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Abstract

Clinical codes are used for public reporting purposes, are fundamental to determining public financing for hospitals,
and form the basis for reimbursement claims to insurance providers. They are assigned to a patient stay to reflect
the diagnosis and performed procedures during that stay. This paper aims to enrich algorithms for automated clinical
coding by taking a data-driven approach and by using unsupervised and semi-supervised techniques for the extraction
of multi-word expressions that convey a generalisable medical meaning (referred to as concepts). Several methods for
extracting concepts from text are compared, two of which are constructed from a large unannotated corpus of clinical
free text. A distributional semantic model (i.c. the word2vec skip-gram model) is used to generalize over concepts and
retrieve relations between them. These methods are validated on three sets of patient stay data, in the disease areas of
urology, cardiology, and gastroenterology. The datasets are in Dutch, which introduces a limitation on available concept
definitions from expert-based ontologies (e.g. UMLS). The results show that when expert-based knowledge in ontologies
is unavailable, concepts derived from raw clinical texts are a reliable alternative. Both concepts derived from raw clinical
texts perform and concepts derived from expert-created dictionaries outperform a bag-of-words approach in clinical code
assignment. Adding features based on tokens that appear in a semantically similar context has a positive influence
for predicting diagnostic codes. Furthermore, the experiments indicate that a distributional semantics model can find
relations between semantically related concepts in texts but also introduces erroneous and redundant relations, which
can undermine clinical coding performance.

Keywords: Clinical Coding, Data Mining, Text Mining, Unsupervised learning, International Classification of
Diseases, Electronic Health Records, Distributional Semantics, Word2Vec

1. Introduction

Medical knowledge is electronically stored in a high
number of complex data sources, such as electronic health
records (EHRs), electronic archives, ontologies, and sci-
entific publications [1, 2, 3]. In a modern hospital setting,
clinical codes are determined based on information found
in the electronic health record. These clinical codes
are assigned primarily for the purpose of reporting and
reimbursement from health care providers or governments.
Their widespread adoption in clinical environments allows
for the usage as an important and complementary factor
in research applications (e.g. identifying acute venous
thromboembolisms) [4]. While clinical codes are often
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assigned manually by a team of specialized coders,
techniques that can (semi-)automatically predict these
codes can lower the burden of this codification process.

Most data stored in hospitals is not annotated due
to the large effort that is required from physicians to
accurately annotate this data. This limits the usability of
this data for supervised machine learning techniques. We
investigate unsupervised and semi-supervised techniques
to create appropriate text representations for use in a
prediction pipeline for clinical codes. The objective of
this paper is to improve automated prediction of clinical
codes by (I) introducing methods that are independent of
expert-created ontologies to extract these concepts from
the source documents of this patient stay and (II) using a
distributional semantics model to generalize and represent
concepts associated with a patient stay.
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1.1. Background

Adequate feature engineering is arguably one of the
most important steps for any sort of machine learning
task, including trying to learn from unstructured clinical
documents. The feature engineering task here can be
defined as the conversion of unstructured data into a
structured representation suitable to make predictions.
A simple strategy is to use a lexical representation by
using a library of relevant tokens (words occurring in a
medical dictionary), or just using the text itself as the
library (e.g. bag-of-words in which all unique tokens
occurring in the document are counted and directly used
as a representation). Other strategies include using a
syntactic representation or a semantic representation. A
lexical representation can be enhanced (or filtered) with
semantic and/or syntactic properties as metadata (e.g.
PoS-tags).

In this work, a series of documents, associated with
a patient stay, is represented by a series of extracted
concepts. These concepts are in essence multi-word
expressions that convey a generalisable medical meaning.

1.1.1. Medical Information Extraction

The approach chosen to extract information from
clinical free texts is largely determined by the intended
purpose. This purpose can be a specific case (e.g. iden-
tifying heart failure diagnostic criteria [5]), or a generic
task (e.g. extracting medication terms from clinical
narratives) [6]. In the ShARe/CLEF 2013 eHealth shared
task [7], entities were recognized in clinical notes and
subsequently normalized to UMLS identifiers (i.e. CUI
codes) [8]. The best-ranking system found entities with
supervised machine learning techniques, for which candi-
date CUIs were represented as Bag-of-Words, weighted
with their TF-IDF score [9, 10].

Pathak et al. mapped structured and unstructured
data onto the UMLS identifier structure for the purpose
of high-throughput phenotyping [11]. This approach
allows for the integration of multiple types of data
sources, but is substantially dependent on the existence
of predefined expert knowledge in ontologies and vocabu-
laries. This is particularly problematic for languages with
a smaller number of medical lexicons, such as Dutch.

