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Abstract
The modeling of psycholinguistic phenomena, such as word reading, with machine learning techniques requires the featurization of word
stimuli into appropriate orthographic and phonological representations. Critically, the choice of features impacts the performance of
machine learning algorithms, and can have important ramifications for the conclusions drawn from a model. As such, featurizing words
with a variety of feature sets, without having to resort to using different tools is beneficial in terms of development cost. In this work, we
present wordkit, a python package which allows users to switch between feature sets and featurizers with a uniform API, allowing for
rapid prototyping. To the best of our knowledge, this is the first package which integrates a variety of orthographic and phonological
featurizers in a single package. The package is fully compatible with scikit-learn, and hence can be integrated into a variety of
machine learning pipelines. Furthermore, the package is modular and extensible, allowing for the future integration of a large variety of
feature sets and featurizers. The package and documentation can be found at github.com/stephantul/wordkit
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1. Introduction
Psycholinguistic models of word reading have been exten-
sively investigated using computational models. Examples
of such modeling efforts include the Interactive Activation
(IA) model (McClelland and Rumelhart, 1981), the Triangle
family of models (Seidenberg and McClelland, 1989; Harm
and Seidenberg, 2004) the MROM model (Jacobs et al.,
1998), the Dual Route Cascaded (DRC) model (Coltheart
et al., 2001), and, more recently, the Devlex (Farkas and Li,
2002; Li and Farkaš, 2002) and the BLINCS models (Shook
and Marian, 2013). All the implementations of these models,
however different their core assumptions may be, have in
common that they assume that words can be represented as
numbers.
In spite of this reliance on feature-based representations, the
debate surrounding these models has mostly focused on the
way these models process their featurized word representa-
tions, not on the features themselves. The way words are
featurized is usually treated as a factor which only deserves
peripheral mention. This has ramifications for the way re-
search progresses: first, it hampers empirical comparisons
between models; while there is some consensus on which
words are valid to use in simulations of psycholinguistic
experiments, there is no consensus on how to featurize them.
This can lead to situations in which models are deemed to
be comparable because they use the same words as input,
while they are actually not comparable because they fea-
turize them in different ways (Plaut et al., 1996). Second,
because features are not regarded as part of their respective
models, there is a distinct lack of freely available featurizers,
which hampers comparability and reproducibility.
In this work, we attempt to remedy these issues by present-
ing wordkit, a package which implements a variety of
orthographic and phonological featurizers and correspond-
ing feature sets. wordkit aims to be a one-stop, modular
and extensible featurization package, which can be used for
creating feature sets for psychological research, as well as
input stimuli for computational models. The current version

of wordkit contains three orthographic featurizers, five
phonological featurizers, several orthographic and phonolog-
ical feature sets, three corpus readers, and a sampler. These
components are all realized as separate modules, which al-
lows users to reorder or omit modules depending on their
needs and resource availability. We will proceed as follows:
In section 2. we will discuss some theoretical arguments for
the use of different featurization techniques and how related
work has used different featurization techniques, while in
section 3. we will give a high-level overview of wordkit.
In section 4., we will perform several experiments which
evaluate the system by computing correlations between dif-
ferent featurization techniques.

2. Theoretical Discussion
The use of featurizers such as those included in wordkit
touches upon at least two theoretical issues: the structure
of the orthographic code, and the influence of phonology in
word reading.

2.1. The orthographic code
In general, reading speeds are modulated to a large degree
by the way words orthographically resemble one another;
words in dense neighborhoods are, on average, read faster
than words with the same length but fewer neighbors (Car-
reiras et al., 1997; Perea and Pollatsek, 1998; Pollatsek
et al., 1999), and non-words with more neighbors are re-
jected more slowly than non-words with fewer neighbors
(Arduino and Burani, 2004). This notion of neighborhood
can be defined in several ways, but it is often defined using
Levenshtein-based measures, such as Coltheart’s N (Colt-
heart et al., 1977) or OLD20 (Yarkoni et al., 2008).
Regardless of how one chooses to define neighborhoods, the
base assumption seems to be that words similar to the word
being activated are co-activated because they have similar
orthographic codes (Grainger, 2008). In this view, ortho-
graphic featurization techniques can be viewed as implemen-
tations of orthographic codes. While there is little agreement
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Figure 1: A sample wordkit pipeline

