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Abstract

A multitude of information sources is present in the electronic health record (EHR), each of which can con-
tain clues to automatically assign diagnosis and procedure codes. These sources however show information
overlap and quality differences, which complicates the retrieval of these clues. Through feature selection, a
denser representation with a consistent quality and less information overlap can be obtained. We introduce
and compare coverage-based feature selection methods, based on confidence and information gain. These
approaches were evaluated over a range of medical specialties, with seven different medical specialties for
ICD-9-CM code prediction (six at the Antwerp University Hospital and one in the MIMIC-III dataset) and
two different medical specialties for ICD-10-CM code prediction. Using confidence coverage to integrate all
sources in an EHR shows a consistent improvement in F-measure (49.83% for diagnosis codes on average),
both compared with the baseline (44.25% for diagnosis codes on average) and with using the best stan-
dalone source (44.41% for diagnosis codes on average). Confidence coverage creates a concise patient stay
representation independent of a rigid framework such as UMLS, and contains easily interpretable features.
Confidence coverage has several advantages to a baseline setup. In our baseline setup, feature selection was
limited to a filter removing features with less than five total occurrences in the trainingset. Prediction results
improved consistently when using multiple heterogeneous sources to predict clinical codes, while reducing
the number of features and the processing time.
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1. Introduction

Electronic health records (EHRs) contain differ-
ent types of information about patients and their
stays in health facilities [1]. Clinical codes reflect
diagnoses and procedures related to a patient stay
and are primarily assigned for reporting and reim-
bursement purposes. Their widespread adoption in
hospitals makes them a viable information source
in research and monitoring applications [2, 3].
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Clinical codes are predefined in a classification
system (e.g., ICD [4], ICPC [5]) and are assigned to
a patient stay by clinical coders who analyse the pa-
tient’s medical information. With the recent tran-
sition to ICD-10-CM/PCS, the coding complexity
grew since there are up to nineteen times as many
procedure codes and five times as many diagnosis
codes. This increased complexity requires better
techniques to assist clinical coders. Existing (pro-
prietary) applications either focus on making the
code system easily browsable or offer computer-
assisted coding. Most of those applications operate
on English data.

Computer-assisted coding helps clinical coders by
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pointing out relevant information, suggesting codes,
or in simple cases automatically assigning codes
without manual review [6]. Most systems described
by Stanfill et al. are used in controlled settings (e.g.,
assuming a very specific notation format in medical
data), predict only a limited set of codes, and are
mainly based on information from discharge sum-
maries or radiology reports [7]. While some of these
approaches perform well, they are difficult to scale
to larger datasets or port to different environments.
Recent research moved on to using real-world data
such as the MIMIC-III dataset [8]. In this paper, we
propose several feature selection methods to assist
an automatic coding algorithm, trained on multiple
data sources. These methods are used to reduce re-
dundancy between features extracted from different
information sources and thus create a denser rep-
resentation of the information with minimal loss of
quality.

1.1. Background

Recently, two techniques were proposed to lever-
age the sparsity of the output codes with layered
prediction and to make classification on a complex,
real-world dataset more effective [9, 10]. For evalua-
tion of new techniques, the MIMIC dataset is often
used as a benchmark [8]. Perotte et al. predict
diagnosis codes for MIMIC-II by using the code hi-
erarchy to learn codes incrementally: they initially
predict higher-level diagnosis categories (the first n
digits of the code) and then predict the complete
codes [9]. Subotin et al. predict ICD-10-PCS codes
from a large set of discharge summaries by predict-
ing parts of the code, since digits in ICD-10-PCS
point to different properties of the procedure [10].

These approaches still depend on the availability
of discharge summaries keeping a uniform, descrip-
tive, and complete notation. However, information
is often missing from discharge summaries and most
hospitals (and clinicians) have their own formatting
and writing style. By supplementing the informa-
tion found in discharge summaries with informa-
tion found in other data sources, the missing infor-
mation can be compensated for. This technique is
already being used for clinical tasks such as identi-
fying patient cohorts [11] and high-throughput phe-
notyping for patient cohort identification [3, 12].

Pathak et al. mapped structured and un-
structured data onto standardized thesauri (e.g.,
UMLS), resulting in a unified data view [12, 13].
While this approach can be powerful, it also cre-
ates a strong dependency on the ontologies used

and the completeness of the mapping. Mapping
local ontologies (e.g., RIZIV [14]) or terms found
in (Dutch) clinical notes, requires substantial re-
search effort. Scheurwegs et al. performed early
and late data integration with structured sources
directly represented as features and unstructured
sources converted into features through a bag-of-
words representation [15]. Due to the difference
in feature information density between sources - a
bag-of-words representation has more and weaker
features than a representation of structured sources
- an early data integration approach did not work.
Feeding the predictions per data source into a meta
classifier proved to be a better approach. However,
due to the compression of each source to a single
data point for each class, a lot of information was
lost.

In a recent article, a deep neural network, con-
sisting of stacked autoencoders, was created to
represent patients as a dense vector (called ‘deep
patient’) [16]. The structured and unstructured
sources used were generalized during preprocessing
(e.g., notes are represented in 300 generalized cat-
egories, using topic modeling [17]). The resulting
representation is claimed to be applicable to a vari-
ety of medical applications. Rather than transform-
ing all data into a dense representation, this paper
reports on research where the most interesting fea-
tures are selected. This influences the usability of
the algorithm: we optimise for the clinical coding
task, whereas ‘deep patient’ will generate a general-
purpose representation. We expect our approach to
focus on specific information with strong correla-
tions to a particular clinical code, while capturing
the information that may have been removed from
the dense vector representation.

Apart from getting complementary information
from different sources and balancing the informa-
tiveness, a dense representation, created by either
a feature selection algorithm or an algorithm that
creates an entirely new feature space, can make it
easier to deal with sources that are more noisy for
some specialties when compared to a late data inte-
gration approach [15]. The latter would disregard
the source entirely, while a dense representation
would still be able to retain a few features originat-
ing from that source. Since the quality and amount
of information found in certain sources differs for all
specialties [15], an approach that learns from inter-
esting features from each source without knowing
the most informative sources beforehand makes the
algorithm generalisable over multiple datasets.
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Feature selection algorithms often improve algo-
rithm performance, particularly in situations where
training data is limited [18, 19]. In classification,
successful feature selection approaches range from
techniques optimizing the goodness-of-fit towards a
class by ranking features to techniques that specifi-
cally look for a minimal set of features by reducing
inner-feature redundancies [20]. In a multi-label
problem, we have a multitude of labels for which
we want to optimize goodness-of-fit, while we also
suffer from redundancies in our feature set. Ideally,
we want to optimize both goodness-of-fit and inner-
feature redundancy, as the goodness-of-fit can help
us determine which of the strongly correlated fea-
tures optimally represents the task at hand, while
solely using goodness-of-fit leads to the selection of
features that might be strongly correlated and do
not contribute to the final prediction [21].

To tackle both, techniques such as mRMR [22]
have been introduced, but computationally they do
not perform well on datasets with a large number
of features and a large number of classes, due to a
pairwise feature-based redundancy calculation, and
a separate calculation of these metrics for each la-
bel. Other techniques used for feature selection,
such as markov-blanket algorithms [23, 24], yield
good results for feature selection, at the cost of com-
putational efficiency, as they require the induction
of a (partial) Bayesian network.