1.1.2. Distributional semantics in medical corpora

A distributional semantic model (DSM) acquires a
semantic representation for tokens by looking at the
surrounding tokens in a large corpus [12]. Tokens are
assumed to be semantically related if they are often
surrounded by similar context. Antonyms and frequently
co-occurring tokens are thus also marked as semantically
related (e.g. ‘white’ and ‘black’,‘dear’ and ‘colleague’ in
headings). Jonnalagadda et al. extracted medical infor-
mation from clinical narratives with a Random Indexing

(RI) DSM [13, 14]. They retrieved semantically related
tokens in an unannotated corpus of Medline abstracts with
the RI model, after which they supplemented the basic
features (i.e. dictionary- and pattern-matched features
and Part-of-Speech tags) in a machine learning algorithm
with the related tokens. Including semantically related
tokens increased their achieved F-measure to 91.3% for
inexact matches (an increase of 2%). Henriksson et al.
similarly applied RI to enhance a medical lexicon with
synonyms and abbreviations [15].

Moen et al. applied two distributional semantic models
(Random Indexing and a word2vec model [16]) to retrieve
care episodes that are similar to the care episode under
review [17]. A care episode consisted of a free text
summary. Their most successful variant modified the
network creation of the word2vec skip-gram model by
introducing feedback that takes the ICD-10 code assigned
to the training samples into account [18]. While this
method significantly improved results, it also required an
ICD-code to be linked to each document used to train
the word2vec method. This is often not the case with
archived documents. The second best variant was the
unmodified word2vec skip-gram model.

In this study, we chose to use the word2vec skip-
gram model [16, 19]. Word2vec is an implementation
of two vector representation algorithms (CBOW and
skip-gram) for tokens. These algorithms both encompass
a neural network, consisting of one input layer, one hidden
layer, and one output layer. The vocabulary items are
mapped to each input node, and a hidden layer within
the model is shaped with n nodes (with n representing
the number of dimensions requested), with each node
representing one dimension of the desired vector. The
models are then trained by presenting them with each
vocabulary item and the context in which it occurs.
This process is repeated until the network converges to
a predetermined output error. A trained model provides
a multi-dimensional space in which each word and/or
token is represented by an individual dense vector with a
relatively low number of dimensions.

1.1.3. Automated Clinical Coding

Current automated clinical coding approaches are often
used in controlled environments, with strongly normalized
data and a limited scope in document type (e.g. radiology
reports) and disease area (e.g. oncology) [20]. The most
successful approaches are (partially) handcrafted, which
renders them harder to port to different languages or
medical specialties [21]. Perotte et al. predicted 5030
unique ICD-9-CM codes on discharge files from the
MIMIC-II dataset by exploiting the ICD-9-CM hierarchy,
with a resulting F-measure of 39% [22, 23]. Scheurwegs et
al. integrated structured and unstructured data sources
to assign clinical codes to patient stays for multiple
specialties [24]. They confirmed the large difference in
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achieved F-measure between specialties and presented
a technique that is portable over medical specialties.
The texts in the discharge files of the latter approaches
was represented with a Bag of Words (BoW) approach,
rendering the approach more portable over different
languages.

This paper aims to show the feasibility of using un-
supervised methods for representing unstructured data
in automated clinical coding approaches. Unsupervised
methods are used to both detect concepts in texts and
represent those concepts in a dense vector space. The
proposed methods are mainly dependent on unannotated
resources (raw text) instead of on annotated resources
(such as ontologies, hand-crafted rules for information
extraction, and annotated training data) and are thus
easily deployable on languages with limited coverage in
ontologies. These methods are evaluated on a medical
dataset in Dutch.

2. Materials and methods

2.1. Dataset

Two types of datasets are derived from the clinical data
warehouse at the Antwerp University Hospital. The first
dataset consists of an unannotated corpus of 2,374,723
automatically de-identified texts (with an average of 152
words per text). This data in this corpus is essentially raw
text and covers multiple medical specialties. The second
dataset consists of a randomized subset of anonymized pa-
tient stays with associated documents (radiology reports,
requests, surgery reports, notes, letters, and attestations)
and ICD-9-CM codes [18]. This dataset is divided into
three specialties (i.e. cardiology, gastroenterology, and
urology, with respectively 10000, 7440, and 3440 patient
stays). In table 1, we show the total number of texts,
patient stays and the properties of both diagnostic and
procedural codes in each dataset.

The task is defined as predicting all clinical codes (i.e.
procedural codes, primary as well as secondary diagnosis
codes) associated with a patient stay, given all associated
clinical documents. An estimate of the relative frequency
of different text categories is seen in figure 1. Patient
records are anonymized, but not filtered in any way. Du-
plicates of documents might be present, as well as patient
stays that do not contain any documents.

2.2. Data preprocessing

Both datasets mentioned above are preprocessed with
several low-level natural language processing (NLP) steps
(sentence splitting, tokenization, lemmatization, part-of-
speech tagging, and chunk tagging). Frog, a morpho-
syntactic analyzer and dependency parser for Dutch text,
fulfils this task [25]. The output of these modules is used
in the approaches presented in the following sections.

2.3. Concept detection

A Bag-of-Words (BoW) representation of a text is
commonly used in a text categorization task using ma-
chine learning algorithms. This method essentially splits
up the text into a list of words and uses the absolute
occurrence of each word as a separate feature. This
approach is relatively robust, and language-independent.
However, a lot of information is lost when a text is
converted to a BoW, such as relations between words
(e.g. high fever), the context in which a word occurs (e.g.
no sign of hypothermia), and items that span multiple
words (e.g. Diabetes Mellitus). While including bigrams
and trigrams can solve the problem of capturing items
spanning multiple words, this would also dramatically
increase the number of features, shifting the problem to a
feature selection and noise-reduction problem.