on which featurization technique is valid (Grainger, 2008),
most models, including the Interactive Activation family of
models, the DRC model and the Triangle family of models
assume that the orthographic code consists of a sequence
of slots, which can be filled with letters. This is striking,
as a purely sequential coding of orthography is unlikely to
be correct, as pointed out by Davis (Davis, 2012); read-
ers tend to judge words with transposed or added letters as
highly similar, e.g. ‘garden’-‘graden’ and ‘men’-‘amen’,
even though the vector representations of these words are
quite different when featurized using a sequential encoding.

An alternative to sequential coding is a so-called open
bigram encoding (Grainger and Van Heuven, 2004;
Schoonbaert and Grainger, 2004; Grainger and Whitney,
2004), which is formed by taking the ordered 2-combination
of each letter in a word. That is, the open bigram encodings
of the words ‘salt’ and ‘slat’ are {sa, sl, st, al, at, lt} and
{sl, sa, st, la, lt, at}, respectively. It is worth noting that
the open bigram encoding has also been deemed unsatis-
factory; as shown by Davis and Bowers, the open bigram
coding has no way of representing whether the constituent
letters of the bigrams are contiguous (Davis and Bowers,
2006). Taking the ‘salt’-‘slat’ example above, we can see
that both of the bigram sets contain the bigram at, but it is
only contiguous in the case of “slat”. Furthermore, Davis
and Bowers have shown that participants judge substitution
neighbors (‘stop’-‘shop’) to be more similar than transposi-
tion neighbors, which is exactly the opposite of what open
bigram encoding predicts (Davis and Bowers, 2006).

Another alternative to sequential coding is the spatial coding
offered by the SOLAR (Davis, 2001), and the unconstrained
open bigrams used by the SERIOL (Whitney, 2001) mod-
els. These featurization techniques, which offer a better
fit to empirical data, are not implemented in wordkit be-
cause, rather than being featurizers, SERIOL and SOLAR
are actually full-blown models of letter recognition. That
is, SERIOL and SOLAR do not produce the type of vec-
tors which can be used as input by other models, and are
more like the models that accept the input vectors which are
generated by our transformers.

In the same vein, it is worth noting that orthographic codes
have also been obtained by training feed-forward supervised
neural networks (Dandurand et al., 2010; Hannagan et al.,
2011). While interesting from a theoretical point of view,
the hidden states of such a model do not constitute the kind
of representations suitable for input in most models, and,

like SERIOL and SOLAR, producing these representations
requires a representation of the orthographic code.
Even though strictly sequential coding and open bigram
coding are unlikely to explain all observed phenomena in
orthographic similarity judgments, we still include them
in wordkit. The goal of this package is, after all, the
facilitation of comparisons between different featurization
techniques for replication and research purposes. A sim-
ilar argument holds for the included features, which are
described below. It is quite unlikely that letters are best
represented by a single scalar, as in the DISLEX model
of Miikkulainen (Miikkulainen, 1997), but we still include
them because it facilitates reproduction and comparison be-
tween models.

