Content 61:11

Table II. Data Statistics of the Three Genres of UGC: The Number of Messages and the Number
of Tokens Before and After Normalization, Together with the Overall Expansion Rate

(Left-Hand Side); Normalization Effort Expressed in the Number of Operations on
Character Level (Right-Hand Side)

Genre Msg (#) Before After % INS (#) DEL (#) SUB (#) TR (#)
SMS 1,000 14,114 14,663 3.89 3,624 605 627 57
SNS 1,505 25,670 25,913 0.94 4,170 5,270 1,372 52
TWE 246 10,652 10,633 −0.18 1,104 394 270 9

Table III. Overview of Corpora Used for Language Modeling

Corpus Sentences Words
CGN [Oostdijk 2000] 985,609 6,765,336
SoNaR [Oostdijk 2008] 197,493 3,581,182
Open Subtitles Dutch (OSD) 11,788,416 90,147,315
Training set (TS) 3,721 56,523

All data have been manually normalized and annotated following the guidelines
described in De Clercq et al. [2013]. All operations that are necessary to transform the
anomalous text into standard language have been added to the data. These operations
are as follows:

—Insertions (INS): stappe → stappen (step)
—Deletions (DEL): schatjeeeee → schatje (honey, darling)
—Substitutions (SUB): egt → echt (really)
—Transpositions (TR): ftoo → foto (photo).

This fine-grained annotation facilitates the analysis of normalization issues that are
present in the data. Interannotator agreement was calculated between the two fully
normalized versions for the SMS genre, which is the genre that includes the highest
number of normalization problems. This was done by calculating the accuracy of taking
one annotator as the gold standard to score the annotations of the other. This results
in an accuracy of 0.967 for both annotators. If we compare this to the nonnormalized
accuracy score (i.e., 0.839), we conclude that we have a nearly perfect interannotator
agreement.

The normalization effort calculated on a part of our data can be inspected in Table II.
The left-hand side of the table shows the number of messages and the number of
tokens included in the corpus per subgenre before and after normalization, as well as
the expansion rate. On the right-hand side, the number of individual operations that
have to be performed to reach the normalized version are shown. The large number
of insertions hint at a high rate of abbreviations and phonologically realized words in
our data, whereas deletions can be mainly attributed to flooding. Substitutions and
transpositions roughly correspond to spelling problems. The slight decrease in tokens
observed in Twitter data is due to words that are spread over multiple tokens in the
original text that should actually be written as one word.

5.2. Modeling UGC Language

Apart from normalization problems, UGC language differs from standard language in
terms of word choice, syntax, and style as well. As the language model is a core element
of the SMT modules and the decision module, we want to build a high-quality language
model that fits the data that needs to be normalized as well as possible.

We have built language models from three corpora and combinations thereof. The
corpora, listed in Table III, were all chosen because of their relative closeness to the
target domain (i.e., they all contain a high degree of spoken language features). To

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

61:12 S. Schulz et al.

Table IV. Evaluation Results of the Tokenization Module

Genre SMS SNS TWE ALL
Metric Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.
Tokenization 0.98 0.97 0.98 0.98 0.99 0.99 0.98 0.98

maximize this similarity, we also added all training data of our UGC corpus. We used
KenLM [Heafield 2011] to evaluate the perplexity of different language models trained
on different combinations with respect to our development corpus (Dev1). We var-
ied the order of the models from three grams up to six grams but could not observe
any improvements above the order of 5. A five-gram language model, built on the
combination of all corpora, obtained the lowest perplexity of 7.4 and was used in the
experiments.

5.3. Evaluation Metrics

We evaluated our results using standard evaluation measures for lexical normalization
(i.e., word error rate (WER) and precision and recall calculated at the token level). WER
is a commonly used metric in speech recognition and machine translation evaluation.
It takes into account the number of insertions, deletions, and substitutions that are
needed to transform the suggested string into the manually normalized string and is
computed as follows:

WER = Insertions + Substitutions + Deletions
Tokens in the manual reference

Besides WER, we also calculate precision and recall, which are widely used metrics
in information retrieval. They give information about the degree of over- and under-
generation in the suggested string. Precision and recall are computed as follows:

Precision = # Correct tokens
Tokens in the suggestion

Recall = # Correct tokens
Tokens in the manual reference

As the token-based evaluation metrics are rather strict and do not reward improve-
ments that are not entirely correct (e.g., the suggestion antworden (correct form: antwo-
orden (answer)) for the anomalous form antwrdn), we also report character error rate
(CER). This is inherently the same formula as for WER, but instead of tokens it looks
at characters. As we want to focus on the performance of the normalization modules,
we take as input the manually tokenized and automatically flooding-corrected version
of the data and each time compare the output with the gold standard dataset.