The aforementioned lost information can be retained
if the text is converted to a list of concepts of one or more
words, with metadata containing information about the
context. As we are only interested in retaining medical
facts or hypotheses occurring in text, this type of infor-
mation extraction will suit our needs. Several methods
of information extraction have already been introduced,
but we focus on methods that are minimally dependent
on annotated training data while still performing well on
this specific task. More specifically, we used a linguistic
pattern extraction method based on pointwise mutual
information (which we will refer to as linguistic mutual
information or LMI), and a bootstrapped pattern mining
method (BPM), as introduced by Gupta and Man-
ning [26]. We supplement this with a dictionary-based
approach (DICT), for additional performance and for
comparison purposes.

2.3.1. Dictionary-based approach (DICT)

For the dictionary-based approach (DICT), several
lexicons were combined: 3BT (a Belgian bilingual corpus
of Dutch and French medical terms), Dutch terms from
the UMLS metathesaurus [8], and a list of European
brand names and active compounds of medication [27].
Each word in the text is retrieved in these lexica. When
a match is found, we extract the surrounding base phrase
chunk (parts of a sentence, such as a prepositional phrase
and noun phrases). By extracting the base phrase chunk
as opposed to taking a window, we avoid trailing verbs
and adjectives that are not linked to the concept. Then
each retained phrase chunk is compared with the raw
definition of medical terms in the UMLS, 3BT and
medication lexicons. If all words in the definition are
found within the word chunk, the concept is added to the
concept list. This is considered a rule-based approach.
As seen in figure 2A, this method is prone to missing
concepts due to the limited coverage of the lexicon. For
dictionary-based concepts, we found that 47% of the
candidate concepts are retained as a concept, with an
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Figure 1: Ratios of the different document types (in %) for the unannotated dataset and for each disease area.

Table 1: Dataset description, per specialty. Label cardinality indicates the average number of assigned labels per sample.

Cardiology Gastrology Urology
Total patient stays 10k 7.44k 3.44k
Total texts 90.5k 86.4k 36.9k
Label cardinality for diagnosis codes 7.9 4.87 5.83
N labels for diagnosis codes 2152 2165 1422
Label cardinality for procedure codes 3.04 0.87 1.09
N labels for procedure codes 230 232 282

average of 16 concepts per text. A dictionary-based
concept is represented by its identifier. In the case of
UMLS, each concept is normalised to the underlying CUI.

2.3.2. Linguistic PoS and pointwise mutual information-
based approach (LMI)

The linguistic PoS and pointwise mutual information
method (linguistic mutual information or LMI) is illus-
trated in figure 2B. This unsupervised method uses prede-
fined sequences of PoS-tags (e.g. Adjective-Noun, Noun-
Noun; see table 3 in supplementary) to convert the raw
text into a list of candidate concepts. These candidates
are then scored based on their relative frequency of oc-
currence of each word in the candidate concepts in both
a medical corpus (consisting of the historical dataset) and
in multiple general corpora (i.e. SoNaR subtypes [28]).
The different types of text in SoNaR provide the different
general corpora, each consisting of a subsection of SoNaR
(e.g. newspaper articles, Wikipedia, emails, ..). A word is
then associated with the corpus where it has the highest
relative frequency. For multiple word candidates, the rel-
ative frequency is averaged over all words, so if one word
in a concept is more related to e.g. Wikipedia articles,
but another word is more strongly correlated (i.e. has
a larger relative frequency) with the medical corpus, the
combination of both words is considered medical. Med-
ical concepts consisting of multiple words are afterwards
filtered on their pointwise mutual information score, with

a threshold of 0.1. This allows for filtering out acciden-
tal, nonsensical concepts (e.g. ‘patient cardiogenic shock’,
which should be two separate concepts). An advantage is
that this approach allows for extracting overlapping con-
cepts (e.g. both ‘temporary pacemaker’ and ‘pacemaker’
are extracted from the same sentence, improving general-
isability for a later feature ‘pacemaker’). For LMI-based
concepts, we see that on average 39% of the candidate con-
cepts are retained, over all specialties and text types, with
an average of 44 concepts per text.

2.3.3. Bootstrapped pattern mining approach (BPM)

Gupta et al [26] introduced a bootstrapped pattern min-
ing method (BPM), as depicted in figure 3. This semi-
supervised technique uses a seed list of concepts. This
seed list is extracted in four categories (i.e. medication,
bodypart, diagnosis/symptom, action) by manually select-
ing 10 different examples from the unannotated corpus in
each category. The seed list is used to learn patterns (e.g.
words surrounding those concepts, previously defined as
context) iteratively by first finding patterns, looking at the
concepts within extracted patterns, and repeating with the
new concepts.