2.2. The influence of phonology
While the debate surrounding the orthographic code has
mostly centered on which information readers extract from
visual stimuli, the debate in phonology has centered on
the absence or presence of phonological influence during
lexical access. One the one hand, this is not surprising; it
is undebatable that orthographic information plays a role in
reading, but phonological information is one step removed
from printed words, and therefore the question of whether it
influences reading is less straightforward. Furthermore, it
has been extremely difficult to determine whether phonology
plays a role in lexical access, as opposed to post-access;
even if reliable priming effects from words to phonological
neighbors are obtained, opponents of a phonological theory
of word reading can still claim that these effects occur post-
access, and do not influence the actual access of lexical
items.
As a consequence, little attention has been given to the
exact featurization of phonology in word reading. Most
models that provide phonological information assume that
graphemes are first converted to phonemes, after which
the resulting phonemic representations co-activate similar-
sounding representations (Seidenberg and McClelland,
1989; Miikkulainen, 1997; Harm and Seidenberg, 2004).
There exist two main strands in phonological featurization;
one based on Onset Nucleus Coda (ONC) featurization
(Keuleers and Daelemans, 2007), and the other on Conso-
nant Vowel (CV) featurization (Li and MacWhinney, 2002).
These methods differ only in the way they order phonemes,
not in the way they represent individual phonemes. ONC fea-
turizers group phonemes in subdivisions of syllables, where
each syllable is sub-divided in an Onset, a Nucleus, and a
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Phonology Syllables Frequency
Celex
CMU
Deri

Table 1: The corpus readers and their descriptors

Orthography Phonology Frequency
wind waInd 298
wind wInd 2170

Table 2: The structured output of ‘wind’ from the Celex
corpus reader

Coda, while CV featurization techniques group phonemes
according to a grid with alternating Consonant and Vowel
slots. Note that, while these featurization techniques solve
the problem of aligning phonological strings, they do not
solve the problem of aligning syllabic units. That is, while
phonemes within syllables are reasonably aligned when us-
ing both the CV and ONC featurizer, there is no guarantee
that syllables themselves are aligned. In that sense, the
problem of alignment is only partially solved by aligning
phonemes to a grid Both CV and ONC transformers have
been implemented in wordkit, and may provide a testbed
for theories of phonologically driven theories of word read-
ing.

3. Overview of Wordkit
wordkit is a modular system, consisting of discrete
components, which can be combined to create an end-to-
end featurization pipeline. Additionally, all these com-
ponents can be used separately, or integrated into other
systems. To facilitate the incorporation of modules into
other machine learning experiments, all wordkit mod-
ules inherit scikit-learn (Pedregosa et al., 2011) base
classes, which allows modules to be directly integrated into
scikit-learn pipelines. Currently, there are three types
of modules:

1. Readers: modules which retrieve words from a corpus,
and output structured information about that word in
that corpus.

2. Transformers: modules which take in structured in-
formation and turn them into feature vectors.

3. Samplers: modules which take a set transformed
words as input and sample from this set according to
their frequency.

3.1. Readers
Readers are modules which take as input strings represent-
ing the orthographic form of words, e.g. ‘wood’ or ‘dog’,
and extract structured information corresponding to this
string from a corpus. The information extracted from a
corpus depends on the information present in that corpus:
every corpus reader defines a set of so-called descriptors,
which denote which data fields are contained within that
corpus. We currently offer readers for three corpora: Celex

(Baayen et al., 1993), a large multilingual collection of cor-
pora (Deri and Knight, 2016), and CMUdict. The current
corpus readers and their fields are listed in Table 1. If the
phonological information in the corpus does not correspond
to the IPA (International Phonetic Alphabet), as in the case
of Celex and CMUdict corpora, we convert the representa-
tion to IPA, which serves to make these corpora comparable.
As an example of use, consider the word ‘wind’, which is a
phonologically ambiguous homograph. Table 2 shows the
structured records we get as output when we present ‘wind’
as input to the Celex corpus reader. Corpus readers can
also be combined in parallel, which allows one to, for ex-
ample, perform multilingual experiments by including both
the Dutch and English Celex corpora, or to combine fre-
quency estimates from one corpus with phonological forms
from another. Finally, corpus readers accept an arbitrary
filtering function which filters the output given by the reader.
This, for example, allows users to specify constraints on the
number of syllables, frequency, word length, among others.
These features make wordkit applicable to the creation
of stimulus sets for research in experimental psychology, in
which a diverse set of constraints need to be satisfied.