Database coverage-based algorithms gain a com-
putational advantage over pairwise feature-based
methods that compare redundancy, since the for-
mer only require one comparison per feature with
the joint coverage of all previously selected features.
This does require the usage of a ranking of features,
which is not always required for algorithms that
identify redundant features in a pairwise fashion.

Using the entropy of a feature on the entire
dataset on a scoring mechanism for feature rele-
vance can also be problematic due to the influence
of both sparse features and classes in EHRs. We in-
vestigate these issues by comparing techniques us-
ing different measures for the informativeness of a
feature and by using a technique that considers re-
dundancy of features based on the dataset coverage
of all previously selected features for a certain class
instead of doing a pairwise comparison between fea-
tures. We monitored the influence this has on pro-
cess time as well.

1.2. Significance

In this paper, we show that complementary in-
formation can be extracted from multiple sources
efficiently by selecting the most reliable informa-
tion for predicting diagnosis and procedure codes in
an early data integration approach. We introduce
confidence-coverage as a feature selection method
that uses a co-occurrence based scoring mechanism,
combined with an instance-oriented selection de-
signed to reduce information overlap between differ-
ent extracted features. We evaluate performance of
four feature selection methods on several datasets
of the Antwerp University Hospital (UZA), six of
which have ICD-9-CM (procedural and diagnosis)
codes and two of which have ICD-10-CM and ICD-
10-PCS codes assigned. For benchmarking pur-
poses, we also evaluate on the MIMIC-III dataset.

2. Materials and Methods

To prepare the raw data, present in both textual
and structured sources, a representation of each
source is created. These representations are then
presented to four different feature selection algo-
rithms. The four different representations that re-
sult after feature selection, and the original repre-
sentation, are then presented to the classifiers and
evaluated in the experimental section. The orig-
inal representation serves as a baseline, and will
show the effect of applying any feature selection al-
gorithms.

The prediction of clinical codes is cast as a multi-
label classification task, in which each clinical code
is treated as a separate class. Classes are not mutu-
ally exclusive. Diagnosis and procedure codes are
treated as different classification tasks. Each dis-
tinct classifier in the setup makes a decision based
on the features selected for all codes, not only for
the code in focus.

2.1. Datasets

We will use three anonymized clinical datasets
consisting of a collection of patient stays, with mul-
tiple associated structured and unstructured data
sources. Each dataset is divided into medical spe-
cialties (see Table 1). The clinical codes show a
Zipfian distribution: a small number of codes oc-
curs in a large number of patient stays, whereas
most codes are sparse.

Both UZA1 and UZA2 were extracted from the
UZA data warehouse. UZA1 covers a two-year pe-
riod, and is divided into six medical specialties. It
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Table 1: Overview of the datasets. The table shows the number of patient stays, the number of unique diagnosis and procedure
codes occurring in each medical specialty and the label cardinality, which represents the average number of labels per patient
stay.

Dataset
Medical spe-
cialty

Number
of patient
stays

Procedure codes Diagnosis codes

Unique
codes

Label
cardinal-
ity

Unique
codes

Label
cardinal-
ity

UZA1 Cardiology 10000 235 3.04 2148 7.90
UZA1 Oncology 10000 156 1.01 1696 12.74
UZA1 Urology 3440 282 1.10 1422 5.83
UZA1 Gastroenterology 7440 232 0.87 2165 4.87
UZA1 Ophthalmology 4510 187 1.75 1136 3.31
UZA1 Pneumology 3430 151 0.81 1884 9.69
UZA2 Cardiology 1680 169 2.41 987 5.96
UZA2 Oncology 2920 110 1.07 824 8.94
MIMIC-
III

Intensive Care 10000 1367 3.91 1769 10.59

contains ICD-9-CM procedure and diagnosis codes.
UZA2 covers a three-month period, and contains
stays of two medical specialties. Diagnosis codes
are represented as ICD-10-CM codes and procedure
codes as ICD-10-PCS codes. Both datasets contain
structured and unstructured data (in Dutch). The
structured sources are lab results (local code), inpa-
tient medication prescriptions (ATC), oncological
pathology codes (CODAP), medical departments
where patients were seen or treated, demograph-
ics (year of birth and gender), and RIZIV proce-
dure codes [14]. RIZIV codes are a local coding
system referring to medical procedures or interven-
tions. Unstructured sources include discharge sum-
maries, letters, radiology reports, notes, surgery re-
ports, attestations, and requests.

MIMIC-III is a public dataset about intensive
care in which ICD-9-CM diagnosis and procedure
codes are present [4, 8]. Structured sources ex-
tracted from MIMIC-III are NDC codes (inpa-
tient medication prescriptions), LOINC codes (rep-
resenting lab tests), and departmental information.
All available unstructured data (including discharge
summaries) is included as well. We extracted a ran-
dom subset of 10,000 stays for our experiments.

All three datasets are extractions of real-world
data. The ICD-9-CM datasets are representative
in both size and complexity of a typical medical
specialty of a hospital, while the ICD-10-CM/PCS
dataset is still limited in size and used for early

experiments in ICD-10 code assignment.

2.2. Data representation

Structured sources, that are used as input,
are represented by the number of occurrences
of a certain code. For example, the fea-
ture ‘ATC:N02BE01=2’ represents the ATC-code
‘N02BE01’ occuring twice in a patient stay. For lab
tests, we use value-unit pairs as features and calcu-
late derived measures, such as deviation from the
mean, maximum and minimum values, and whether
a predefined limit has been passed (e.g., the up-
per limit of normal or ULN). Time dependencies in
laboratory values were represented using averaged
trends over time, the variability in results over time,
and the minimum and maximum value.

Textual sources are represented as medical multi-
word expressions (mMWEs), consisting of a lem-
matized string (i.e., dictionary form). For example,
from the sentence fragment ‘suffering from an is-
chemic stroke’, ‘ischemic stroke’ is extracted as a
mMWE. To featurize the mMWEs, two different
methods provide a different representation of all
texts. For the first representation, we applied an
IDF-weighted fuzzy matching dictionary-based ap-
proach using several ontologies (e.g., UMLS, 3BT,
medication brand names, ...) as underlying on-
tologies. The second representation consists of
an unsupervised approach based on linguistic pat-
tern matching and mutual information (LMI) [25].
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The latter technique uses the differences between
an unannotated clinical corpus and other corpora
(SoNaR subcorpora, which consists of e.g., newspa-
per articles, wikipedia, emails) to extract clinically
relevant text, by weighing word frequency against
each of the other corpora. A word is considered
medical if it is more related to the medical corpus.
The frequency of candidates consisting of multiple
words are averaged, in which the average frequency
has to be higher for the clinical corpus. By using
two independent techniques to represent texts, we
are able to account for terms that do not have a for-
mal definition in a lexicon and are medically rele-
vant (e.g., synonyms that are not defined in UMLS),
while we can also make use of the (limited) set of
Dutch term definitions that we do have.

The representation of texts as a list of mMWEs
does not use negation detection, co-reference res-
olution, or temporality detection. Despite inter-
esting results in other domains and languages, we
have found that these components do not ade-
quately perform on the Dutch clinical texts in our
datasets. These clinical texts are not well formed,
often lack sentence structures and contain a lot of
non-standard terminology that can indicate nega-
tion or uncertainty (such as hedging). Prelimi-
nary experiments showed that adding them to our
pipeline did not lead to an improvement in the re-
sults.