As an example, we follow the cycle in figure3. In step
0, the seed term ‘diabetes’ is considered an example of the
diagnosis category, and the seed term ‘heart’ is defined as
a body part. In step 1, patterns are extracted by looking
at the words surrounding previously detected concepts (or
in the first iteration, the seed terms). In our example, this
results in the patterns ‘is diagnosed with X’ and ‘X can
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Figure 2: Example of the three concept detection methods. A: dictionary-based approach, B: linguistic PoS and pointwise mutual information
method (LMI), C: bootstrapped pattern mining approach. The gloss of the original input sentence is ‘The bone marrow cavities are being
filled with loose connective collagenous tissue’.

Figure 3: Extraction cycle for patterns surrounding candidate concepts. An example for the first iteration is shown in italics.
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be affected’ being extracted with the seed term ‘diabetes’.
In step 2, both patterns are evaluated by considering how
often they occur with other seed terms. If they occur more
often with seed terms from the correct category, the pat-
tern gains weight, while if they can be associated with
seed terms from another category (or negative terms not
associated with any category), they lose weight. In the ex-
ample, the pattern ‘X can be affected’ could be associated
with both the seed term ‘diabetes’ and ‘heart’. In step 3,
the best scoring patterns are selected. In our example, we
only select one pattern. In step 4, the selected patterns
are used to extract new entities for each category, which
are appended to the entity list in step 5. The pattern
‘is diagnosed with X’ could also be applied to the terms
‘pneumonia’ and ‘flu’, which are then both added to the
seed list.

Both a list of patterns and a list of concepts can be seen
as the output of this cycle. In the BPM-based concept
detection approach, we opted to apply the patterns to the
test data, since this list of patterns results in the same
concepts, and some concepts might not have occurred in
the unannotated corpus on which the BPM model was
trained. We first find patterns on the historical corpus,
then apply these patterns in the clinical coding pipeline to
extract concepts, as seen in figure 2C.

The complementarity of these methods is evaluated by
using two ensemble methods, one applying majority voting
(in which a concept needs to be detected by at least two
methods), and the other including all concepts from each
detection method. In figure 4, the number of detected
concepts (on average) per patient stay can be seen.

2.4. Representation of concepts in word2vec

While detected concepts can represent a text accu-
rately, a model does not know which words might be
similar to each other and are generalisable towards each
other. We try to include this information by constructing
distributional semantic representations of concepts (word
embeddings) on the basis of an unannotated corpus, using
a word2vec model. These representations are used to
provide information on the meaning of a concept.

The word2vec model was trained with an historical
dataset. Preprocessing included tokenization and lemma-
tization. Stopwords and function words were not removed
from the texts. The individual words of concepts occur-
ring within the text were replaced with concepts detected
with the LMI method (see Concept Detection). When
concepts overlapped, concepts that had a higher similar-
ity score and concepts that had more words (were more
specific) took precedence. We configured the word2vec
skip-gram model with a window size of 10 words and an
output dimensionality of 300 vectors. These parameters
were determined with a grid-search, but the differences
between model configurations were insignificant (results
not shown).

Four techniques to integrate the word2vec model in
the prediction pipeline are presented. The nearest-
neighbours method looks for the concepts that are most
similar to concepts present in the patient stay. For
example, if a concept ‘myocarditis’ occurs in a patient
stay, the n most similar concepts learned by the word2vec
model are retrieved. The results (in this case ‘carditis’,
‘inflammatory cardiomyopathy’ and the wrongly spelled
‘myocartitis’) are then added to the list of features of
that patient stay. Cosine distance is used as similarity
measure, and the 10 closest neighbours were included as
features.

The second method generalizes the concepts by fit-
ting a K-means model over the word2vec model to
assign clusters to nodes in the word2vec model, with the
advantage of having fewer generated features compared
to the neighbour-based approach. For example, if we
have two patient stays, where one contains the concept
‘myocarditis’ and the other contains the concept ‘inflam-
matory cardiomyopathy’, and both concepts belong to
the cluster 5012, the feature ‘word2vec cluster 5012’ is
added to the list of features from each patient stay.

The third technique creates a representation for an
entire patient stay by averaging all concept vectors in
that patient stay, resulting in a single vector. This vector
is then used directly as the feature vector.

In contrast to averaging concept vectors, the fourth
technique averages document vectors generated with
a paragraph vector model [29]. This model creates
representations for a sentence, paragraph, or documents
in the same space as the word2vec model by inferring a
vector for these documents. This includes an additional
training step, in which the words in the document are
added to the document vector. While both techniques
produce a single vector, averaged concept vectors are
only influenced by the detected concepts, while averaged
document vectors embed a representation of entire texts.

2.5. Representation of concepts using UMLS metathe-
saurus

The UMLS metathesaurus is also a great tool to gen-
eralise concepts and find similar concepts [8]. It can be
used to expand a list of terms with related terms, when a
concept is already linked to a thesaurus. The first UMLS-
based method retrieves synonyms and parent concepts for
dictionary-based concepts (as these are already linked to
UMLS), and adds these extra concepts as neighbouring
nodes.