We evaluated the performance of the tokenizer and sentence splitting component in a
separate experiment, in which we compared the automatically and manually tokenized
strings. Tokenization in UGC is known to be a difficult task due to the productive use of
emoticons, punctuation for emphasis, and the appearance of concatenated words. The
results in Table IV show high precision scores, ranging between 0.98 and 0.99 for the
three UGC genres. Recall scores are equally high, ranging between 0.97 and 0.99. Given
that this preprocessing step comes before a whole range of normalization modules, high
precision is important. We assume that some unsolved tokenization problems might
find a solution during the normalization process. A notable problem for the tokenizer
are cases in which words are strung together, such as teveel, which should be tokenized
into te veel (too much); this is also a problem for which a dedicated word split module
was designed in the next layer.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

Multimodular Text Normalization of Dutch User-Generated Content 61:13

Table V. Performance of the Filtering Methods

Module SMS SNS TWE ALL
Metric Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Bigram LM 0.93 0.84 0.96 0.85 0.98 0.92 0.95 0.87
NER 0.65 0.69 0.38 0.39 0.93 0.39 0.76 0.58

5.4. Experiments

Our experiments are structured in two main parts. First, we investigate the perfor-
mance of each module separately by presenting precision, recall, WER, and CER scores.
Because some modules were specifically designed to solve a certain type of normaliza-
tion issue (compare to Section 4.2), we also performed a task-specific evaluation for
them (i.e., the compound, abbreviation, and word split module). This was done by
evaluating each module with respect to its responsibility range, which was manually
annotated. In a next step, we evaluate the overall performance of our multimodular
system using the same evaluation metrics. In this setup, we apply different settings
by weighting the individual modules differently for the decision-making process, by
adding more information about the necessity to normalize a token, and by using differ-
ent training sets.

Since only a portion of the tokens in the input sentence exhibit normalization
issues, we experimented with filtering the module suggestions to assess the impact on
performance (both of individual modules and of the combined systems). The reasoning
behind this is that we want to filter out unlikely suggestions to avoid overcorrection
during the normalization process, namely tokens that do not include any normalization
problem should not be changed for the worse. We use two filters: a classifier trained
on a bigram language model and a named entity recognizer. The classifier is trained
on a simple bigram language model compiled from the data described in Section 5.2.
We look up each token of the input sentence in the context of the preceding and
subsequent token and only retain normalization suggestions for tokens for which we
cannot find both bigrams in the language model.

The second filtering mechanism aims at detecting named entities (NEs). NEs typ-
ically consist of OOV words that should not be normalized. It is therefore important
to recognize them as such to avoid overcorrection. NER in tweets is a far from trivial
problem [Liu et al. 2013]: NEs in UGC often have different characteristics than in
standard texts (NEs frequently lack capitalization or are introduced with specific char-
acters, such as @ or #), and thus we developed a dedicated NER tool [Schulz 2014]. The
NER tool is hybrid in the sense that it uses gazetteer lookup and classification. The
gazetteers contain a variety of NEs. Moreover, it includes a simple pattern-matching
rule to find words with a capitalized first letter that does not appear at the beginning of
a sentence. Given the productive nature of NEs, we also added a dedicated conditional
random field classifier trained on the training set of our corpus.

Table V shows the results of these two types of filtering for the three genres. For both
techniques, we compared the output of the filtering with the gold standard. The pre-
cision obtained with bigram filtering is high, ranging between 0.93 and 0.98, whereas
the recall scores range between 0.84 and 0.92. The precision of the NER module is
high for Twitter data and reasonable for SMS. For SNS, we observe a large number of
tokens mistakenly classified as NEs. This could be attributed to a nonstandard usage
of uppercase and lowercase letters.

5.4.1. Module-Specific Evaluation. The evaluation scores for all modules are presented in
Table VI. Baseline scores are calculated by comparing the manually tokenized original
input with the gold standard normalized text. A first observation is that, in general,
the performance varies significantly between the different UGC genres. The highest

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

61:14 S. Schulz et al.

Table VI. WER, CER, Precision, and Recall of the General Modules with and without Filtering of Suggestions

Module SMS SNS TWE ALL
Metric Pre Rec WER Pre Rec WER Pre Rec WER Pre Rec WER CER

Baseline 81.6 78.2 21.8 79.7 76.0 24.2 96.3 96.2 4.3 86.6 84.1 16.1 7.7

Without Filtering
SMT Token 87.5 87.0 12.3 84.1 81.7 18.0 96.2 96.1 4.1 89.8 88.9 10.8 6.0

SMT Unigram 92.6 92.0 7.5 86.5 85.6 14.1 96.6 96.7 3.7 92.4 92.0 7.7 4.9
SMT Bigram 92.8 91.5 8.3 86.5 84.7 14.7 95.0 95.1 5.4 92.0 91.0 8.9 6.4

SMT Cascaded 89.9 90.3 9.6 86.0 85.4 14.0 96.2 96.4 3.8 91.1 91.2 8.2 5.1
WAYS 68.9 65.9 34.2 63.8 60.8 40.2 73.7 73.1 28.4 69.2 67.0 33.6 17.4

Transliterate 90.0 88.9 11.1 84.0 81.6 19.1 94.0 93.9 6.8 89.9 88.8 11.6 6.4
Spell checking 81.1 77.7 22.0 75.6 72.1 27.7 94.0 93.8 6.6 84.5 82.1 17.9 7.7
Abbreviation 82.3 79.1 20.9 79.7 76.6 23.7 96.3 96.2 4.1 86.8 84.6 15.5 7.4
Compound 81.9 74.7 29.6 80.2 73.0 31.0 96.9 91.1 15.4 87.0 80.2 18.5 9.3
Word Split 78.2 76.1 24.3 78.6 75.3 25.2 91.7 93.1 7.3 83.2 82.1 18.4 7.9