3.2. Transformers
In wordkit, a transformer is a module which turns struc-
tured information into feature vectors which can be fed into
a machine learning system or otherwise used in experiments.
Throughout this paper, we denote single modules as trans-
formers, and combinations of different transformers as a
featurizer. Like the corpus readers, the transformer modules
can be combined in parallel, allowing for the featurization of
a word into multiple feature vectors, which are then concate-
nated into a single vector. We will describe all transformers
in order.

Linear The Lineartransformer is directly based on the fea-
turization scheme in the Interactive Activation (IA) model
(McClelland and Rumelhart, 1981), which is a slot-based
featurization scheme. This implies that the orthographic
code is defined as consisting of a number of slots, which are
filled with feature values. In our case, the Lineartransformer
represents words as concatenations of feature vectors, the
values of which are determined by the feature set in use.
Like other slot-based transformers, the lineartransformer
makes the naive assumption that letter transpositions do not
impact word recognition, and that words are strictly left-
justified. This means, for example, that “stop” and “top”
do not share any letters according to this encoding scheme.
Nevertheless, a substantial amount of reading models, like
the aforementioned IA models, assume a slot-based encod-
ing, and its inclusion in wordkit is therefore warranted.
The Lineartransformer can also be applied to phonological
feature strings, with the caveat that this requires vowels and
consonants to have the same number of features, and that
vowels and consonants do not overlap in features. This is
a difficult assumption to maintain, and therefore the Lin-
eartransformer is usually not applicable to phonological
feature strings.

Wickel We also include the family of Wickeltransformers,
which represent words as unordered collections of ngrams
(Rumelhart and McClelland, 1985), also commonly called
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Dim
One hot # of unique characters
Fourteen segment 14
Sixteen segment 16
Miikkulainen 1

Table 3: The available orthographic feature sets

wickelphones when used for phonology. While wickel-
phones have traditionally been extracted using trigrams, we
extend the wickeltransformer to accept arbitrary values of
n, although increasing n results in extremely large feature
spaces. Wickeltransformers can be used for both phonologi-
cal and orthographic strings, and do not require features to
function, which makes them widely applicable. Wickeltrans-
formers can represent order information, while still being
able to flexibly account for some substitution effects. As
pointed out by Rumelhart and McClelland, the Wickelphone
representation can not represent one-letter substitutions cor-
rectly; the words “silt” and “slit” have 0 overlapping features
(McClelland et al., 1987).
Note that using Wickelfeatures has been shown to have
detrimental effects on performance in the SM89 Triangle
model (Plaut et al., 1996).

Open ngrams The open bigram coding is a featurization
procedure which takes into account transposition effects
by using ordered bigrams, which is equivalent to taking
the 2-combination of all letters in a word (Grainger and
Van Heuven, 2004; Schoonbaert and Grainger, 2004). Like
in the case of the Wickeltransformer above, we extend the
open bigram coding to an open ngram coding, in which
the user can specify n herself. The Openngramtransformer
is also highly similar to the Wickeltransformer in other re-
spects: it doesn’t require any features, results in an un-
ordered bag of features, and works for both arbitrary phono-
logical and orthographic strings.

Consonant Vowel The Consonant Vowel (CV) trans-
former is a generalization of patpho (Li and MacWhinney,
2002), which represents phonology by assigning phonemes
to a consonant-vowel grid, and then replacing them with
binary or real-valued feature vectors. Transforming vectors
using a CV grid generally applies to phonology, unless one
assumes that orthographic characters are also segmented
into consonants and vowels, an assumption which is rarely
made1. The CVtransformer generalizes patpho because it
supports variable-length grids and the use of different fea-
ture sets, while giving the same results as patpho when
given the same grid and features. Because CV assigns words
to a phoneme grid, words which do not have fully aligned
orthographic forms might still be reasonably aligned in their
phonological form. For example, the words ‘pot’ and ‘spot’,
which share no characters in any position, are still phonolog-
ically aligned using a CVtransformer. Unlike the original
version of patpho, our transformer can automatically opti-
mize its grid size for a given dataset.