Diagnostic and procedural codes, which are used
as output classes, are binarized: if a code is assigned
at least once during the patient stay, it is considered
present, otherwise, it is considered absent.

2.3. Feature selection

All data sources provide information we can con-
sider features for predicting diagnosis or procedure
codes. However, the data sources vary significantly
in terms of the number of features and feature qual-
ity. To balance the information content between
features, remove noise, and ultimately select the
most important features, we propose four methods,
one of which is a gain ratio baseline. A frequency
filter is applied before all feature selection methods,
which removes all features that do not occur at least
five times in the training set. This frequency filter
is used for the baseline, consisting of the original
representation, as well.

2.3.1. Gain ratio(GainRatio)

Gain ratio is a normalized version of information
gain (IG), in which a feature’s IG is normalized by

the number of different values of that feature in the
dataset. This counteracts the IG bias towards fea-
tures with a large number of different values. Gain
Ratio is used as a reference method in this paper.

The Shannon entropy of dataset D can be defined
as:

H(D) = −
|C|∑
i=1

P (ci)log2P (ci)

where |C| represents the total number of classes
and P (ci) represents the probability mass of the
ith class in the dataset D. In a multi-label environ-
ment, we consider a code being present and a code
not being present as the classes.

The information gain of a feature F is defined
as the ratio of Shannon entropy between all data
instances and the weighted average entropy of the
subsets of instances where the value of the feature
for a given instance f is equal to v for each unique
value v in all instances for feature F :

IG(f) = H(D)−
∑

v∈vals(f)

|{d ∈ D|val(d, f) = v}|
|D|

·H({d ∈ D|val(d, f) = v})
(1)

2.3.2. Confidence coverage (ConfCov)

Confidence coverage models the direct correla-
tion between a feature and a class without penal-
izing it for low frequency and attempts to select
features that cover all training instances. The con-
fidence coverage method originates from a pruning
algorithm used in rule-generating classifiers such as
IREP, RIPPER, and CMAR [26, 27, 28]. In IREP
and RIPPER, rules are pruned incrementally dur-
ing learning, while CMAR prunes after learning. In
CMAR, rules are based on frequently co-occurring
elements in instances by considering their relation
with classes assigned to those same instances.

Confidence is a metric that represents how spe-
cific a certain feature is to a class. The confidence
of a (binarized) feature f for a class ci in dataset
D can be defined as the ratio between the num-
ber of instances where f and ci are present and the
number of instances where f is present:

conf(f) =
|{d ∈ D|hasFeature(d, f)&hasClass(d, ci)}|

|{d ∈ D|hasFeature(d, f)}|

These feature-class associations, which can be de-
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fined as rules, are then ordered by their confidence
score and pruned using their database coverage.
The database coverage of a rule is calculated by
looking at the specific training instances that are
covered by a certain rule. This allows for the re-
moval of rules that are covered by higher ranking
rules, while rules that cover previously uncovered
instances are still preserved. In figure 1, an exam-
ple is shown. Rule A has a confidence of 0.82 and
covers instances 1, 2, and 3. Rule B, with a confi-
dence of 0.75, covers instances 1 and 2. xRule C has
a confidence of 0.56 and covers instances 3 and 4.
When the two most confident rules are selected, in-
stance 4 is not covered, whereas the coverage-based
method covers all instances by selecting only rules
A and C.

To make the algorithm less strict, we allow for
some degree of overlap between rules and prune
rules with low information content. An instance
is removed from the coverage list once it has been
covered by three different rules. A rule is preserved
when it covers at least 3 instances in the coverage
list. A minimum threshold of 10% on confidence is
imposed.

When assigning clinical codes based on a mul-
titude of sources, a similar problem as with rule
generation arises: an input space with a large num-
ber of (potentially noisy) features. By associat-
ing the (binarized) feature to the different clinical
codes (classes), the feature-class associations can
be considered rules. Confidence coverage then ad-
dresses the reduction of the substantial number of
generated rules by ordering them based on confi-
dence and then pruning them based on their cov-
erage of the dataset. In our setup, we binarize
the features before associating them with classes in
confidence-coverage. Binarization captures most of
the information from binary and count-based fea-
tures (which are the majority in our setup), but
does not lend itself as well for features describing
trends and values in lab tests, since it essentially re-
duces these features to whether or not a trend has
been calculated for that specific patient, and thus
allows the feature to only be selected when calcu-
lating a trend is indicative for a certain class.

Feature-class associations are not used as rules,
as in CMAR and RIPPER, but rather as indicators
for feature selection performed prior to classifica-
tion. That enables us to recover the original feature
representation (i.e., binary, counts, and values) in-
stead of the binary format used by the confidence
coverage algorithm.

2.3.3. Information Gain Coverage (InfGainCov)

As a second method, we adapted the confidence
coverage method described above to work with in-
formation gain as a scoring mechanism. As de-
scribed in section 2.3.1, information gain uses Shan-
non entropy, which is calculated using the feature’s
correlation with both the positive class (i.e., the
clinical code is present) and the negative class (i.e.,
the clinical code is not present). Since the cover-
age used in confidence-coverage only looks at the
coverage of positive instances, it is adapted as well.

2.3.4. Confidence coverage with negative feature
mining (ConfCovNeg)

Confidence coverage does not cover relations be-
tween the negative class and a feature. For exam-
ple, if a patient does not have hypothermia (ICD-
9-CM code 991.6) and one of the features is ‘suffi-
ciently warm’, this feature could be evidence to not
assign the code. We would however not find this
feature with the previously suggested confidence
coverage method, because the confidence score be-
tween ‘sufficiently warm’ and the class ‘991.6’ will
be low.

Since confidence coverage is designed to work
well in sparse-class environments, we do not con-
sider it for the negative class. This is because of
the unbalanced nature of the data (e.g., patient
stays not coded with ‘hypothermia’ would be more
prevalent than patient stays coded with ‘hypother-
mia’). When confidence is used to score features for
a densely populated class, unrelated features can
reach a high confidence by coincidence, since a fea-
ture will have more opportunities to be present in
a frequently occurring class. This can be counter-
acted by introducing the complement of all bina-
rized features. When running the confidence cover-
age method in the previously described manner, we
will find the correlation between the complement of
a feature and the positive class. A selected com-
plement is again replaced with the original feature
after feature selection. In the example, this would
lead to the complement of a feature ‘NOT suffi-
ciently warm’ getting a high confidence value for
predicting the class ‘991.6’, and being selected as a
relevant feature. The complement of a feature rep-
resents all cases where ‘sufficiently warm’ was not
explicitly mentioned. When proceeding to the clas-
sification stage, ‘NOT sufficiently warm’ is replaced
by the original feature ‘sufficiently warm’.
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Figure 1: Visualisation of the instances covered by individual rules and the difference in coverage when using either top-N or
unique coverage to select rules. A rule scoring higher on confidence is preferred.

2.4. Experimental setup

Each experiment is conducted with the four fea-
ture selection methods described above and with
the original representation. For classification, we
require a classifier that can handle a moderate
to high number of features, such as Random
Forests [29]. When presenting a classifier with all
selected features, including the ones that were rel-
evant to other clinical codes according to the fea-
ture selection method, the number of features is still
quite high. All experiments are conducted in a ten-
fold cross-validation setting. When cross-validation
is used at the same time for both hyperparameter
optimization and the comparison of different mod-
els, an overoptimistic estimation is likely, due to the
large number of different variants of a model yielded
by hyperparameter optimization [30]. A first solu-
tion, performing cross-validation only over the train
set and using the resulting optimised classifiers on
a single test set, will have the results reflect any ac-
cidental bias that might be present in the selected
test set. A more robust way to optimally estimate
hyperparameters is nested cross-validation, but this
implies a high computational cost, certainly when
many parameters need to be optimized.