With Filtering
SMT Token 86.6 85.0 14.9 83.9 81.2 18.7 96.5 96.3 4.1 89.5 88.1 11.9 6.3

SMT Unigram 89.1 87.6 12.0 85.4 84.4 15.4 96.3 96.4 4.0 90.8 90.0 10.0 5.4
SMT Bigram 88.6 86.9 12.9 85.1 83.0 16.3 95.7 95.7 4.8 90.3 89.1 10.8 5.9

SMT Cascaded 88.2 87.0 12.7 85.4 84.3 15.2 96.3 96.4 4.0 90.6 89.7 10.2 6.4
WAYS 79.8 76.4 23.7 74.7 71.2 29.7 92.2 91.9 8.5 83.1 80.7 19.7 11.7

Transliterate 87.3 85.7 14.4 83.7 81.4 18.9 96.0 96.0 4.4 89.6 88.3 12.0 6.4
Spell checking 82.2 78.8 20.9 78.9 75.3 24.5 95.5 95.3 5.1 86.3 83.9 16.1 9.2
Abbreviation 82.4 79.2 20.9 80.0 76.7 23.5 96.3 96.2 4.1 87.0 84.7 15.8 6.9
Compound 81.7 78.1 22.1 80.0 75.0 25.0 96.4 95.9 4.8 86.7 83.9 16.5 7.8
Word Split 79.2 76.8 23.5 78.6 75.6 24.9 94.5 95.0 5.4 84.8 83.1 17.3 7.8

scores are obtained on the Twitter data, followed by SMS and SNS. This variation can
be explained by the difference in density of normalization problems, which is in line
with the data statistics that were presented in Table II.

Table VI also illustrates that the SMT and TRANSLITERATE modules reveal particularly
high performance. The character-based SMT modules outperform all other modules,
with and without filtering. It performs best with a WER reduction of almost 50% over
the input text. CER shows a similar tendency. The strength of the character-based
SMT modules lies in resolving concatenations such as keb to ik heb, whereas the token-
based module is doing well in resolving frequent abbreviations. The TRANSLITERATE

module also shows good normalization capabilities. Even though it does not contain
any mechanism to prevent OOV words on the output side, it is able to resolve quite a
few issues of compounding and cliticization.

We observe that without filtering, four modules are never able to beat the baseline
(WAYS, SPELL CHECKING, COMPOUND, and WORD SPLIT). These are modules that typically
overcorrect, and as a result, we observe some moderate improvements after applying
filtering.

Although the WAYS module is able to model some aspects of write-as-you-speak effects,
its usability on our data is rather limited. Correct words in the input sequence are
very often converted erroneously through the processing chain. Furthermore, it is by
definition not able to convert abbreviated forms, such as ff for effe, which are plentiful in
our data. Finally, write-as-you-speak effects are very dependent on regional varieties of
Dutch. As a results, a single pronunciation model capturing all such regional variants is
just not tractable. Specialized region-specific WAYS modules may obtain better results.

Since the COMPOUND, ABBREVIATION, and WORD SPLIT modules have been designed
with a specific normalization issue in mind, these modules have a specific range of

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

Multimodular Text Normalization of Dutch User-Generated Content 61:15

Table VII. Number of Problems for Which Each Specialized Module Is Responsible
(RES), Has Solved Correctly (COR), and Has Overcorrected (OVER)

Module SMS SNS TWE
RES COR OVER RES COR OVER RES COR OVER

Without Filtering
Compound 2 1 96 7 4 60 8 4 136
Abbrev. 94 27 2 46 14 4 18 1 0
Word Split 10 0 57 26 2 15 0 0 80

With Filtering
Compound 2 0 3 7 1 6 8 1 8
Abbrev. 94 27 0 46 13 0 18 1 0
Word Split 10 0 38 26 2 10 0 0 31

responsibilities (compare to Section 4.2). Table VII gives an impression of the absolute
number of problems for which each module is responsible, based on a manual analysis
and the actual performance with and without filtering. Besides the fact that the type
of problems encountered in the three UGC genres differs considerably, we can also
observe that some specialized problems are rather infrequent in our data, such as the
small amount of compounding issues. We will now discuss the results of those three
modules in closer detail.

Without filtering, the COMPOUND module can only solve about half of the problems
of its responsibility range. In addition, we notice that it returns a lot of incorrect
suggestions. As mentioned earlier, the number of problematic compounds is small in
our test set. In total, only 17 problems with compounds need to be solved, including very
uncommon compounds such as songkeuze (song choice) and dragqueen (drag queen).
Introducing filtering leads to a drastic decrease in the number of overcorrections, but
it also harms the ability of the module to solve problematic compounds correctly.

We can observe that the ABBREVIATION module is able to solve around 30% of the issues
in the SMS and SNS genre, and 5% in the TWE genre. If we translate these numbers
into precision and recall, we can see that it achieves a high precision and a rather
low recall (averaged over all genres, we reach a precision of 0.90 and a recall of 0.22).
This high precision can be attributed to the lookup approach on which it is based. The
low recall points to a coverage issue of the dictionary. A manual analysis revealed, for
example, that abbreviations such as Hvj, which stands for hou van jou (I love you) or ipv
for in plaats van (instead of), remained uncorrected, as they are not yet included in our
dictionary, although they are highly frequent in Dutch. Nevertheless, high precision
means that the module does not harm the overall performance of our system. Extending
the dictionaries represented in this module could lead to a more valuable module
contributing well to the normalization success. It is also worthy of mention that the
filtering method works well for this module, because no overcorrections remain after
filtering.