Onset Nucleus Coda Like the CVtransformer, the On-
set Nucleus Coda (ONC) transformer creates vector repre-

1but see (Shook and Marian, 2013)

Vowel Dim Consonant Dim
patpho binary 5 7
patpho real 3 3
Plunkett 6 6
One hot phoneme # of vowels # of consonants
One hot feature 39 76
Miikkulainen 2 3
Binary feature 5 8

Table 4: The available phonological feature sets. Note that
the One hot features and Binary features can have variable
sizes, depending on the features the user decides to extract
from IPA phonemes.

sentations by aligning phonemes on a grid, and replacing
these by feature vectors. The main difference here is that
the ONCtransformer relies on syllable information to seg-
ment phonemes into sub-syllabic Onset, Nucleus and Coda
clusters. As such, this information needs to be present in
the corpus if one wants to attempt featurization using an
ONCtransformer; we do not provide a built-in syllabifier.
Adhering to syllable structure predictably leads to a more
rigid, but also a larger representation, in the sense that vec-
tors created with the ONC transformer tend to be larger in
dimensionality. Like the CV transformer, the feature grid of
the ONC transformer can be automatically adapted based
on the data, which means that the number of syllables, as
well as the number of Onset, Nucleus and Coda clusters per
syllable will be automatically determined.

3.3. Feature sets
Table 3 summarizes the orthographic feature sets, i.e. the
character vectors. The 14 segment display was used in the
Interactive Activation model(McClelland and Rumelhart,
1981), and represents words as sets of lines, as in a rudi-
mentary microwave display. The 16 segment display is a
simple expansion of the 14 segment feature set that can
also represent a wide variety of punctuation marks. The
Miikkulainen feature set represents each letter by a single
scalar: the proportion of black and white pixels for an upper-
case version of each letter (Miikkulainen, 1997; Shook and
Marian, 2013).
Table 4 details the phonological feature sets. All phonologi-
cal feature sets distinguish between consonants and vowels,
because the features for both types of phonemes are different.
As such, allowing overlap between consonants and vowels
would lead to incorrect results. The patpho features are from
(Li and MacWhinney, 2002), the Miikkulainen features are
from (Miikkulainen, 1997), the Plunkett features are from
(Plunkett and Marchman, 1993), while the binary feature set
is a modified version of the patpho feature set.
In addition, we offer the option of one-hot encoded feature
sets for both phonology and orthography. The usage of
these feature vectors implies that characters and phonemes
are categorical, as their vectors are completely orthogonal.

3.4. Samplers
Samplers are modules which take as input structured infor-
mation from a corpus which includes a frequency descriptor,
as well as the featurized versions of these words. The sam-
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Orth Wickel Linear (fourteen) Linear (sixteen) Linear (one hot) NGram Linear (one hot)
Phon Wickel CV (binary) CV (binary) NGram NGram CV (binary)
1 logarithm logarithm logarithm logarithm logarithm alpinism
2 rhythm vulgarism alpinism allegory allegory aphorism
3 alga aphorism algerian algeria alligator logarithm
4 allegory dogmatism aphorism aphorism vulgarism vulgarism
5 gorilla despotism alligator alga glamorize mannerism
6 amalgam magnetism algeria algerian altruism vandalism
7 alum anglicism ultimatum gallery grim embolism
8 al allopathy generator calorie aphorism alga
9 algeria mongolism decorator alacrity allegoric anarchism
10 allegoric mesmerism allopathy vulgarism lariat galvanism

Table 5: The 10 nearest neighbors to the word “Algorithm” for a variety of featurizers. The names in braces, if any, are the
feature names used by the featurizer. The feature sets and featurizers were chosen to be as diverse as possible.

pler then samples from the featurized dataset according to
the frequency of these words. A sampler allows researchers
to create ecologically valid datasets, insofar the frequen-
cies in the sampled corpora are indicative of the actual fre-
quencies with which words occur to actual language users.
wordkit includes samplers which operate on raw frequen-
cies, one-smoothed raw frequencies, or log-transformed
frequencies.