For LMI-based concepts, a direct relation to UMLS
would restrict these concepts to (a subset) of the
dictionary-based concepts, which limits the usability of
UMLS for synonym expansion. By first expanding the
LMI-based concepts with neighbouring concepts retrieved
through word2vec, a much larger list of concepts arises.
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Figure 4: This figure shows the average number of texts and the number of extracted concepts per patient stay (on the y-axis) in each
disease area. Texts indicates the number of texts, DICT indicates the number of dictionary-based concepts, BPM indicates the number of
bootstrapped-pattern matching concepts and LMI indicates the number of linguistic-PoS and pointwise mutual information-based concepts.

This list of concepts can then be restricted to concepts
that can be related to UMLS. On average, this causes only
21% of the word2vec neighbours to be retained, using the
same settings as the word2vec neighbours model to retrieve
them.

2.6. Predicting clinical codes

Each model is evaluated on its results when predicting
clinical codes for a set of patient stays. We treated the
task as a multi-label classification task (with an indi-
vidual classifier for each clinical code) in which a single
patient stay might have zero, one or more assigned codes.
Ten-fold cross-validation was applied. We used Random
Forests (with a maximum of 100 trees) as a classifier [30].
Feature selection for the BoW representation consists
of TF-IDF [10], no feature selection was used for the
averaged word2vec vector, and for all other approaches,
mRMR was used [31]. Features are selected by the
mRMR method based on a maximal distance between
features (minimizing redundancy) and still retaining a
high correlation to the classes (maximizing relevance).

For each patient stay, a list of concepts is derived
from all associated texts (which can be zero, one or more)
with the methods as presented in the Concept Detection
section. This list of concepts is then used or supplemented
with features derived from the word2vec model to predict
clinical codes.

2.7. Evaluation

The experiments are evaluated with micro-averaged F-
measure, exact match, and macro-averaged F-measure.
Micro-averaged F-measure sums up individual predictions,
without weighing them based on samples or labels. F-
measure is the harmonic mean of precision and recall and

is an indicator for the overall predictive power of mod-
els. Sample-based evaluation is performed using Exact
match and F-measure, macro-averaged over each sample.
Each sample, regardless of the number of codes assigned
to it, contributes equally to the total score. Exact match
is a strict version of accuracy that only considers a sample
where all classes are correctly predicted as a true positive.

The used models return class probabilities, which can be
used for further tuning to increase recall or precision, de-
pending on the priorities of the task at hand. This further
tuning is not carried out in this research, as the models
are already optimized for F-measure within the cross val-
idation loop.

3. Results

The experiments are presented separately for different
disease areas as well as for procedural and diagnostic ICD-
9-CM codes. The significance of the results is demon-
strated by using the technique of approximate random
testing [32]. This method measures the similarity of the
results on a per-sample basis between two systems. A
similarity under 5% indicates that it is 95% likely that
two systems are independent. Complete significance score
sheets against the baseline and a partial sheet against LMI
concepts can be found in supplementary.

3.1. Bag-of-words (BoW) baseline

The baseline for clinical code assignments is calculated
by using a BoW over all texts associated with a patient
stay. The words in the BoW are filtered on the TF-IDF
score of the individual words. 3,000 words with the highest
TF-IDF score are directly used as features. This threshold
was determined as the overall optimal parameter with a
grid search.
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Card,Diag Card,Proc Gast, Diag Gast,Proc Uro,Diag Uro,Proc
Baseline (bow of all texts) 36.6 69.0 22.0 49.1 25.3 46.5
Concept detection methods
Dictionary-based concepts 38.5 77.7 23.1 65.3 23.5 55.9
BPM-based concepts 37.3 82.0 19.9 58.8 21.4 55.3
LMI-based concepts 42.0 83.2 22.1 58.6 25.8 58.3
Majority-voted concepts 39.4 79.3 22.6 64.2 21.5 51.2
Bag of concepts 42.6 84.8 21.8 57.6 26.7 56.7
Methods for representation of concepts in word2vec
Word2Vec Neighbours with LMI-based concepts 43.8 82.8 25.0 55.2 30.6 52.3
Word2Vec Cluster with LMI-based concepts 42.2 82.9 22.3 57.5 26.1 53.2
Average Word2Vec-vector with LMI-based concepts 36.1 72.7 19.9 54.9 25.7 53.1
Average Document vector 31.4 52 10.8 23.2 15.6 26.3
Methods for representation of concepts in UMLS
UMLS neighbours with dictionary based concepts 43.4 78.8 30.7 65.7 27.5 48.4
Word2Vec neighbours, restricted with UMLS, with LMI-based concepts 44.8 82.7 28.9 67.1 30.5 60.9

Table 2: micro-averaged F-measure (in%) for each disease area and code type for the different concept representation methods. The best
result in each category is marked in bold. The first element in the column name stands for the disease area (card, gast and uro are short
for cardiology, gastroenterology and urology) while the second element stands for the predicted codeset (diag are diagnostic ICD-9-CM codes
and proc are procedural ICD-9-CM codes).