Finally, the WORD SPLIT module has the lowest performance of all. This can be at-
tributed to the modules’ inherent capacity to only split a word into two when those two
words are actually existing and correct words. As a consequence, it cannot split words
containing additional normalization problems. Typical examples are kzit, which has to
be split into k and zit. Since k has to be transformed into ik to build the correct bigram
ik zit (I sit), the module cannot cope with those problems. The same problem occurs in
fused words such as loveyouuu, where the second token is anomalous. Again, we see
that this module accounts for a large number of overcorrections. Introducing filtering
leads to a decrease, although not as outspoken as it was for the previous module.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

61:16 S. Schulz et al.

To conclude, we can state that the actual responsibility range of the COMPOUND and
WORD SPLIT modules looks rather limited. However, to evaluate the complementarity of
the different modules, we also manually checked the number of unique suggestions that
each module (without filtering) proposes on the development dataset. This revealed that
even these three worst-performing modules each return unique correct suggestions. We
therefore decided to keep all modules in our multimodular system and leave it up to
the decision module to select the best suggestion. This is certainly not a trivial task.
The two modules that suggest the highest number of unique correct suggestions (WAYS

and SPELL CHECKING each offer 16) also generate the highest number of unique incorrect
suggestions (respectively, 1,571 and 594).

5.4.2. Multimodular System. Having explored the performance of all modules separately,
we also evaluated the interaction of all of our modules in combination. As described in
Section 4.3, we include features that provide information on which module(s) generated
a normalization suggestion into the decoding process using the Moses decoder. Initially,
these features were uniformly weighted (setting 1), but after further tuning on the
development set (settings 2 through 5), we bias the decoder to trust certain modules
more than others. It is important to note that these are overall module weights that do
not take into account the particular normalization issue at hand.

Since we observed that filtering improved the output of some of the modules that
tend to overcorrect, we also experiment with two different approaches to include this
filtering in our system. In one setting, which we label “hard filtering” (setting 3), we
remove suggestions for tokens that according to the filters should not be normalized.
In the second approach (setting 4), “soft filtering” is applied by adding this filtering
information in the form of two additional features (NER and bigram LM) to the decoding
process. The weights for these two additional features are tuned alongside other decoder
parameters. In a last evaluation scenario, we built a system using all of our training
data using the best settings of the previous experiments (i.e., with tuning and soft
filtering) and compare the results of the all-data-in setting to an all-data-in baseline.
In sum, we have thus set up five evaluation scenarios:

(1) Genre-balanced system without tuning
(2) Genre-balanced system with tuning
(3) Genre-balanced system with tuning and hard filtering
(4) Genre-balanced system with tuning and soft filtering
(5) All-data-in system with tuning and soft filtering.

For the evaluation of the entire system, we decided to focus on minimizing WER.
The first baseline is again calculated on the original, manually tokenized data. As a
second baseline, we took the single best-performing module (SMT UNIGRAM). A combined
approach should in any case beat the second baseline to show that a combination of
modules leads to an improvement over a single module approach.

The results in Table VIII show that the genre-balanced system without tuning (set-
ting 1) improves WER on the entire test set by about 30% over the first baseline and
reaches high recall and precision scores. Model tuning (setting 2) improves results
noticeably by lowering WER to 7.2%, a decrease of more than 50% over the baseline.
This experimental setup beats the best-performing single module, which has a WER
of 7.7%.

To gain some insight into the contribution of the different modules to the overall
system, we inspected the feature weights of the modules. The weights do not entirely
correlate with the ranking of the performance of the modules in terms of WER, but
they do reveal the same tendency. The highest weight is allocated to the SMT modules.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

Multimodular Text Normalization of Dutch User-Generated Content 61:17

Table VIII. Precision, Recall, and WER of the Normalization in Five Different Settings for Each Genre
and on the Entire Test Set

System SMS SNS TWE ALL
Prec Rec WER Prec Rec WER Prec Rec WER Prec Rec WER CER

Baseline 81.6 78.2 21.8 79.7 76.0 24.2 96.3 96.2 4.3 86.6 84.1 16.1 7.7
SMT Uni 92.6 92.0 7.5 86.5 85.6 14.1 96.6 96.7 3.7 92.4 92.0 7.7 4.9

1 89.6 87.3 12.8 84.9 81.8 18.4 96.7 96.5 3.9 91.0 89.2 11.0 6.1
2 92.2 92.2 7.5 87.5 87.5 12.4 97.0 97.2 3.2 92.8 92.8 7.2 4.9
3 88.7 87.6 12.1 86.1 85.8 14.0 96.2 96.4 3.9 90.8 90.4 9.7 5.5
4 91.3 92.7 7.0 87.6 87.4 12.6 96.9 97.1 3.2 93.1 92.9 7.1 4.8

SMT Uni all 92.9 92.2 7.4 88.1 87.8 12.0 95.8 96.2 4.1 93.4 92.5 7.4 4.6
5 93.5 93.0 6.7 89.1 88.2 11.5 95.9 96.3 4.0 93.2 92.9 6.9 4.7

Table IX. Oracle Recall Values for the Tuned,
Soft-Filtered Genre-Unbalanced System
Compared to the Recall Values Achieved

by the System in This Setting without Oracle

Genre SMS SNS TWE ALL
Oracle 96.2 93.7 98.2 96.3

5 93.0 88.2 96.3 92.9

The abbreviation module, which shows reasonable performance, gets the third highest
weight. As expected, modules that highly overgenerate receive a low weight.