4. Experiments
In this section we will perform two correlation experiments
on a large set of featurizers. The goal of these experiments
is twofold: First, we aim to show that iterating over a large
set of features is easy using the provided tools in wordkit.
Second, we aim to show that the features themselves can
already account for a significant amount of variation in word
reading times. The first experiment looks for a correlation
between feature sets on a large (N = 17682) set of words
from Celex. The second experiment uses a slightly smaller
set of words (N = 10487) and correlates the average distance
to differences in lexical decision times from the British
Lexicon Project (BLP) (Keuleers et al., 2012). In both exper-
iments we limit ourselves to a description of the observed
differences, and leave a full-blown statistical analysis for
future work.

4.1. Experiment 1
To show how the choice of features impacts the outcome of
experiments, thereby demonstrating the utility of wordkit,
we perform a correlation analysis of the distances between
featurized words over a large set of featurizers. If the corre-
lation between two feature sets is high, the choice between
these feature sets makes little difference in the performance
of the model. Hence, if two models use highly correlated
feature sets and still show different results, the architecture,
and not the features, is likely responsible for the observed
differences in performance between said models. If the mod-
els use feature sets that show low correlation, any observed
difference in performance using these feature sets can not
be solely ascribed to architectural differences between the
models.
We proceeded by first creating a set of orthographic featur-
izers by selecting all pairwise combinations between ortho-
graphic transformers and feature sets, which resulted in a

set of six possible orthographic featurizers. Following this,
we extracted all pairwise combinations between phonolog-
ical featurizers and feature sets, excluding all feature sets
which did not distinguish between long and short vowels
(a selection of four feature sets), which led to a set of 10
possible phonological featurizers. We then defined our set
of featurizers as all pairwise combinations between the set
of orthographic and phonological featurizers, leading to a
set of 60 total featurizers (six possible orthographic fea-
turizers, and 10 possible phonological featurizers). Note
that we did not vary any of the parameters in the featuriz-
ers, for example the values of n in the Wickeltransformer
and Openngramtransformer, which would have drastically
increased the number of possible combinations.
We then proceeded by extracting all words whose phono-
logical forms consisted of fewer than 12 phonemes and
which were shorter than 10 characters from the English part
of Celex. We also removed words if any featurizer was
not able to featurize them appropriately, e.g. due to missing
phonemes, special characters. This resulted in a set of 17682
words.
For each of the featurizers we calculated the cosine simi-
larity from each word in our selected set of words to each
other word, leading to a 17682 × 17862 square matrix for
each featurizer. We then calculated the pairwise correla-
tion between every distance matrix, leading to a set of 1770
matrix comparisons ((60 * 59) / 2). Figure 2 shows the
pairwise correlations between each of the matrices. Note
that the X-axis lists the names of the featurizers and fea-
ture combinations (CV, ONC, W for Wickel, and O for the
OpenngramFeaturizer). For lack of space in the figure, we
do not list the phonological feature sets, of which there were
4. These were, in order, one hot encoded phonemes, one hot
encoded features, the features from Miikkulainen (Miikku-
lainen, 1997), and the modified set of patpho features (Li
and MacWhinney, 2002).
The correlations between the distance matrices show that
there exist differences between the featurization techniques:
First off, the sub-orthographic features, i.e. the fourteen-
and sixteen segment encodings (McClelland and Rumel-
hart, 1981) correlate heavily with models with the same
sub-orthographic features, and erase any effect of the phono-
logical featurizer. Also of interest is the fact that models
encoded with fourteen- and sixteem segment encodings re-
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Figure 2: The correlations between featurization pipelines on a set of 17682 words, where lighter colors imply higher
correlation. The phonological feature sets are not shown.

semble each other more than they do other models. This
again points to a kind of primacy of sub-orthography; mod-
els with sub-orthographic features are inherently different
from other models, regardless of their feature set.