3.2. Raw concepts as features

In table 2, the rows under the header ‘Concept detec-
tion method’ represent concepts directly used as features.
Each row represents a different method by which concepts
have been extracted as features in the machine learning
setup. Complete overviews can be found in the supple-
mentary materials. The underlying recall and precision
of the presented F-measure scores were balanced, with no
real outliers in either of them. In general, we see that
using a list of concepts systematically outperforms using
the bag-of-words baseline approach when predicting clini-
cal codes, with the exception of diagnostic codes for urol-
ogy. The dictionary-based approach (DICT) performs well
and is the best source for prediction in the disease area
of gastroenterology. With the linguistic pattern match-
ing (LMI) approach, the results obtained outperformed
the dictionary-based approach for the fields of cardiol-
ogy and urology. The systems used for the dictionary-
based approach were always significantly different from
systems used for the LMI-based approach, ranging from
0.2% similarity when predicting procedure codes for urol-
ogy to 3.2% similarity when predicting diagnostic codes
for cardiology [32]. The first ensemble method, a bag of
all concepts, is on par with the best individual concept
detection method, with the best result for two of the ex-
periments. Majority voting performs worse than individ-
ual predictions for each experiment. Bootstrapped pattern
mining (BPM) had an F-measure that is in general low-
est of the concept detection methods. The poorer results
for the LMI approach in the field of gastroenterology can
be explained by an overflow of features, introducing more
noise. Figure 4 shows that LMI detects more concepts for
gastroenterology (773) than for urology (450) or cardiol-
ogy (499). This is further confirmed by poorer results for
the bag of concepts method, and better results for the ma-
jority vote concepts, which filter out a large number of the
extra (obsolete) features introduced by LMI.

3.3. Adding word2vec-based features to raw concepts

In table 2, rows indicated with ‘Word2Vec clusters with
x’, the input space consists of the concepts and clus-
ter ids from a K-means clustering model on top of the
word2vec model. ‘Word2Vec neighbours with x’ have the
concepts and concept nodes determined as neighbours in
the word2vec model as features. For readability, we only
included the best concept detection methods in this table,
the rest can be found in supplementary materials. When
predicting diagnostic codes with word2vec-neighbours in
addition to LMI-based concepts, the F-measure increases
with 1 to 4%. The similarity between predictions with
word2vec-neighbours and LMI-concepts ranges from 0.3%
similarity for diagnostic codes in gastrology to 1.6% sim-
ilarity for procedural codes in cardiology [32]. When pre-
dicting procedural codes, the F-measure decreased. In-
cluding word2vec-cluster ids as features do not increase
the f-measure.

3.4. Patient stay representation through a single vector

In table 2, the row indicated with ‘Averaged word2vec
vector with LMI-concepts’ represent the results achieved
when an averaged-out word2vec vector (averaged for all
concepts) is used to determine clinical codes. The row
indicated with ‘Averaged document vector’ represents the
results when using document vectors (averaged for each
text related to a patient stay). Both setups perform worse
when evaluating with micro-averaged F-measure, with an
average vector on the concept-level scoring better than an
average vector on the document-level.

3.5. Using UMLS to enhance representations

The row ‘UMLS neighbours with dictionary-based con-
cepts’ in table 2 show the results when dictionary-based
concepts were expanded with parent and synonym con-
cepts retrieved directly in UMLS. The micro-averaged F-
measure is consistently higher than solely using dictionary-
based concepts without expansion, except for procedure
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codes in urology. For diagnostic codes in gastrology, this
method yields the best results of al variants.

The row indicated with ‘Word2Vec neighbours, re-
stricted with UMLS, with LMI-based concepts’ corre-
sponds to the experiments where LMI-concepts, expanded
with neighbouring concepts determined by word2vec,
which were then restricted to only contain concepts that
could be linked back to UMLS. The micro-averaged F-
measure for these experiments is best, except for procedure
codes in cardiology.

3.6. Sample-based evaluation

Sample-based evaluation looks at the results differently,
to give a viewpoint based on how well the algorithms per-
form for each sample (i.e. patient stay) instead of for each
predicted code as is the case in a micro-averaged evalua-
tion. This lowers the total weight of frequently occurring
codes. Exact match reflects the total number of samples
that were correctly predicted, macro-averaged F-measure
(over the sample) weighs predictions so that each sample
has an equal contribution.

In Table 3, we see that only a fraction of the samples for
diagnostic codes are predicted correctly, showing no real
difference between any of the techniques. The high(er)
baseline here for diagnostic codes in gastroenterology is ex-
plained by exact match considering stays where no codes
were assigned (and predicted) as a true positive. For pro-
cedure codes, we see an improvement in exact match with
the same trends as observed for micro-averaged F-measure:
in gastroenterology, dictionary-based concepts score best,
while for cardiology and urology, LMI-based concepts and
a bag of all concepts score better.

Macro-averaged F-measure, as seen in Table 4, shows
finer distinctions, as predictions are weighted by the to-
tal number of gold-standard codes in a sample (and still
influence the results when only part of the sample is
predicted correctly). A correct prediction in a sample
with 5 gold-standard codes thus has a lower weight than
a correct prediction in a sample with 3 gold-standard
codes. Trends in the results for concept detection meth-
ods stay approximately the same when comparing micro-
and macro-averaged F-measure, although procedure codes
in gastroenterology increased for LMI-based concepts. We
also see that averaging the word2vec vectors from concepts
performs better on macro-averaged F-measure. When pre-
dicting diagnostic codes in urology, the results for all meth-
ods, except majority-voted concepts, drops below baseline.
The macro-averaged F-measure for the UMLS-restricted
word2vec neighbours model never reach top performance.