Interestingly, we cannot show an overall improvement in WER over setting 2 by
adding hard filtering (setting 3). It especially impairs results for the SMS test data,
which contain the highest number of normalization issues. This means that hard
filtering removes too many correct suggestions for anomalous words. The CER val-
ues slightly improve by hard filtering, which can be explained by the limitation of
overcorrection.

Soft filtering (setting 4) performs better in comparison to hard filtering on all genres.
It appears that adding filtering information as decoding features to be tuned achieves
slightly better results than when such filtering is absent (setting 2) for SMS and
achieves the best scores for all data among the genre-balanced systems. This shows
that flagging a token that contains a normalization problem by the bigram language
model or an NE adds valuable information to the decoding process.

Adding more training data (setting 5) introduces a slight bias toward SNS data.
The performance for TWE slightly suffers, whereas the performance for SNS and SMS
noticeably improves, as we substantially extend the training set for SNS. The WER
calculated on the entire test set is the lowest among all systems. Comparing to the
SMT Unigram module with all training data as a baseline, we achieve significantly
better results with our multimodular system. Significance has been calculated using
the Monte Carlo algorithm [Efron and Tibshirani 1986] with a resulting 95% confidence
interval of 1.19 and 1.22 of difference in mean using 10,000 test suites.

Since we cannot presuppose that the decision module always picks the right sug-
gestion even if it is provided by the modules, we also calculated the upper bound
performance for system setting 5, which assumes a perfectly working decision module.
These oracle values are shown in Table IX.

A first observation is that our system almost reaches the upper bound of 96.3 with
an actual recall of 92.9, which means that the decision module performs really well.
Nevertheless, the oracle values also show that not all normalization issues are handled
by the modules of the suggestion layer. A manual inspection of the tokens for which
no correct suggestions are provided shows that those tokens often contain more than

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

61:18 S. Schulz et al.

Table X. Performance of Different NLP Tools Before and After Normalization
with the All-Data-In Multimodular System

Metric WER Accuracy F-score
Task NORM POS LEMMA NER
Gold standard — 79.8 90.2 20.7
Before normalization 24.6 66.1 71.5 18.5
All-data-in system 14.9 73.5 80.7 20.4
Tuned module weights, soft filtering

one normalization issue. An example is tuurlyk for natuurlijk (of course), which is
not only shortened but also has the homophones ij and y exchanged. Therefore, a
spell checking approach or a machine translation approach will probably struggle to
solve such issues, as they deviate too strongly from the standard form. The problem of
multiple corrections within one word could possibly be solved by a sieve technique in
which modules are called consecutively instead of in parallel.

5.5. The Bigger Picture: Extrinsic Evaluation and Portability

Since the main motivation for text normalization is to counter the drop in performance
of NLP tools on nonstandard text, we also performed an extrinsic evaluation of our
approach, similar to the work described in Zhang et al. [2013]. We evaluated the
performance of a POS tagger (POS), a named entity recognizer (NER), and lemmatizer
(LEMMA) [van de Kauter et al. 2013] before and after normalization (NORM) on a test
set from a subgenre that had not been included in training. Therefore, we additionally
annotated 918 posts (7,610 tokens) from the social network ask.fm7 for these four tasks.

We used the best-working multimodular system including all training data with
soft filtering (setting 5) to normalize the posts. As can be seen in Table X, for the
normalization of this new subgenre, the system performs much better than the baseline
(WER of 24.6).

To assess the impact of normalization on other NLP tasks, we include the results
for our gold standard data to set the upper bound that we can reach with perfect
normalization and calculate the accuracy and F-score. For all three tasks (POS tagging,
lemmatization, and NER), we observe a clear improvement after normalization with
an accuracy of 73.5% (after normalization) versus 66.1% (before normalization) for
POS tagging and an accuracy of 80.7% (after normalization) versus 71.5% (before
normalization) for lemmatization.

The performance improvement for NER, on the other hand, is very modest. The low
scores of NER on the gold standard dataset further illustrate that NER is a difficult
task in UGC.

6. CONCLUSION

Automatic normalization of UGC is a complex task with many challenges. In this arti-
cle, we worked with three different types of Dutch UGC, namely SMS, blog and forum
posts, and tweets. As can be seen in the expansion rate before and after normalization
(Table II) and the baseline WER scores (Table VIII), the normalization effort for the
different subgenres varies considerably, with tweets being easier to normalize than
SMS and posts on social network sites.

To account for the diversity of normalization problems, we implemented eight dif-
ferent modules that make use of three well-known metaphors for normalization: spell
checking, speech recognition, and machine translation. The module-specific evaluation
showed that especially the modules belonging to the machine translation metaphor

7http://ask.fm/.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

http://ask.fm/

Multimodular Text Normalization of Dutch User-Generated Content 61:19

(the SMT and TRANSLITERATE modules) perform well. However, as even the low-
performing modules generated unique suggestions, we built a multimodular system
based on all modules.