A second effect is concerns phonological encodings in-
volving ngrams, i.e. the Wickeltransformer or the
Openngramtransformer. Recall that these transformers do
not involve any pre-defined feature sets, but instead encode
stimuli using a bag of ngrams. As we can see from the figure,
the correlations between featurizers which encode phonol-
ogy using a Wickeltransformer or Openngramtransformer
are higher than the correlations between the other trans-
formers. This again leads to a dominating effect; the ef-
fect of any orthographic encoding on the distance matri-
ces is effectively removed, and subsumed by the effect of
the phonological featurizer. In one sense this is not sur-
prising, as these two transformers, unlike the other trans-
formers, do not use a slot-based encoding. Looking at the
effect the Openngramtransformer and Wickeltransformer
have on orthography, we see a less pronounced differ-
ence, although we see a larger set of correlations for the
Openngramtransformer than the Wickeltransformer.

Concluding this experiment, we see that both the choice of

features as well as the choice of featurization techniques,
greatly impacts the similarities between words, and hence
the information offered to the model. More importantly,
we observe that choosing a certain feature set can cause or-
thography or phonological similarity to dominate over other
similarities. This has important implications for models of
word reading; if the modeler chooses a certain feature set
without validating said feature set, the modeler risks making
conclusions about the relative importance of, for example,
phonology, without knowing whether the features or the
model architecture contributed to the observed difference.

Table 5 shows the 10 nearest neighbors to the word ”algo-
rithm” for a variety of featurizers. Here we see that using
different features and transformer combinations leads to a
variety of different nearest neighbors.

Using a Consonant Vowel phonological grid in conjunction
with the slot-based encoding of the linear transformer leads
to a bias towards words with similar lengths. In contrast, the
Wickel and NGram transformers have a lower bias towards
length, and select a variety of as nearest neighbors.

Comparing the first, second, and final columns gives an
idea of the influence of features, as the featurizers in each
of these columns use the same features, and only differ in
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the selection of orthographic features. Here we see that the
selection of features leads to a difference in the extracted
words. This corroborates the evidence from Figure 2, in
which we saw that both features and transformers influence
the correlations between feature sets.

4.2. Experiment 2
In experiment 2 we used a set of 50 featurizers. We used
the same featurizers as in the experiment above, except that
chose to leave out the miikkulainen features on account
of these not being binary features. In this experiment, we
correlated the overlap distance from each word to each of
its 20 closest neighbors with the Reaction Times (RT) of
the BLP items (Keuleers et al., 2012). Previous work has
shown that the mean Levenhstein distance to the 20 closest
neighbors (OLD20) is a good predictor of reading time, as
measured on multiple corpora (Yarkoni et al., 2008), and
outperforms a neighborhood measure in which the ortho-
graphic neighborhood of a word is defined as the number of
words within a Levenshtein distance of 1 (Coltheart et al.,
1977). In this experiment, we provide a rough analogue to
the OLD20 neighborhood metric, but defined on arbitrary
feature spaces.
We used the same set of words as in the previous experiment,
but we removed any words that do not occur in the set of
BLP items, i.e. words for which we do not have reaction
time measurements. This lead to a set of 10487 words. As in
the previous experiment, we calculate the pairwise hamming
distance between each word and each other word, leading to
a N ×N matrix for each featurizer.
We replaced the cosine distance in the previous experiment
because the hamming distance is a straightforward analogue
of perceptual distance for binary vectors. The cosine, be-
ing normalized by vector length, assigns higher weights to
individual components for vectors with fewer components.
This is useful when measuring the correlation between dis-
tance measures, as the magnitude of the differences between
the different distance matrices no longer influences the per-
ceived correlation.
As in OLD20 (Yarkoni et al., 2008), we define the neigh-
borhood of a word as the mean distance to its 20 closest
neighbors. Like OLD20, this neighborhood metric can then
be compared to the RT measurements from the BLP. We
straightforwardly chose to use the 20 closest neighbors to
conform to the value reported by Yarkoni et al., although
we stress that there is no intrinsic reason for choosing this
value (Yarkoni et al., 2008). Additionally, Yarkoni et al.
report that the choosing 20 neighbors has little effect on
the explained variance of the OLD20 measure. Although
we did not test this assumption, we assume that the same
holds for our featurizers, and leave the investigation of this
assumption for future work.
For each of the featurizers, we calculated the Pearson cor-
relation between each word and the RT from the BLP. To
get more robust statistical estimates, we bootstrapped 100
samples of 9000 words from our base set of 10487 words.
Figure 3 shows the correlation and confidence intervals for
each of the transformers with respect to the RTs from the
BLP. For each word in each sample we also calculated the
OLD20, thus also obtaining robust statistical estimates for
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Figure 3: The mean correlations with 99.9% confidence in-
tervals between the different transformers and the RT values
from the BLP, bootstrapped from 100 samples. Each panel
lists a unique Orthography× Phonological transformer com-
bination. The columns within each figure specify the phono-
logical feature sets, while the colors specify the orthographic
feature sets. The purple bar at the bottom indicates the mean
and confidence interval of OLD20, also bootstrapped from
100 samples.
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comparing OLD20 to the other featurizers.2