4. Discussion

The approach of medical information extraction (i.e.
concept detection) presented here differs from previous
work, as we do not evaluate the extracted information
directly, but rather look at the results achieved by using

this information to solve a specific task (i.e. the predic-
tion of clinical codes). While we cannot be certain that
the extracted concepts cover the entire set of concepts
available in the texts, we show that this pragmatic
detection of concepts has a positive influence on the
task. Furthermore, while Named Entity Recognition
(NER)/concept detection is often treated as a task on
its own, in practice, it will always be used as a means to
perform a certain task. The results we present show the
usability of our approach in those cases.

The results show that representing clinical texts as
a list of concepts reduces noise and enables the retrieval
of extra information for our specific task. While both
LMI and bag of concepts carry concepts that are not
very informative, the feature selection and classification
methods used handle this well (except for gastroenterol-
ogy). With LMI, we see that selected concepts often
also contain commonly misspelled terms, abbreviations
and definitions that are not present in dictionaries. The
results in gastroenterology show that LMI is not always
able to outperform a dictionary-based approach. We
expect this is due to an overload of features being added,
which is further confirmed by better performance when
using majority-based voting and worse performance when
using a bag of concepts (where concepts from all different
techniques are directly added as features).

One of the reasons for the overload of features is that
we opted to restrict the boundaries for candidate concepts
using part-of-speech tags rather than using dependency
parsing. While this would allow us to further restrict
the number of candidates, it also requires an set of NLP
modules specifically trained on clinical data. In our case,
this restriction would cause a large percentage of relevant
candidates to be removed. This choice resulted in an
increase in the number of both correct and erroneous
concepts.
Experiments with features found by distributional seman-
tic models produce mixed results. An improvement is
mainly seen when we are predicting diagnostic codes. We
hypothesize that in texts, the mention of diagnoses is more
vague than mentions of procedures. While a procedure
was either performed or not, a diagnosis often has a
tentative nature. The terminology used for describing a
diagnosis or a disease is also wider. By adding concepts
that are considered similar, the model succeeds indeed in
finding similarity between documents describing patient
stays where there were no matching features before.
Additionally, because ICD-9-CM diagnostic codes are
more fine-grained than ICD-9-CM procedure codes, the
features are also required to reflect those details. The
main disadvantage of using a distributional semantic
model to generate features is the abundance of generated
features.
Restricting the neighbours retrieved with word2vec by
selecting only the ones that can be related to an UMLS-
concept integrates expert knowledge into the model. This
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Table 3: Exact match (in %) for each disease area and code type for the different concept representation methods. The first element in the
column name stands for the disease area (card, gast and uro are short for cardiology, gastroenterology and urology) while the second element
stands for the predicted codeset (diag are diagnostic ICD-9-CM codes and proc are procedural ICD-9-CM codes).

Card, Diag Card, Proc Gast, Diag Gast, Proc Uro, Diag Uro, Proc
Baseline (bow of all texts) 5.7 33.3 33.9 54.8 8.4 37.6
Concept detection methods
Dictionary-based concepts 5.7 42.8 33.9 66.7 9 44.2
BPM-based concepts 5.6 52.5 33.9 63.2 8.6 45.2
LMI-based concepts 6.1 57.2 33.9 62.4 9.5 46.3
Majority-voted concepts 5.9 47.8 33.9 66.3 9.1 38.4
Bag of concepts 6.2 58.9 33.9 60.7 9.3 46.2
Methods for representation of concepts in word2vec
Word2Vec neighbours with LMI-based concepts 6.6 55.6 33.9 60 10 38.7
Word2Vec cluster with LMI-based concepts 6.3 56 33.9 61.3 9.4 41.1
Average Word2Vec-vector with LMI-based concepts 5.7 39.8 33.9 58.7 8.6 42.9
Average Document vector 5.6 24 33.9 42.1 1.3 24.9
Methods for representation of concepts in UMLS
UMLS neighbours with dictionary based concepts 6.2 45.1 34.1 67.6 9.6 36.4
Word2Vec neighbours, restricted with UMLS, with LMI-based concepts 6.8 56.6 34.1 67.9 10.1 48.9

Table 4: Macro-averaged F-measure (in %) over samples for each disease area and code type for the different concept representation methods.
The first element in the column name stands for the disease area (card, gast and uro are short for cardiology, gastroenterology and urology)
while the second element stands for the predicted codeset (diag are diagnostic ICD-9-CM codes and proc are procedural ICD-9-CM codes).