Instead, parameter optimization for our ex-
periments is performed within a ten-fold cross-
validation loop by using a train/development/test
split, where one of the nine data partitions reserved
for training was used as a development set. With
this development set, we have optimized param-
eters for the feature selection algorithm (such as
cutoff thresholds, the number of retained features
per class). No parameter optimization was used
for Random Forests. A rough search of parameters
mitigates overfitting due to small gains in perfor-
mance on a development set. This is particularly
relevant when no nested cross-fold validation is em-

ployed to assess these optimal parameters. For each
fold, a final model is then trained, using both train
and development sets with the optimal parameters
from the previous phase.

Results achieved with other classification algo-
rithms were performed as a separate experiment,
and are presented in additional materials (e.g.,
C4.5, naive Bayes).

Micro-averaged F-measure is the main reported
measure, which is the harmonic mean of preci-
sion and recall. In micro-averaging, each individ-
ual prediction is weighted equally, which means
that a highly frequent class contributed more to
the final result. Micro-averaging provides a good
overall indicator of the performance of the model,
while macro-averaging over class is a stronger indi-
cator of performance for sparse classes, and macro-
averaging over instances is an indicator on how well
a model performs for individual instances.

These three averaging methods differ in how
they normalise the predictions, so a different as-
pect of the multi-label task is being highlighted [31]:
Micro-averaged F-measure does not normalise over
any aspect, so each prediction is reflected equally.
With L = αj : j = 1..q being the set of all labels,
S = βj : j = 1..n being the set of all instances, the
metrics can be represented as follows:

Fmicro = 2
precision ∗ recall
precision+ recall

where

precision =

q∑
α=1

(TPα)

q∑
α=1

(TPα) +

q∑
α=1

(FPα)
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and

recall =

q∑
α=1

(TPα)

q∑
α=1

(TPα) +

q∑
α=1

(FNα)

FmacroClass =
1

q

q∑
α=1

(
2 ∗ precisionα ∗ recallα

precisionα + recallα

)

FmacroInstance =
1

n

n∑
β=1

(
2
precisionβ ∗ recallβ
precisionβ + recallβ

)
All results should be considered in their own spe-

cialty. For comparability however, we are also re-
ferring to the averages over the different specialties.
These averages are calculated by weighing the re-
sults of each individual specialty with the number
of patient stays occurring in each specialty. This
reduces the contribution of smaller datasets to the
overall results.

3. Results

To test whether combining multiple sources in-
creases performance, we first perform a learning
curve experiment. We combine n data sources and
retrieve the best integration for each specific combi-
nation. Instead of testing all possible combinations
(which would require 255 experiments for each spe-
cialty, given 8 different input sources), the combi-
natory experiments were approached iteratively: in
a first step, we rank the scores of all single source
experiments. The sources are then combined in a
pairwise fashion, where the two best scoring sources
are joined, the next two sources are also joined,
etc. We then expand the best scoring pair with the
source that scored best in the single source exper-
iments. If that source is already part of the pair,
we use the highest ranking source that is not. This
is repeated until we converge to a setup where all
sources are present.

We preferred this technique over using a tech-
nique which performs a random search over pa-
rameters (which is proposed as an alternative to
a full grid search over parameters). With a ran-
dom search, N number of random combinations
of sources are tested out, which similarly enables
approaching the optimum combination of sources.
While our pragmatic search technique is not ex-

haustive, it does not influence results for the best
single source and total integration.

In Figure 2, an example of the learning curve is
shown for predicting ICD-9-CM diagnosis codes for
the UZA1-urology dataset (Tables 2 and 3 present
results for best performing combinations for other
specialties). The top edge of the area corresponds
to the best integration for each set of n sources.
This best integration is used for further experi-
ments: we first determine the best integration of
sources for each dataset, and then experiment with
the feature selection methods on that specific com-
bination of data sources. Our experiments showed
that LMI-based concepts (which are one of two
available representations for free texts) are the best
scoring individual source for predicting diagnostic
codes in 8 out of 9 datasets, and RIZIV-codes are
the best scoring individual source for procedure
codes in 7 out of 9 datasets.

Figure 3 shows very similar results (in micro-
averaged F-measure) for the confidence cover-
age method (ConfCov) and the ConfCov variant
with negative feedback (ConfCovNeg), across four
datasets. Both methods outperform the baseline,
the gain ratio method and the information gain cov-
erage method (InfoGainCov).

Tables 2 and 3 show the micro-averaged F-
measures obtained with the best individual source,
the best integration of sources, and the combina-
tion of all sources for all feature selection methods
and datasets. Table 2 shows results for diagnosis
code prediction and Table 3 shows results for pro-
cedure code prediction. The significance of these
results is demonstrated using approximate random
testing against the baseline and can be found in
supplementary materials [32].

For diagnosis codes, confidence coverage yields
the highest micro-averaged F-measure overall.
When comparing total integration to selecting the
best individual source, performance of coverage-
based methods seems to be affected more. We see
an average increase of 5.43% for ConfCov, 5.35%
for ConfCovNeg, 5.07% for InfGainCov, 3.54% for
GainRatio, and 2.79% for the baseline. The re-
sulting F-measure for total integration is at or very
close to the F-measure seen in the best integration,
which is not always the case for gain ratio or the
baseline (an average difference of 0.08% for Conf-
Cov, 0.41% for GainRatio, and 0.64% for the base-
line).

For procedure codes, the same trend emerges,
with confidence coverage scoring best overall and
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Figure 2: Micro-averaged F-measure range for confidence coverage with increasing number of data sources used, for predicting
ICD-9-CM diagnosis codes in the UZA1 dataset urology. The black dots indicate the average performance of the combinations,
while the grey dots indicate specific combinations.

Figure 3: Comparison of feature selection methods with micro-averaged F-measure with the best integration of n data sources for
prediction of diagnosis and procedure codes in four datasets. ConfCov represents the confidence coverage method, ConfCovNeg
represents the confidence coverage method with negative feedback, InfoGainCov represents the information gain coverage
method and GainRatio represents the gain ratio baseline.

an average difference in micro-averaged F-measure
between using the best individual source and apply-
ing total integration of 2.52% for ConfCov, 2.40%
for ConfCovNeg 0.07% for InfGainCov, 1.69% for
GainRatio, and -0.86% for the baseline. The differ-

ence between the best integration of sources and to-
tal integration is larger, with an average difference
of 0.16% for ConfCov, 0.50% for GainRatio, 1.57%
for the baseline, and, surprisingly, 1.47% for Inf-
GainCov. Overall, information gain coverage seems
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to struggle more. Using GainRatio as feature selec-
tion is near to the baseline level, with a worse per-
formance for some specialties, but integration with
GainRatio works better.

Finding negative correlations between features
and classes (ConfCovNeg) does not significantly im-
prove results yielded by the confidence coverage
method. The number of negative correlations found
was low. This can also be seen in Table 4, where
the number of selected features between ConfCov
and ConfCov-Neg hardly differs.