The real challenge of the multimodular system is the selection of the best (combi-
nation of) candidates from the pool of suggestions, which is the task of the decision
module. We stored all normalization suggestions in a phrase table and made use of the
Moses decoder to tackle this problem. In contrast to previous research efforts that were
limited to language model-based decoding, we use the phrase table infrastructure pro-
vided by Moses and add additional features to it that encode information about which
module(s) generated a normalization suggestion. These features were tuned on the
development set, thus permitting the decoder to learn to trust certain modules more
than others. Furthermore, we experimented with two types of filtering (hard and soft
filtering) to reduce overcorrection. The oracle values showed that the decision module
obtains a high performance despite the large number of suggestions.

Since the main motivation for text normalization is the improvement of the per-
formance of state-of-the-art NLP tools on UGC data, we also performed an extrinsic
evaluation on data normalized by our system on yet another type of UGC, namely
posts from ask.fm. We demonstrated that automatic normalization indeed improves
the performance of POS tagging, lemmatization, and NER. However, the performance
level of the standard NLP tools on UGC data (after normalization and even on the
gold standard data) is still far below the performance level of those tools on standard
language. This might be due to the high degree of syntactic anomalies and English
words in Dutch UGC, which our system at this moment is not able to tackle.

A manual inspection of the remaining normalization issues indicates that our sys-
tem struggles with normalizing words that contain multiple normalization problems.
To overcome this problem, a sieve architecture as suggested in Raghunathan et al.
[2010] could be attempted, passing on tokens from module to module, resolving issues
subsequently.

A current trend in research on text normalization deals with compiling training data
(token-word pairs) using unsupervised learning techniques, as illustrated in Liu et al.
[2012], Li and Liu [2014], and Yang and Eisenstein [2013]. Other promising research
attempts to minimize the need for manually annotated training data by using character
embeddings [Chrupala 2014] that allow for maximum utilization of annotated data.
Future work will investigate the applicability of these techniques for the normalization
task of Dutch UGC, described in this article.

ACKNOWLEDGMENTS

The authors would like to thank Arda Tezcan for his helpful contributions to this research.

REFERENCES

Brandy Lee Aven, David Anthony Burgess, Jonathan Frank Haynes, James Raymond Merino, and Paul
Cameron Moore. 2009. Using Product and Social Network Data to Improve Online Advertising. U.S.
Patent App. 11/965,509.

AiTi Aw, Min Zhang, Juan Xiao, and Jian Su. 2006. A phrase-based statistical model for SMS text nor-
malization. In Proceedings of the COLING/ACL Main Conference Poster Sessions (COLING-ACL’06).
33–40.

Timothy Baldwin, Paul Cook, Marco Lui, Andrew MacKinlay, and Li Wang. 2013. How noisy social media
text, how diffrnt social media sources? In Proceedings of the 6th International Joint Conference on
Natural Language Processing (IJCNLP’13). 356–364.

Richard Beaufort, Sophie Roekhaut, Louise-Amélie Cougnon, and Cédrick Fairon. 2010. A hybrid rule/model-
based finite-state framework for normalizing SMS messages. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics. 770–779.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

61:20 S. Schulz et al.

Kalina Bontcheva, Leon Derczynski, Adam Funk, Mark Greenwood, Diana Maynard, and Niraj Aswani.
2013. TwitIE: An open-source information extraction pipeline for microblog text. In Proceedings of the
International Conference on Recent Advances in Natural Language Processing (RANLP’13). 83–90.

Monojit Choudhury, Rahul Saraf, Vijit Jain, Animesh Mukherjee, Sudeshna Sarkar, and Anupan Basu.
2007. Investigating and modeling the structure of texting language. International Journal on Document
Analysis and Recognition 10, 3, 157–174.

Grzegorz Chrupala. 2014. Normalizing tweets with edit scripts and recurrent neural embeddings. In Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL’14), Vol. 2:
Short Papers. 680–686.

Eleanor Clark and Kenji Araki. 2011. Text normalization in social media: Progress, problems and applications
for a pre-processing system of casual English. Procedia—Social and Behavioral Sciences 27, 2–11.

José Carlos Cortizo, Francisco Carrero, Iván Cantador, José Antonio Troyano, and Paolo Rosso. 2012. In-
troduction to the special section on search and mining user-generated content. ACM Transactions on
Intelligent Systems and Technology 3, 4, 65:1–65:3.

Walter Daelemans and Antal van den Bosch. 2005. Memory-Based Language Processing. Cambridge Uni-
versity Press, Cambridge, UK.

Orphée De Clercq, Sarah Schulz, Bart Desmet, Els Lefever, and Véronique Hoste. 2013. Normalization of
dutch user-generated content. In Proceedings of the 9th International Conference on Recent Advances in
Natural Language Processing (RANLP’13). 179–188.

Bart Desmet and Véronique Hoste. 2014. Recognising suicidal messages in Dutch social media. In Proceed-
ings of the 9th International Conference on Language Resources and Evaluation (LREC’14). 830–835.

Bradley Efron and Robert Tibshirani. 1986. Bootstrap methods for standard errors, confidence intervals,
and other measures of statistical accuracy. Statistical Science 1, 1, 54–75.

Jacob Eisenstein. 2013. What to do about bad language on the Internet. In Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 359–369.