Card, Diag Card, Proc Gast, Diag Gast, Proc Uro, Diag Uro, Proc
Baseline (bow of all texts) 37.6 70 15.3 44 36.3 30
Concept detection methods
Dictionary-based concepts 40.3 70.7 19.8 50 31.7 35
BPM-based concepts 38.5 73.4 16 45 25.7 35
LMI-based concepts 41.6 73.1 18.2 50 28.5 31.7
Majority-voted concepts 38.8 69.7 18.3 45 39.8 33.3
Bag of concepts 44.9 75.3 18 46.7 28.8 33.3
Methods for representation of concepts in word2vec
Word2Vec neighbours with LMI-based concepts 46.9 73.3 20.7 40 32.5 28.3
Word2Vec cluster with LMI-based concepts 40.7 71.2 20 50 26.8 33.3
Word2Vec average vector with LMI-based concepts 36 69.1 21 43.3 33.5 36.7
Average Document vector 35 62 10.2 19.5 27.7 29.9
Methods for representation of concepts in UMLS
UMLS neighbours with dictionary based concepts 44.1 70.4 20.2 50 36.1 31.7
Word2Vec neighbours, restricted with UMLS, with LMI-based concepts 41 73.6 23.0 46.7 35.5 32
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greatly reduced the number of features, which consistently
improved the results over both using LMI-based concepts
as features and using LMI-based concepts and word2vec
neighbours in combination as features. The performance
of dictionary-based concepts in gastroenterology is also
outperformed in this model, which can be an effect of
both the expert knowledge being integrated and the
reduced number of features. By using UMLS to restrict
related concepts, we avoid directly assigning expert-based
information (and missing concepts that are not present in
this ontology), and are still able to have relations to these
concepts that are based on expert knowledge.
Averaging the concept vectors generated with word2vec
for all concepts in a stay seems advantageous when evalu-
ating on a per-sample basis, but not when evaluating per
individual code prediction. This might indicate that the
vectors represent the concepts well, but generalize them
more strongly and lose nuances that might be important
to predict frequent codes. Averaging vectors inferred on
the document level do not provide a useful representation
for this task. This indicates that the documents cannot be
adequately captured using a single vector, mainly because
all information in a document needs to be reflected in
this vector (not only medical concepts). By averaging
the vectors for multiple documents, this effect is amplified.

A downside to LMI concepts (or any concepts not
defined in a dictionary) is that there is no expert-
annotated context. For example, if ‘carditis’ is detected
through its direct definition in UMLS (C0869523), there
is an expert interpretation linked to the concept, which
makes it easier to find related concepts. While using a
distributional semantics model also adds an interpretation
and metadata to the concepts, the results show that this
is still an error-prone process. A manual check of the
returned neighbours for certain concepts yielded some
surprisingly accurate results, but also some disappointing
ones. This is consistent with a distributional semantics
model relying on the context in which words occur, and
the context of two words can be similar even if the
concepts in question are not.

Due to the use of a real-life dataset, we were depen-
dent on the code system present in this data (i.c.
ICD-9-CM). While this has an effect on the portability
to other systems, the proposed methodology is directly
applicable to other coding systems. The relatively low
F-measures seen in the results are an indication of the
complexity of the task. This is reflected in other studies,
where codes predicted on real-life datasets tend to achieve
low F-measures [22, 24]. A benefit of the dataset used is
that the results are more indicative of how the algorithms
behave in a practical context.

When clinical code prediction is used in an applica-
tion, optimizing the output of the model for either
precision (which allows a classifier to automatically assign

clinical codes on a small portion of the files) or for
recall (which can be used in a setup to assist clinical
coders in retrieving the correct codes for a patient file)
is a necessary step. This choice was not made in our
evaluation, because we were not directly evaluating the
efficacy of the algorithm in a clinical coding environment
and wanted to show an overall picture of how the model
performs.

4.1. Future work

To further explore the value of document representa-
tions, we could use documents directly to represent a stay,
instead of using concepts. Although documents are unique
to one patient stay, adding the nearest neighbouring doc-
uments would create the overlap required to assign classes
to stays. If documents are more similar to each other, we
would then expect the classes to be more similar as well.
This technique requires a higher quality of document vec-
tors than we have been able to create.

5. Conclusion

In this study, we introduced methods for medical con-
cept detection and concept representation. We compared
the results of concepts learned with an unsupervised
technique (LMI) with using concepts derived from expert-
based dictionaries (DICT) in the task of clinical code
assignment. Both diagnostic and procedural codes were
predicted, for three different medical fields with a varying
dataset size. Both the DICT and LMI methods achieved
a higher F-measure than a bag-of-words approach, with
LMI-based concepts performing best in general. These
results confirm that the concepts succeed in capturing
more information, while reducing the noise present. LMI
turns out to be a viable alternative method to retrieve
concepts in text when expert-developed dictionaries
are not (or only partly) available (as is the case for
Dutch, for instance), given that a sufficient amount of
raw/unannotated data is available.

In addition, a distributional semantics model (DSM)
was used to interpret the meaning of the concepts based
on the context in which they occur. Three different meth-
ods of introducing the extra knowledge were compared:
introducing similar concepts in a patient stay with the
nearest-neighbours method, introducing cluster ids of
similar concepts with the cluster-method, and directly
using the vectors learned by the DSM to position a
patient stay. The nearest-neighbours method showed an
improved F-measure when predicting diagnostic codes,
for each medical field. This improvement was not seen
when predicting procedure codes. By restricting the
nearest-neighbours method by only retaining neighbour-
ing concepts that can be related to the UMLS, the results
are improved further, for both diagnostic and procedure
codes.
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