3.1. Runtime complexity and number of features

Table 4 shows that confidence coverage variants
select the lowest number of features, whereas gain
ratio tends to select the most features. For proce-
dure codes, we see that information gain coverage
also selects more features compared to the other
methods. The results suggest that coverage-based
algorithms outperform non-coverage-based meth-
ods while needing a much lower number of features.
This is mostly due to the removal of similar fea-
tures, which decreases redundancy between features
in the classifiers.

In Table 5, we present runtimes of the experi-
ments on a server with 32 CPUs and 40 GB of
RAM. These runtimes are indications only of the
complexity of the experiments, due to limited con-
trol over memory usage and parallelisation. They
include the time needed to train a feature selec-
tion model and to train a classification model for 10
folds, but do not include inner-fold parameter op-
timization, data extraction from the databases, or
the calculation of evaluation metrics. The experi-
ments train classifiers for different codes in parallel,
but this is automatically managed depending on the
memory still available. The runtimes should there-
fore only be treated as indications, and can vary
depending on server architecture and other tasks
running on the server. Feature selection and the
training of a classification model are both taken into
account, as the former has a large influence on the
runtime of the latter.

If we compare ‘total integration’ and ‘single
source’ experiments, we can see that the impact
of additional data sources on runtime is not large
for most experiments, except when gain ratio is
used. Gain ratio in general is a component that
requires a lot of calculations, compared to the (sim-
pler) confidence-coverage. The relation between the
number of features (seen in Table 4) and the run-
time does not increase exponentially.

We see that experiments with confidence-
coverage have a lower runtime complexity than ex-
periments with other techniques, except for the car-
diology and MIMIC-III datasets. When we com-
pare runtime for diagnostic codes and procedure
codes in the same specialty, we see that an increase
in the number of classes directly leads to a roughly
linear increase in runtime. This is to be expected:
the used feature selection methods are calculated
per class, and a separate classifier was trained for
each individual class.

A comparison of runtime over specialties, to see
the effect of having larger or smaller datasets, shows
that runtime increases linearly with the size of the
dataset as well, for procedure codes. For diagnos-
tic codes, we see that the runtime is increased by
both the higher number of instances and the higher
number of classes, leading to a quadratic increase
in the worst case.

Theoretically, database-coverage-based methods
scale linearly with an increase in features, as a com-
parison is made directly with the unison coverage
of all other features, instead of a pairwise compari-
son between features, as is often the case in feature
selection methods considering redundancy. Confi-
dence as a metric also scales linearly with the num-
ber of classes, as it is calculated for each class sep-
arately. The combination of both thus scales lin-
early in complexity with an increase in features and
classes, but increases with their product when both
are increased. This can be a problem when new
instances are added to a dataset, as long as they
bring new features and classes, but with time, the
number of features and classes will converge (which
would be the case when a dataset is completely rep-
resentative for their medical specialty).

3.2. Instance-based and class-based evaluation.

In Table 6, different measures can be seen for all
feature selection methods, averaged over the dif-
ferent datasets. Instance-based F-measure and ex-
act match both reflect how well the algorithm per-
formed for individual instances (for the average,
each dataset is weighted with the number of in-
stances in its set). With instance-based F-measure,
each instance contributes evenly to the final results.
Exact match shows the ratio of instances where
all codes were predicted correctly for all classes.
For class-based F-measure, each class contributes
evenly to the results. For the average, each dataset
is weighted with the number of classes in its set.
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Table 2: micro-averaged F-measure (in %) reached when predicting diagnosis codes. Different datasets are shown in columns,
different feature selection methods are shown in rows. For each feature selection method, we show the best scoring individual
source used, the best scoring combination of sources (‘best integration’), and the results when all sources were used to make
predictions (‘total integration’).

ICD-9-CM ICD-10-CM MIMIC-III
Cardio Gastro Onco Ophtal Pneumo Uro Cardio Onco ICU

Baseline single source 43.5 26.5 54.8 51.4 44.7 29.2 36.6 57 32.1
Baseline best integration 45.1 27.7 61.8 52.2 51.9 38.6 37.7 64.9 32.4
Baseline total integration 45.1 27.7 61.8 52.1 45 38.6 37.1 61.7 32.4
GainRatio single source 44.4 26.9 54.4 52.4 40.4 28.6 38.2 57.9 32.1

GainRatio best integration 46.1 29 62.2 53 48.1 39 39.7 67.2 32.8
GainRatio total integration 46.1 28.8 62.2 53 44.9 39 39.7 63.6 32.8

ConfCov single source 45.1 33 56 53.8 44.7 32.4 39.6 59.5 36.8
ConfCov best integration 48.4 36.1 68.4 55.4 52.3 44 42.4 70.8 37.1
ConfCov total integration 48.3 36.1 68.4 55.4 52.3 44 42.3 69.8 37.1

ConfCov-Neg single source 45 32.9 55 53.7 44.7 31.6 39.6 58.3 36.8
ConfCov-Neg best integration 48.2 36.2 66.9 55.4 51.5 44 42.4 68.6 37.1
ConfCov-Neg total integration 48.2 36.2 66.9 55.4 51.5 44 41.9 68.5 37.1

InfGainCov single source 44.9 27.2 55.1 52 44.7 30 38.5 58.9 29.5
InfGainCov best integration 46.4 30 69.3 53.5 49.6 40 40 70.3 30.7
InfGainCov total integration 45.9 30 69.3 53.5 49.5 40 39.8 69.3 30.3

Table 3: micro-averaged F-measure (in %) reached when predicting procedure codes. Different datasets are shown in columns,
different feature selection methods are shown in rows. For each feature selection method, we show the best scoring individual
source used, the best scoring combination of sources (‘best integration’), and the results when all sources were used to make
predictions (‘total integration’).

ICD-9-CM ICD-10-PCS MIMIC-III
Cardio Gastro Onco Ophtal Pneumo Uro Cardio Onco ICU

Baseline single source 81.4 68.2 85.6 88.3 74.4 65.1 69.4 72.2 47.5
Baseline best integration 82.2 68.2 85.6 88.7 74.4 65.3 70.7 75.2 49.3
Baseline total integration 81.4 66.1 82.5 88.6 71.6 64.5 70.6 69.2 49.3
GainRatio single source 83.2 67.6 84.5 90.2 74.8 64.3 71.5 68.6 48.7

GainRatio best integration 86.5 72 84.8 91 74.8 67.4 74.8 71.6 50.4
GainRatio total integration 85.9 70.1 84.7 91 74.3 67.1 74.6 71.6 50.4

ConfCov single source 83.6 70.5 85.6 90 74.8 65.3 72.4 71.9 52.1
ConfCov best integration 87.9 74 86.7 90.9 77 68.4 76.3 75.4 53.9
ConfCov total integration 87.8 74 86.7 90.8 77 68.1 76.2 75.4 53.9

ConfCov-Neg single source 83.6 70.4 85.7 90 74.8 65.9 72.2 71.7 52.1
ConfCov-Neg best integration 87.5 73.5 86.9 90.9 77 68.5 76.2 75.7 53.9
ConfCov-Neg total integration 87.5 73.5 86.7 90.8 77 68.5 76.1 75.7 53.9

InfGainCov single source 82.3 68.9 85.6 89.9 75.1 64.9 69.2 62 44.9
InfGainCov best integration 85 68.9 85.9 90.9 75.1 65.7 73.5 66.8 47.3
InfGainCov total integration 84.7 61.9 85.4 90.8 74 65.4 73.5 65.9 46.2

Only classes occurring more than 20 times in the
training set are taken into account for the class-
based F-measure, in all other measures they are
included in the calculations.