The figure shows that all featurizers outperform OLD20. Ad-
ditionally, we see that switching between the ONC and CV
transformers has almost no effect on performance. It seems
that simply aligning phonemes on a grid is an important
factor; but that the type of grid apparently changes little in
performance. Furthermore, we see that using Open nGrams
as either the phonological or orthographic transformer has a
severely detrimental effect on performance. Out of all trans-
formers, OLD20 excluded, all featurizers with the lowest
performance included open nGram transformers. Finally,
we see that using a Wickeltransformer in the orthographic
position increases the fit, and leads to the best fit overall; us-
ing it in the phonological position does not seem to increase
performance. This further confirms empirical research by
Davis and Bowers (Davis and Bowers, 2006): as said above,
subjects tend to judge transposition neighbors to be less
similar than substitution neighbors. Open bigrams, being
unordered, have no way of representing whether two letters
are contiguous. Similarly, the ngram encoding of the Wick-
eltransformer represents both order information as well as
some information about some substitutions, which might
explain their increased performance in this task.
One thing we did not account for in the current experi-
ment is the presence or absence of phonological informa-
tion; OLD20 is calculated only on the basis of orthographic
information, while the other featurizers use a combination
of orthographic and phonological information.
While this may have biased the experiment towards the fea-
turizers, calculating OLD20 on phonological strings directly
makes less sense, since phonological strings are clearly or-
dered in syllable clusters. Put in another way: a slot-based
encoding, while unsatisfactory for orthography, is highly de-
sirable in the case of phonology. Note that there also exists a
PLD20, which is the OLD20 analogue for phonology. This
measure does not work directly on phonological strings, and
instead requires a metaphonetic representation.

5. Conclusion
In this work we presented wordkit, a versatile tool for
the featurization and retrieval of word stimulus sets from
a variety of corpora. We have demonstrated the utility of
the toolkit by doing a large-scale analysis of different fea-
turization pipelines, which showed that the choice of fea-
turization pipeline leads to different nearest neighbors. As
such, changing features in a model most likely has a big
effect on the performance of the model. Hence, we argue
that features should be seen as a part of any psycholinguistic
model and the accompanying theoretical framework, and not
theory-agnostic. Additionally, we performed an experiment
in which we compare the performance of 60 featurizers to
the well known OLD20 measure in correlating with RT judg-
ments in a lexical decision task. This showed that there is
considerable difference in performance between different
pipelines, again showing that the choice of featurization is an
important consideration. As for future work; we aim to ex-
pand the number of transformers and corpora in wordkit.

2we wrote an open-source package to estimate OLD20: www.
github.com/stephantul/old20

We also aim to present a more thorough evaluation of the
effect of orthography and phonology, and a more thorough
comparison to both OLD20 and PLD20.
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