Jacob Eisenstein, Brendan O’Connor, Noah A. Smith, and Eric P. Xing. 2010. A latent variable model for
geographic lexical variation. In Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing (EMNLP’10). 1277–1287.

Jacob Eisenstein, Noah A. Smith, and Eric P. Xing. 2011. Discovering sociolinguistic associations with
structured sparsity. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, Vol. 1 (HLT’11). 1365–1374.

Jennifer Foster, Ozlem Cetinoglu, Joachim Wagner, Joseph Le Roux, Joakim Nivre, Deirdre Hogan, and
Josef van Genabith. 2011. From news to comment: Resources and benchmarks for parsing the language
of Web 2.0. In Proceedings of the 5th International Joint Conference on Natural Language Processing.
893–901.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor, Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael
Heilman, Dani Yogatama, Jeffrey Flanigan, and Noah A. Smith. 2011. Part-of-speech tagging for Twitter:
Annotation, features, and experiments. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies: Short Papers, Vol. 2 (HLT’11). 42–47.

Stephan Gouws, Dirk Hovy, and Donald Metzler. 2011. Unsupervised mining of lexical variants from noisy
text. In Proceedings of the 1st Workshop on Unsupervised Learning in NLP (EMNLP’11). 82–90.

Bo Han and Timothy Baldwin. 2011. Lexical normalisation of short text messages: Makn sens a #twitter.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, Vol. 1 (HLT’11). 368–378.

Bo Han, Paul Cook, and Timothy Baldwin. 2012. Automatically constructing a normalisation dictionary for
microblogs. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-CoNLL’12). 421–432.

Bo Han, Paul Cook, and Timothy Baldwin. 2013. Lexical normalization for social media text. ACM Transac-
tions on Intelligent Systems and Technology 4, 1, 5:1–5:27.

Kenneth Heafield. 2011. KenLM: Faster and smaller language model queries. In Proceedings of the 6th
Workshop on Statistical Machine Translation (WMT’11). 187–197.

Max Kaufmann and Jugal Kalita. 2010. Syntactic normalization of Twitter messages. In Proceedings of the
International Conference on Natural Language Processing.

Mike Kestemont, Claudia Peersman, Benny De Decker, Guy De Pauw, Kim Luyckx, Roser Morante, Frederik
Vaassen, Janneke van de Loo, and Walter Daelemans. 2012. The Netlog corpus: A resource for the study
of Flemish Dutch Internet language. In Proceedings of the 8th International Conference on Language
Resources and Evaluation (LREC’12). 1569–1572.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

Multimodular Text Normalization of Dutch User-Generated Content 61:21

Catherine Kobus, Yvon François, and Damnati Géraldine. 2008a. Normalizing SMS: Are two metaphors
better than one? In Proceedings of the 22nd International Conference on Computational Linguistics
(COLING’08). 441–448.

Catherine Kobus, Yvon François, and Damnati Géraldine. 2008b. Transcrire les SMS comme on reconnaı̂t
la parole. In Actes de la Conférence sur le Traitement Automatique des Langues (TALN’08). 128–138.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions
(ACL’07). 177–180.

Chen Li and Yang Liu. 2012. Improving text normalization using character-blocks based models and sys-
tem combination. In Proceedings of the 24th International Conference on Computational Linguistics
(COLING’12). 1587–1602.

Chen Li and Yang Liu. 2014. Improving text normalization via unsupervised model and discriminative
reranking. In Proceedings of the ACL 2014 Student Research Workshop. 86–93.

Wang Ling, Chris Dyer, Alan W. Black, and Isabel Trancoso. 2013. Paraphrasing 4 microblog normalization.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. 73–84.

Fei Liu, Fuliang Weng, and Xiao Jiang. 2012. A broad-coverage normalization system for social media
language. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics,
Vol. 1: Long Papers. 1035–1044.

Xiaohua Liu, Furu Wei, Shaodian Zhang, and Ming Zhou. 2013. Named entity recognition for tweets. ACM
Transactions on Intelligent Systems and Technology 4, 1, 3:1–3:15.

Maite Melero, Marta R. Costa-Juss, Judith Domingo, Montse Marquina, and Mart Quixal. 2012. Holaaa!!
Writin like u talk is kewl but kinda hard 4 NLP. In Proceedings of the 8th International Conference on
Language Resources and Evaluation (LREC’12). 3794–3800.

San Murugesan. 2007. Understanding Web 2.0. IT Professional 9, 4, 34–41.
Brendan O’Connor, Michel Krieger, and David Ahn. 2010. TweetMotif: Exploratory search and topic sum-

marization for Twitter. In Proceedings of the 4th International AAAI Conference on Weblogs and Social
Media. AAAI Press, Washington, DC.

Nelleke Oostdijk. 2000. The spoken Dutch corpus. Overview and first evaluation. In Proceedings of the 2nd
International Conference on Language Resources and Evaluation (LREC’00). 887–893.

Nelleke Oostdijk. 2008. SoNaR: STEVIN Nederlandstalig Referentiecorpus. Retrieved March 12, 2016, from
http://lands.let.ru.nl/projects/SoNaR/.

Georgios Paltoglou and Mike Thelwall. 2012. Twitter, MySpace, Digg: Unsupervised sentiment analysis in
social media. ACM Transactions on Intelligent Systems and Technology 3, 4, 66:1–66:19.