In general, the same trends seen in micro-
averaged F-measure are seen in these measures as
well. For an instance-based evaluation, we see that
the difference between the best integration setup
and total integration is more pronounced. For di-
agnostic codes, assigning all labels in an instance
correctly is quite hard with an exact match of
11.89% for complete integration with confidence
coverage. The lowered performance when weighing

classes equally in the final score compared to ei-
ther instance-based averaging and micro-averaging
shows that classes that are more frequent are also
predicted better.

4. Discussion

4.1. Findings

Overall, confidence coverage yields better perfor-
mance than the other feature selection methods,
due to its focus on selecting features that provide
coverage of the entire dataset. Most feature selec-
tion methods find the best correlations between fea-
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Table 4: Number of features selected when predicting clinical codes. Each column represents a dataset, and each row represents
a feature selection method.

UZA1 UZA2 MIMIC
Cardio Gastro Onco Ophtal Pneumo Uro Cardio Onco ICU
Diagnostic codes

Baseline single source 4848 5992 3934 1996 35 2278 1645 1084 6815
Baseline total integration 7389 8768 6006 2891 4995 3655 3546 2334 7950
GainRatio single source 3683 4329 3338 1086 26 1397 767 801 6181

GainRatio total integration 5358 6114 5029 1641 3741 2357 1226 1402 7065
ConfCov single source 2447 1725 2609 563 35 806 492 610 1769

ConfCov total integration 3008 2025 3128 600 1440 950 589 819 1938
ConfCov-Neg single source 2462 1726 2593 567 33 812 522 608 1769

ConfCov-Neg total integration 3060 2025 3137 605 1453 959 605 841 1938
InfGainCov single source 2415 2132 2635 908 32 982 366 544 3068

InfGainCov total integration 2886 2527 3333 1049 1239 1434 493 814 3110
Procedure codes

Baseline single source 634 521 467 1996 415 347 1645 243 6815
Baseline total integration 7389 8768 6006 2891 4995 3655 3546 2334 7950
GainRatio single source 234 134 140 742 220 148 352 63 4777

GainRatio total integration 2013 2822 1971 1155 1470 1036 653 336 5534
ConfCov single source 216 191 219 156 120 164 162 109 1367

ConfCov total integration 478 492 409 150 181 274 177 205 1425
ConfCov-Neg single source 215 191 212 158 120 164 171 101 1367

ConfCov-Neg total integration 480 494 406 151 181 275 187 195 1425
InfGainCov single source 572 397 378 950 306 293 395 152 2884

InfGainCov total integration 2558 2038 2275 1113 830 1214 505 528 3016

Table 5: Runtime for feature selection and classification when predicting clinical codes. Each column represents a dataset, and
each row represents a feature selection method. The time shown represents hours:minutes:seconds.

UZA1 UZA2 MIMIC
Cardio Gastro Onco Ophtal Pneumo Uro Cardio Onco ICU
Diagnostic codes

Baseline single source 03:01:13 02:10:30 06:34:19 00:16:26 00:14:18 00:14:22 00:04:38 00:19:47 02:36:02
Baseline total integration 04:42:01 02:03:33 05:33:41 00:16:19 00:44:03 00:25:50 00:04:13 00:21:35 02:33:30

ConfCov single source 06:03:56 01:54:20 04:23:25 00:07:13 00:05:55 00:11:50 00:02:56 00:12:50 06:05:40
ConfCov total integration 06:50:17 02:00:58 04:17:36 00:07:32 00:28:02 00:19:47 00:03:40 00:08:15 06:07:37
ConfCovNeg single source 02:39:57 01:59:44 04:51:31 00:08:27 00:05:28 00:12:11 00:03:21 00:12:50 05:51:20

ConfCovNeg total integration 03:11:20 02:05:09 04:12:42 00:09:35 00:29:27 00:18:56 00:04:42 00:10:03 06:31:20
GainRatio single source 05:25:13 02:55:44 08:35:41 00:11:57 00:04:48 00:15:51 00:03:39 00:17:23 12:33:45

GainRatio total integration 07:37:59 04:13:46 09:45:47 00:14:05 00:50:55 00:30:30 00:04:47 00:11:46 15:15:27
InfoGainCov single source 04:42:07 02:19:58 05:57:50 00:12:51 00:05:39 00:16:23 00:03:34 00:12:52 10:36:26

InfoGainCov total integration 05:23:35 02:59:49 07:11:27 00:14:31 00:29:41 00:28:58 00:04:32 00:10:22 13:59:00
Procedure codes

Baseline single source 00:14:31 00:08:25 00:09:25 00:04:37 00:01:52 00:01:34 00:02:32 00:02:08 00:53:29
Baseline total integration 00:25:43 00:16:47 00:21:29 00:04:43 00:04:34 00:04:10 00:02:44 00:05:00 00:53:26

ConfCov single source 00:15:16 00:02:43 00:03:34 00:01:30 00:00:45 00:00:58 00:01:17 00:01:49 02:17:40
ConfCov total integration 00:28:54 00:10:25 00:08:05 00:01:52 00:01:57 00:02:09 00:01:47 00:02:55 02:14:39
ConfCovNeg single source 00:07:59 00:03:21 00:04:38 00:02:33 00:00:51 00:01:03 00:01:36 00:01:53 02:16:48

ConfCovNeg total integration 00:21:10 00:16:04 00:15:08 00:03:42 00:03:36 00:03:04 00:02:34 00:03:35 02:14:55
GainRatio single source 00:12:57 00:04:14 00:05:35 00:02:51 00:00:52 00:00:59 00:01:36 00:01:54 04:07:24

GainRatio total integration 01:05:34 00:27:13 00:35:44 00:03:53 00:04:27 00:04:42 00:02:13 00:04:13 04:51:21
InfoGainCov single source 00:14:15 00:04:39 00:06:22 00:03:27 00:01:00 00:01:18 00:01:56 00:02:05 03:32:51

InfoGainCov total integration 00:49:22 00:26:13 00:29:18 00:04:06 00:03:08 00:04:45 00:02:23 00:04:17 03:50:26
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Table 6: Measures averaged over the different datasets. Different measures are shown in columns, different feature selection
methods are shown in rows. Instance-based F-measure and exact match are averaged over instances, class-based F-measure is
averaged over classes.

Diagnostic codes Procedure codes
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Baseline single source 41.78% 10.11% 28.67% 61.09% 57.33% 45.82%
Baseline best integration 47.21% 11.53% 33.68% 61.98% 57.71% 46.74%
Baseline total integration 44.77% 10.66% 31.96% 59.73% 55.70% 45.31%
GainRatio single source 42.66% 10.25% 28.20% 61.80% 58.22% 47.05%

GainRatio best integration 47.30% 11.51% 33.49% 63.71% 59.85% 48.95%
GainRatio total integration 46.34% 10.98% 32.80% 61.52% 59.32% 48.46%

ConfCov single source 46.50% 10.54% 31.64% 60.67% 59.17% 49.52%
ConfCov best integration 53.66% 12.46% 38.71% 63.06% 61.89% 51.97%
ConfCov total integration 51.09% 11.89% 38.66% 61.52% 61.59% 51.76%

ConfCov-Neg single source 43.41% 10.53% 31.16% 62.54% 59.22% 49.36%
ConfCov-Neg best integration 49.66% 12.11% 38.23% 64.45% 61.83% 51.70%
ConfCov-Neg total integration 48.81% 11.61% 38.18% 62.13% 61.63% 51.59%

InfGainCov single source 43.47% 10.49% 29.62% 60.92% 57.79% 45.70%
InfGainCov best integration 49.01% 12.54% 36.10% 63.45% 59.47% 47.31%
InfGainCov total integration 46.16% 11.82% 35.77% 61.58% 57.79% 46.58%

tures and classes, but disregard the specific train-
ing instances corresponding to that feature. Confi-
dence coverage considers both the association with
the class (confidence) and the number of instances
supported by a feature-class association (coverage)
and optimizes for both factors. Coverage works best
in a sparse-class environment, as the number of se-
lected features correlates linearly with the number
of instances of a certain class. For a sparse class,
fewer features get selected. Confidence proves to
be a strong metric in this environment. In contrast
to information gain, the confidence score of a fea-
ture is not influenced by the frequency of a feature
in the dataset, since it disregards instances that it
does not occur in. This improves integration quali-
ties: a feature that occurs less often, but co-occurs
often with a certain class has a high confidence.

One of the advantages of using a feature selection
method that takes dataset coverage into account is
that it decreases ambiguity. If two features have a
strong correlation, the method will preserve the fea-
ture with the highest confidence score. This effect is
also seen when applying feature selection methods
such as mRMR [22] or other co-occurrence based

algorithms. However, the algorithm is computa-
tionally more efficient and directly evaluates redun-
dancy of a feature for the task, since features are
compared on dataset coverage instead of compared
against other features. When applying confidence
coverage, the highest F-measure on a combination
of data sources comes close to the F-measure ob-
tained by using all sources. This indicates that a
confidence coverage-based method is able to deal
with noisy sources and therefore is more suitable
to be applied when there is uncertainty about the
quality of any given source.

Information gain coverage and gain ratio under-
perform in the current setup, partly due to the com-
bination with Random Forests. Random Forests
use information gain internally to create branches
within trees. Selecting features with a higher in-
formation gain causes more uniformity within the
individual trees, which in turn causes overfitting,
leading to worse results. This also explains the re-
sults of gain ratio being close to the baseline: com-
bining gain ratio and Random Forests makes gain
ratio act partly as a pretraining phase. When re-
placing Random Forests with a naive Bayes clas-
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sifier, information gain coverage outperforms con-
fidence coverage (results shown in additional ma-
terials). The introduced algorithms still outper-
form gain ratio. The models presented here out-
perform the late data integration technique (LDI)
because LDI overgeneralizes by reducing each data
source to a single data point [15]. The concept-
based text representations included in the current
models but not in LDI (where a bag-of-words rep-
resentation was selected) are another reason why
LDI is outperformed. For the MIMIC-III dataset,
the improvement when combining data sources is
minimal, but confidence coverage still yields better
performance than gain ratio. Perotte et al. reached
an F-measure of 29.3% on MIMIC-II with hierarchi-
cal prediction, when they only consider the labels
assigned as true positives [9]. A less strict evalua-
tion - considering a code that is hierarchically close
to the clinical code assigned (i.e., an ancestor or
descendant) as a true positive - caused substantial
improvement (39% F-measure). However, our ap-
proaches score substantially better, while still tak-
ing into account a strict evaluation.

In addition to the results on the subset of
MIMIC-III, we have run preliminary experiments
for confidence-coverage on the entire MIMIC-III
dataset, consisting of 58,970 patient stays, 6,834
unique diagnostic codes, and 1,978 procedural
codes. In this setup, we have used 10% of the data
as testing data, and configured the pipeline based
on the optimally determined results in our previ-
ous MIMIC-III experiments. For diagnostic codes,
this resulted in a micro F-measure of 42.4% for the
best individual source and 42.8% for total integra-
tion. Procedure codes were predicted with an F-
measure of 53.9% for the best individual source and
55.5% for total integration. These results confirm
the same trends seen in the subset, but do show
that the algorithm can increase in overall perfor-
mance when more data is provided.

For procedural codes specifically, we see that
RIZIV-codes (which in itself represent procedures,
although less complex than ICD-codes) are very in-
formative and are often the best individual source
to assign ICD-9 and ICD-10 procedure codes. It is
certainly possible to create a partial map between
RIZIV codes and ICD-9 codes (for ICD-10 codes,
this is less often possible), and the results show that
the algorithm succeeds quite well in finding the cor-
relations between RIZIV and ICD.

In general, a correlation between the number of
unique codes, label cardinality in a specialty, and

the achieved results can be seen. Because an in-
creased number of unique codes and higher label
cardinality indicate that a dataset is more complex,
this complexity also influences the achieved results.
This however does not mean that introducing an-
other coding system in a specialty implies clinical
code assignment will become harder. Our early re-
sults on ICD-10-CM/PCS encoded stays show that
our system is able to cope with this new clinical
coding system. It is expected that when ICD-10-
CM/PCS coding is used for a longer period, the
results may be affected, but this is true for all ap-
proaches currently developed, including the ones
we compare with. The effect of having more fine-
grained codes on performance is unknown: while
this can introduce more ambiguities, it also resolves
some issues with insufficiently granular ICD-9-CM
codes.

4.2. Runtime

While runtime is an important issue that pro-
posed algorithms must deal with, the computa-
tional complexity during development is signifi-
cantly higher than during usage in a real-world
application. The latter only requires training an
algorithm once, with optionally the recalculation
of hyperparameters, if these were not yet deter-
mined during development. During development,
multiple iterations (for cross-validation) need to be
performed, and a whole series of hyperparameters
need to be determined for each fold in that cross-
validation setup, with each unique combination
of hyperparameters requiring a separate trained
model (or multiple, if nested cross-validation is con-
sidered).

Further improvements on our setup regarding
runtime can be made if techniques other than bi-
nary relevance are considered for multi-label clas-
sification, as training a separate classifier for each
class remains costly [33].

4.3. Evaluating a component in a larger prediction
pipeline

In a prediction pipeline, many components have
an effect on the final results [34]. When evaluating
a single component, it is essential to leave all other
components either unchanged or optimized on a de-
velopment set. When investigating the feature se-
lection component, we must take into account that
other components may be affected. For example a
classification algorithm (or a certain parameter set)
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might work better with one algorithm than with
another. By using algorithms where many hyper-
parameters are optimized, this effect is stronger, as
its chances for overfitting with a certain parameter
set greatly increase [35, 30].

In our work, we specifically look for compo-
nents that require less optimization, because train-
ing many extra models to determine the optimal
parameter set internally is computationally infeasi-
ble and increases the risk of overfitting on the devel-
opment set [35]. One of the advantages of Random
Forests is that it performs well without tuning any
hyperparameters, as its main criterion, the num-
ber of trees, converges to its best result when the
number of trees is increased, and the number of
randomly selected features per tree is near-optimal
with the proposed default settings [29, 36]. All
components before feature selection were kept un-
changed over the different experiments, and were
not determined with a feature selection algorithm
in mind.