Claudia Peersman, Walter Daelemans, and Leona Van Vaerenbergh. 2011. Predicting age and gender in
online social networks. In Proceedings of the 3rd International Workshop on Search and Mining User-
Generated Contents (SMUC’11). ACM, New York, NY, 37–44.

Deana L. Pennell and Yang Liu. 2011. A character-level machine translation approach for normalization
of SMS abbreviations. In Proceedings of the 5th International Joint Conference on Natural Language
Processing. 974–982.

Karthik Raghunathan, Heeyoung Lee, Sudarshan Rangarajan, Nathanael Chambers, Mihai Surdeanu, Dan
Jurafsky, and Christopher Manning. 2010. A multi-pass sieve for coreference resolution. In Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP’10). 492–501.

Martin Reynaert, Nelleke Oostdijk, Orphe De Clercq, Henk van den Heuvel, and Franciska de Jong. 2010.
Balancing SoNaR: IPR versus processing issues in a 500-million-word written Dutch reference corpus.
In Proceedings of the 7th International Conference on Language Resources and Evaluation (LREC’10).
2693–2698.

Cate Riegner. 2007. Word of mouth on the Web: The impact of Web 2.0 on consumer purchase decisions.
Journal of Advertising Research. 47, 4, 436–437.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni. 2011. Named entity recognition in tweets: An experi-
mental study. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP’11). 1524–1534.

Sara Rosenthal and Kathleen McKeown. 2011. Age prediction in blogs: A study of style, content, and online
behavior in pre- and post-social media generations. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, Vol. 1 (HLT’11). 763–772.

Kathleen Van Royen, Karolien Poels, Walter Daelemans, and Heidi Vandebosch. 2015. Automatic monitoring
of cyberbullying on social networking sites: From technological feasibility to desirability. Telematics and
Informatics 32, 1, 89–97.

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

http://lands.let.ru.nl/projects/SoNaR/

61:22 S. Schulz et al.

Helmut Schmid. 1994. Probabilistic part-of-speech tagging using decision trees. In Proceedings of the Inter-
national Conference on New Methods in Language Processing. 44–49.

Sarah Schulz. 2014. Named entity recognition for user-generated content. In Proceedings of the ESSLLI
2014 Student Session. 207–2018.

Richard Sproat, Alan W. Black, Stanley Chen, Shankar Kumar, Mari Ostendorf, and Christopher Richards.
2001. Normalization of non-standard words. Computer, Speech and Language 15, 3, 287–333.

Paul Taylor, Alan Black, and Richard Caley. 1998. The architecture of the festival speech synthesis system.
In Proceedings of the 3rd ESCA/COCOSDA Workshop on Speech Synthesis. 147–151.

Jörg Tiedemann. 2012. Character-based pivot translation for under-resourced languages and domains. In
Proceedings of the 13th Conference of the European Chapter of the Association for Computational Lin-
guistics (EACL’12). 141–151.

Marjan van de Kauter, Geert Coorman, Els Lefever, Bart Desmet, Lieve Macken, and Véronique Hoste. 2013.
LeTs preprocess: The multilingual LT3 linguistic preprocessing toolkit. Computational Linguistics in
the Netherlands Journal 3, 103–120.

José van Dijk. 2009. Users like you? Theorizing agency in user generated content. Media, Culture and Society
31, 1, 41–58.

Cynthia Van Hee, Els Lefever, Ben Verhoeven, Julie Mennes, Bart Desmet, Guy De Pauw, Walter Daele-
mans, and Véronique Hoste. 2015. Detection and fine-grained classification of cyberbullying events. In
Proceedings of Recent Advances in Natural Language Processing (RANLP’15).

Reinhild VandeKerckhove and Judith Nobels. 2010. Code eclecticism: Linguistic variation and code alterna-
tion in the chat language of Flemish teenagers. Journal of Sociolinguistics 14, 657–677.

Robert A. Wagner and Michael J. Fisher. 1974. The string-to-string correction problem. Journal of the ACM
21, 1, 168–173.

Pidong Wang and Hwee Tou Ng. 2013. A beam-search decoder for normalization of social media text with
application to machine translation. In Proceedings of the 2013 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies. 471–481.

Benjamin P. Wing and Jason Baldridge. 2011. Simple supervised document geolocation with geodesic grids.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, Vol. 1 1 (HLT’11). 955–964.

Zhenzhen Xue, Dawei Yin, and Brian D. Davison. 2011. Normalizing microtext. In Proceedings of the AAAI-11
Workshop on Analyzing Microtext, Vol. WS-11-05. 74–79.

Yi Yang and Jacob Eisenstein. 2013. A log-linear model for unsupervised text normalization. In Proceedings
of the 2013 Conference on Empirical Methods in Natural Language Processing. 61–72.

François Yvon. 2010. Rewriting the orthography of SMS messages. Natural Language Engineering 16, 2,
133–159.

Congle Zhang, Tyler Baldwin, Howard Ho, Benny Kimelfeld, and Yunyao Li. 2013. Adaptive parser-centric
text normalization. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics, Vol. 1: Long Papers. 1159–1168.

Received November 2014; revised August 2015; accepted November 2015

ACM Transactions on Intelligent Systems and Technology, Vol. 7, No. 4, Article 61, Publication date: July 2016.