4.4. Feasibility and advantages of data integration

In general, we see that unstructured information,
albeit noisy, is one of the few sources that is al-
ways present in an electronic health record. Struc-
tured information often is as well, but uses a differ-
ent structure and notation over different hospitals,
and clinical coders have varying degrees of access to
these sources, while they often have access to the
discharge file of a patient. For procedure codes, we
see that a structured source (RIZIV) is often the
main contributing factor in our datasets, but as a
local Belgian standard, the presence of this source
is not a given for datasets from other hospitals. For
diagnostic codes, we see that unstructured sources
actually contain most relevant information (as seen
by the main contributing source being LMI-based
concepts in most cases).

The need for ‘total integration depends on the
form in which data is available in a hospital, and
whether the information about individual patients
presents itself in a single source or in multiple
sources. Integrating all sources available has two
main advantages for the hospital: if data is frag-
mented and incomplete, spread over a multitude of
sources, and of varying quality over those sources,
our technique can integrate information present in
all of them. Secondly, identifying the most im-
portant source of information is not always triv-
ial, and our proposed algorithm removes the need

to do that. In general, we see that the main con-
tribution of confidence-coverage is not necessarily
the integrative part of the sources, but its ability
to process sources that contain a lot of redundant
information from a data perspective, such as un-
structured clinical notes.

In a dataset where information is concentrated in
a single source (which is the case for the MIMIC-
III dataset, from which we extracted clinical notes,
NDC codes, LOINC codes, and departmental infor-
mation), we see that the confidence-coverage algo-
rithm succeeds in significantly outperforming both
the baseline and gain ratio. The best performing
single source used in MIMIC-III contains redundant
information, since it is made up of mMWEs ex-
tracted from multiple unstructured texts associated
with a patient. In the UZA-based datasets, most in-
formation is captured using unstructured sources as
well, but we see that discharge files often only con-
tain a general description of certain procedures. To
find specifics about a certain procedure, we need to
look at the surgery report, or at the RIZIV codes as-
sociated with them. The confidence-coverage tech-
nique is an automatic, independent assessment of a
dataset, relieving us of the need for determining a
priori which data sources (or which element in the
data source) are important. Unfounded assump-
tions about which data source contains the rele-
vant information should be avoided and confidence-
coverage allows for that.

4.5. Portability

Because the datasets used to predict ICD-10-CM
and ICD-10-PCS codes are rather small, the re-
sults do not scale to a bigger ICD-10 dataset, which
would contain a higher code diversity. However,
the techniques presented behave similarly on ICD-
9-CM and ICD-10-CM datasets, indicating that the
approach is applicable to predict both coding sys-
tems and suggesting portability to other coding sys-
tems. The proposed method represents any clin-
ical source without the need to map to a rigid
framework such as UMLS (e.g., converting localized
lab tests to LOINC codes to make them compati-
ble with UMLS-based concepts). Please note that
while UMLS-based concepts are being used as one
of the two representations for free text, the algo-
rithm itself would be able to produce results with-
out this representation and does not depend on it.
This is a clear advantage, since the algorithm is able
to deal with a larger variety of notations.
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For our approach, we preferred a technique that
performs well on integrating as many sources as
possible, even in cases where the difference between
results on the best individual source and total inte-
gration is minimal. The algorithm chooses features
that are of most interest to a clinical code, but it
can also benefit from less interesting features (and
sources) when a particular source for a specialty dif-
fers in information content as compared to its infor-
mation content in other specialties. If an algorithm
is able to select features from all sources without
having a loss in performance, there is no need to
investigate the informativeness from all individual
sources, for each different specialty, beforehand.

4.6. Abstraction of features

The representation generated by using con-
fidence coverage is not abstracted at all, but
rather summarizes the original data by select-
ing a portion of the features. Not using an ab-
straction (which would combine multiple features
into one) can be a constraint. For example, if
‘chronic lymphocytic leukemia’ is found as a con-
cept in text, and the ICD-O code ‘9823/3’ is found
in a structured source, both of these could be
mapped to a class representing ‘CLL/SLL’. If both
these features map to roughly the same instances,
confidence coverage only selects one, but it does
not capture a compound of both. On the other
hand, a severe abstraction that is generated by an
autoencoder-based representation of patients [16] or
a late data integration approach [15] can also be a
constraint, as they tend to overgeneralize, losing the
granularity of information needed to predict closely
related clinical codes (e.g., both ICD-10-CM ‘I35.1’
and ‘I35.2’ represent ‘Nonrheumatic aortic (valve)
insufficiency’, but the latter also includes stenosis).

4.7. Assisting clinical coders

The system described in this paper automati-
cally suggests diagnosis and procedure codes. The
algorithm is therefore positioned more as part of
the backbone of a computer-assisted coding appli-
cation. During the development process, the im-
plementation was specifically tailored with such an
application in mind. It allows for extra information
being provided, such as the reason(s) why a certain
code is proposed and probabilities of certain codes
occurring. This enables ranking of the codes pre-
dicted and tuning recall and precision to suit the
needs of the application.

When assisting human coders, the algorithm can
be employed in several applications. For quality
control, the algorithm allows for correcting errors
in the assigned clinical codes. An application that
automatically codes ‘easy’ patient stays, with codes
that are often assigned and are predicted with a
high precision, would not require human interven-
tion and speed up the flow of clinical coders. To
assist clinical coders directly in their flow, an ap-
plication should employ a ranking approach, where
the clinical codes are ranked based on the confi-
dence the algorithm has. This would allow a hu-
man coder to look at suggestions, speeding up the
process as well, and requiring a higher recall (as all
possible codes should be provided as a suggestion).

The patient stays used in the experiments were
unfiltered (except for de-identification) and pro-
vided as-is to the classifier to replicate the setup
that a clinical coder would have. This has the ef-
fect that multiple stays of the same patient can end
up in the dataset. A patient stay only contains in-
formation that was documented during the period
of their stay. This information is linked to a sin-
gle stay only, which ensures that no direct informa-
tion is transferred between stays. Indirectly, stays
from the same patient will be more similar to each
other, and can thus yield an advantage to the clas-
sifier, but this advantage is also present when other
algorithms, or clinical coders, are assigning codes.

All of these applications have their own require-
ments for algorithm performance, and require dif-
ferent measures to be prioritized. In this study, we
were not directly evaluating the efficacy of the al-
gorithms for a specific application and thus report
on measures that present the overall performance.

5. Conclusions

Predicting clinical codes in a real-world dataset
based on all information linked to a patient stay is
more successful than limiting oneself to discharge
summaries, or any other single data source. To
successfully use a machine learning approach for
this task, we evaluated the relevance of the clini-
cal information. We experimented with confidence
coverage and information gain coverage as feature
selection methods to efficiently and effectively rep-
resent a patient’s information to a clinical coding
algorithm. This yields better performance than us-
ing a traditional feature selection method such as
gain ratio.
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A confidence coverage approach allows for using
information found in any clinical source, without
the need to link it to a rigid framework, such as the
UMLS metathesaurus. The features can be derived
directly from the source data, which allows for a
better interpretation of the selection. The resulting
representation contains less redundancy since only
one of multiple similar features would be selected
due to the database coverage aspect. This represen-
tation also shows a strong reduction of the number
of extracted features. We evaluated across a range
of medical specialties, on ICD-9-CM, ICD-10-CM
and ICD-10-PCS codes, on datasets in Dutch and
the MIMIC-III dataset in English.
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